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Abstract. An interesting and new type of fuzzy graph can ioed from a fuzzy graph
whose crisp graph is a cycle. In this paper, wénded new fuzzy graph named Double
Layered Fuzzy Graph (DLFG) and we have discusset: sif its properties using order,
size, 4 - complement of fuzzy graphs, etc.
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1. Introduction
Fuzzy graph theory was introduced by Azriel Roskhiie 1975 [5]. Though introduced
recently, it has been growing fast and has numeappications in various fields. During
the same time Yeh and Bang have also introduceidusaiconcepts in connectedness
with fuzzy graphs [7]. Mordeson and Peng introduitelconcept of operations on fuzzy
graphs, Sunitha and Vijayakumar discussed aboutfibeations of union, join, Cartesian
product and composition on two fuzzy graphs [4]e Tiegree of a vertex in some fuzzy
graphs was discussed by Nagoorgani and Radha fgjodtgani and Malarvizhi have
defined different types of fuzzy graphs and disedsss relationships with isomerism in
fuzzy graphs [3]. In this paper we define doublgetad fuzzy graph (DLFG) or 3 — D
Fuzzy graph which gives a 3-D structure in fuzzyplyr theory and some of its properties
were discussed.

Section two contains the basic definitions in fugzaphs, in section three we
introduce a new fuzzy graph called a double laydoedy graph, section four presents
the theoretical concepts of DLFG and finally weegdonclusion on DLFG

2. Preliminaries
Definition 2.1. [5] A fuzzy graph G is a pair of functions G,4) wherec is a fuzzy
subset of a non empty set S and p is a symmetziryfrelation ons . The underlying

crisp graph of G, ) is denoted bz : (o, 1/ )

Definition 2.2. [8] Let G: (o, ) be a fuzzy graph, the order of G is defined as
0(G) = oa(u)
utv
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Definition 2.3. [8] Let G:(o,u) be a fuzzy graph, the size of G is defined as
S(G)= 3 u(uv)
u,vivV

Definition 2.4. [10] Let G: (o, k) be a fuzzy graph, the degree of a vertex u in G is
defined asdg (u) = 1(u,v)and is denoted as (u).

VZ£U

Ay

Definition 2.5. [9] A fuzzy graphG: (o, ) is said to be a strong fuzzy graph if
H(u,v) =g (u)do(v) for all (u,v) ing .

Definition 2.6. [4] Let G be a fuzzy graph, the p - complement of Glésoted as
o) Oo(v) — u(u,v) if g(u,v) =0

G*:(o*, ") whereo” O 4 and y*(u,v) =<
(0", u) whereo Uy and p*( ){Olf,u(u,v):o

3. Double layered fuzzy graph (DLFG)
3.1. Definition

Let G: (0, i) be a fuzzy graph with the underlying crisp gr&h (o , 4 ). The pair
DL(G): (0., My, ) is defined as follows. The node set BL(G)beo” O 4 . The
. . o) ifullo
fuzzy subse,, is defined asr,, = _ .
p(uv) if uvO y
The fuzzy relationy, on o 0 4/ is defined as
H(w) if U,VDU*
;J(eI ) y(ej) if the edgele andj ehave a node in capnrbetween ther
= U(Ui) D,u(el) if u 0o and (IeD,u* and eacl? e is incidentiwsingle u

either clockwise or anticlockwise.
0 otherwse

By definition 4, (U,v) < 0y, (U)Oa,, (v) for allu,ving O 4 . Here i, is a fuzzy
relation on the fuzzy subset, . Hence the pairDL(G):(UDL,/JDL) is defined as

double layered fuzzy graph (DLFG)or 3 — D Fuzzy Graph We prefer to label the
graph as DLFG.

Remark 3.1.1.Here the crisp graph'Gs a cycle and the above definition is applicable
for n number of cycles.
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Example 3.1.1.Consider the fuzzy graph G, whose crisp graphs@ cycle with n = 3
vertices.

V1(0.6)

83(0.4) e|(05)

Figure 1: A Fuzzy graph Gd,)

V1(0.6)

V4(0.5 03 V,08
’ W 208>

63(0.4) 0.3 62(0.3)

Figure 2: Double layered fuzzy graphL(G) = (op1, UpL)

Consider the fuzzy graph with n = 4 vertices.

Vi(0.7)  e:(0.4) V,(0.8)

e4(0.6) €2(0.3)

Vi09)  ex02)  Vs(0.5)

Figure 3: A Fuzzy graph GH,)

137



T. Pathinathan and J. Jesintha Rosline

V1(0.7 0.4 V5(0.8)
0.4 - 03)
0.3 €2(V.
0.6 €4 (04
04 0.2 0.2
V4(0.9 :
0.6 -
€4(0.6 0.2 €3(0.2)

Figure 4. Double layered fuzzy graphL(G) = (op1, UpL)

Also consider the fuzzy graph with n = 5 vertices.

V4(0.8)
0.4 05
V5(0.5) V,(0.6)
02 03
V4(0.7) 0.4 V5(0.5)

Figure 5: A Fuzzy graph Gd,)

4(0.2) 0.2 e3(0.4)

Figure 6: Double layered fuzzy graphL(G) = (op, UpL)
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Similarly we can get different double layered fuzpaphs for a given fuzzy graph G,
whose crisp graph is a cycle.

