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Abstract. An interesting and new type of fuzzy graph can be obtained from a fuzzy graph 
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size, µ - complement of fuzzy graphs, etc. 
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1. Introduction 
Fuzzy graph theory was introduced by Azriel Rosenfeld in 1975 [5]. Though introduced 
recently, it has been growing fast and has numerous applications in various fields. During 
the same time Yeh and Bang have also introduced various concepts in connectedness 
with fuzzy graphs [7]. Mordeson and Peng introduced the concept of operations on fuzzy 
graphs, Sunitha and Vijayakumar discussed about the operations of union, join, Cartesian 
product and composition on two fuzzy graphs [4]. The degree of a vertex in some fuzzy 
graphs was discussed by Nagoorgani and Radha [6]. Nagoorgani and Malarvizhi have 
defined different types of fuzzy graphs and discussed its relationships with isomerism in 
fuzzy graphs [3]. In this paper we define double layered fuzzy graph (DLFG) or 3 – D 
Fuzzy graph which gives a 3-D structure in fuzzy graph theory and some of its properties 
were discussed. 
 Section two contains the basic definitions in fuzzy graphs, in section three we 
introduce a new fuzzy graph called a double layered fuzzy graph, section four presents 
the theoretical concepts of DLFG and finally we give conclusion on DLFG 
 
2. Preliminaries 
Definition 2.1. [5] A fuzzy graph G is a pair of functions G:(σ,µ) where σ is a fuzzy 
subset of a non empty set S and µ is a symmetric fuzzy relation on σ . The underlying 

crisp graph of G:(σ,µ) is denoted by * * *: ( , )G σ µ   
 
Definition 2.2. [8] Let : ( , )G σ µ  be a fuzzy graph, the order of G is defined as 

( ) ( )
u V

O G uσ
∈

=∑  
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Definition 2.3. [8] Let : ( , )G σ µ  be a fuzzy graph, the size of G is defined as 

,

( ) ( , )
u v V

S G u vµ
∈

= ∑  

 
Definition 2.4. [10] Let : ( , )G σ µ  be a fuzzy graph, the degree of a vertex u in G is 

defined as ( ) ( , )G
v u
v V

d u u vµ
≠
∈

=∑ and is denoted as ( )Gd u . 

 
Definition 2.5. [9] A fuzzy graph : ( , )G σ µ  is said to be a strong fuzzy graph if 

( , ) ( ) ( )u v u vµ σ σ= ∧  for all (u,v) in *µ .  
 
Definition 2.6. [4] Let G be a fuzzy graph, the µ - complement of G is denoted as 

: ( , )Gµ µ µσ µ  where * *σ µ∪  and 
( ) ( ) ( , ) if ( , ) 0

( , )
0 if ( , ) 0

u v u v u v
u v

u v
µ σ σ µ µ

µ
µ
∧ −

=  =

≻

 

 
3. Double layered fuzzy graph (DLFG)  
3.1. Definition 
Let : ( , )G σ µ be a fuzzy graph with the underlying crisp graph* * *: ( , )G σ µ . The pair 

( ) : ( , )DL DLDL G σ µ is defined as follows. The node set of ( )DL G be * *σ µ∪ . The 

fuzzy subset DLσ is defined as 
*

*

( ) if 

( ) if 
DL

u u

uv uv

σ σ
σ

µ µ
 ∈= 

∈  
 

The fuzzy relation DLµ on * *σ µ∪  is defined as  

*( ) if ,

( ) ( ) if the edge e  and e   a node in common between them

* *( ) ( ) if  and e  and each e  is incident with single u  

either clockwise or anticlockwise.

0 otherwi

uv u v

e e have
i j i j

u e u
DL i i i i i i

µ σ
µ µ

µ σ µ σ µ

∈
∧

= ∧ ∈ ∈

se 













 

By definition * *( , ) ( ) ( ) for all u,v in DL DL DLu v u vµ σ σ σ µ≤ ∧ ∪ . Here DLµ  is a fuzzy 

relation on the fuzzy subsetDLσ . Hence the pair ( ) : ( , )DL DLDL G σ µ  is defined as 

double layered fuzzy graph (DLFG) or 3 – D Fuzzy Graph. We prefer to label the 
graph as DLFG. 
 