4. Theoretical concepts
Theorem 4.1.0rder DL(G) = Order(G) + Size(G), where G is a fugraph.

Proof: As the node set of DL(G) ig" 0 4/ and the fuzzy subser, on g 04 is
o) ifulo

defined aso,, = _ .
p(uv) if uvOp

Order DL(G) = ) o, (1, (by definition 2.2)

ulVUE

= Z o, (U)+ Z Oy (U)

udE

=Y o)+ u(u) (by definition of o, (u) )

= Order (G) + Size (G).

Theorem 4.2.5ze DL(G) = 25ze (G) + > uE)0uE ). where G is a fuzzy
q.60E
graph and i, [IN.
Proof: SzeDL(G) = > 4, (u,v) (by defenition 2.3)
uVINUE
= Z Mo (U,V) + z Mo, (€ 1€ )+ z o U 8)
uv e .6 0E uOV g 0E
(y is in one of the end node qfie the third summation)

=size(G)+ ) u€ Pué ¥ > oG Pué .

6.gLE uVv ,e0E
=size (G)+ D, u € JJué ¥y ué
§.LE dlE

Since in the third summation, we are considerinty @me vertex in each edge either
clockwise or anticlockwise direction, its membepskialue is less than the value of the
vertices.

SzeDL(G) =size (G)+ > u ¢ Ty € ¥size (G

q.¢0E

= 2size (G)+ Y. 1§ Vi &

q.¢E

Theorem 4.3.|E;, (G)| = 2|E(G)| +|E(L(G))|

Proof: Each edge in G is replaced by a new vertex in DL{GE pair of adjacent edges
in G contributes a new edge in DL(G) and each édge is neighbourhood of only one
vertex either clockwise or anticlockwise. Also trertex which are adjacent in G is also
adjacent in DL(G).
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Thus, we hav¢E,, (G)| =2|E(G)|+ no of pairwise adjacent edges if
=|E(G)|+ |E(L(G))|.

Theorem 4.4.If G is a strong fuzzy graph then DL(G) is alsdrarsg fuzzy graph.

Proof: By the definition of strong fuzzy graph we hawgu,v) =o(u) Oo(v)for all

(u,v) in i .

Assume G is a strong fuzzy graph. we need to pBiy&) is a strong graph. Consider
an edge (u,v) in DL(G). Then

H(w) if u,vDa*

,u(el ) D/J(ej) if the edgeF andjehave a node in common betiem

luDL= A * *
a(ui)D,u(el)lf uiDa andtlaD,u and
each e is incident with singkle u eitlwlwckwise or anticlockwise
Case i. It is trivial from our assumption that G is a stgo graph. Thus

w(u,v)=o(u)Oo(v) for all (u,v) in 4, .

Case ii If yp (u,v)=p(g)Uu(e) if u=1g,v=2¢ 0 U are adjacent in in G
then 1, (u,v) =0y, (§) oy, (g) (by the definition ofoy, )

Case iii: If 4, (u,v)=0o(u)Ou(e) and each;ds incident to single;in G. Then
Ho (U, V) =0y, (u) Doy, (€)) (by the definition ofoy, )

Hence if G is a strong fuzzy graph, by case i, indaii we have
Uo (U,V) =0y, (U) Doy, (v)for all (u,v) in i, .

Theorem 4.5.Let G be a fuzzy graph then
ds(U) + (0@u) D)) ifubo’

Youe M =13 ue)Oue) + W) 0uE)) ifuy
g

Proof: By definition 1.10, we havel; (u) = Z,u(u,v)

VZU
VIV

Casei:Let udo , then
dDL(G) (u) = Z o (U,V) + 11, (U 8)
vio"

= Z H(u,v) + o (u)Ou e )(in the first summation the vertices
vio"

which are adjacent in G is also adjacent in DLFG)

140



Double Layered Fuzzy Graph
=dg(u)+o(u;)0u(e)

Case ii:Let u0y , then
Aoy (U) = Z o (8,€) + 1 U €)= Z uE)Ou(e) +o(u)0uE)

q.604 .04

Remark 4.1. The p-complement of DL(G) is the fuzzy graph G witk edge
membership value is always less than G.

V4(0.6)

e3(0.4) €1(0.5)

V3(0.5) €(0.3) V(0.8)

Figure 7: A Fuzzy graph GH,)

V1(0.6)

e5(0.4) 0.3 (0.3)

Figure 8: Double layered fuzzy graphL(G) = (opy, UpL)
V1(0.6)

V3(0.5) 0.2 V5(0.8)
o
e3(0.4)

Figure 9: Complement of double layered fuzzy grdpt(G*) = (ob,, itb,)

8(0.3)

Remark 4.2.If G is a strong fuzzy graph then the p - complenwéDL(G) is isolated
vertices. Thusd,, (u) =0 forall uing Uy .
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V1(0.6)

e3(0.5) e1(0.6)

V3(0.5) €(0.5) V(0.8)

Figure 10: A Fuzzy graph G&,u)

V4(0.6)

/3(0.5)w 0.5 v,0.8

€3(0.4) 03 ,(0.3)
Figure 11: Double layered fuzzy graghL(G) = (op., Upr)

V1(0.6)
o

§(05)

Vs(05) Vo(03)
e3(0°.4) e5(0.3)
Figure 12: Complement of double layered fuzzy grdpt(G*) = (o}, ub,)

5. Conclusion

In this paper, we have defined a new fuzzy graphehadouble layered fuzzy graph and
illustrated with some examples. Further structuces be developed by increasing
number of vertices and embedded cycles. Thesetwtaliatterns with the inherent
cycles give us an indicator to prove further intffedent patterns in networking models
or classification tools.
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