Remark 3.1.1. Here the crisp graph G* is a cycle and the above definition is applicable 
for n number of cycles. 
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Example 3.1.1. Consider the fuzzy graph G, whose crisp graph G* is a cycle with n = 3 
vertices. 
 

 
 

Figure 1: A Fuzzy graph G:(�,µ) 
 

 
 

Figure 2: Double layered fuzzy graph ����� � ���	, ��	� 
 

Consider the fuzzy graph with n = 4 vertices. 
 

 
 

Figure 3: A Fuzzy graph G:(�,µ) 
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Figure 4: Double layered fuzzy graph ����� � ���	, ��	� 
 
Also consider the fuzzy graph with n = 5 vertices.  

 

 

Figure 5: A Fuzzy graph G:(�,µ) 
 

 

Figure 6: Double layered fuzzy graph ����� � ���	, ��	� 
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Similarly we can get different double layered fuzzy graphs for a given fuzzy graph G, 
whose crisp graph is a cycle. 
 
4. Theoretical concepts 
Theorem 4.1. Order DL(G) = Order(G) + Size(G), where G is a fuzzy graph. 
Proof: As the node set of DL(G) is * *σ µ∪ and the fuzzy subset DLσ on * *σ µ∪  is 

defined as 
*

*

( ) if 

( ) if 
DL

u u

uv uv

σ σ
σ

µ µ
 ∈= 

∈
 

Order DL(G) = ( )DL
u VUE

uσ
∈
∑  (by definition 2.2) 

  = ( ) ( )DL DL
u V u E

u uσ σ
∈ ∈

+∑ ∑  

  = ( ) ( )
u V u E

u uσ µ
∈ ∈

+∑ ∑  (by definition of ( )DL uσ  ) 

  = Order (G) + Size (G). 
 
Theorem 4.2. ( ) ( )

,

   2   ( ) ( )
i j

i j
e e E

Size DL G Size G e eµ µ
∈

= + ∧∑ ,  where G is a fuzzy 

graph and i, j ∈N. 

Proof: ( )
,

  ( , )DL
u v VUE

Size DL G u vµ
∈

= ∑  (by defenition 2.3) 

, , ,

( , ) + ( , ) ( , )
i j i i

DL DL i j DL i i
u v V e e E u V e E

u v e e u eµ µ µ
∈ ∈ ∈ ∈

= +∑ ∑ ∑  

     (ui is in one of the end node of ei in the third summation) 

   
, ,

= size (G) + ( ) ( ) ( ) ( )
i j i i

i j i i
e e E u V e E

e e u eµ µ σ µ
∈ ∈ ∈

∧ + ∧∑ ∑  

   
,

= size (G) + ( ) ( ) ( )
i j

i j
e e E e E

e e eµ µ µ
∈ ∈

∧ +∑ ∑  

Since in the third summation, we are considering only one vertex in each edge either 
clockwise or anticlockwise direction, its membership value is less than the value of the 
vertices. 

 ( ) Size DL G  
,

= size (G) + ( ) ( )  (G)
i j

i j
e e E

e e sizeµ µ
∈

∧ +∑  

   
,

= 2size (G) + ( ) ( )
i j

i j
e e E

e eµ µ
∈

∧∑   

 

Theorem 4.3. ( ) 2 ( ) ( ( ))DLE G E G E L G= +  

Proof: Each edge in G is replaced by a new vertex in DL(G). The pair of adjacent edges 
in G contributes a new edge in DL(G) and  each edge in G is neighbourhood of only one 
vertex either clockwise or anticlockwise. Also the vertex which are adjacent in G is also 
adjacent in DL(G).  
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Thus, we have *( ) 2 ( )  no of pairwise adjacent edges in GDLE G E G= +  

    ( )  ( ( ))E G E L G= + . 

 
Theorem 4.4. If G is a strong fuzzy graph then DL(G) is also a strong fuzzy graph. 
 
Proof: By the definition of strong fuzzy graph we have ( , ) ( ) ( )u v u vµ σ σ= ∧ for all 

(u,v) in *µ . 
Assume G is a strong fuzzy graph. we need to prove DL(G) is a strong graph. Consider 
an edge (u,v) in DL(G). Then 

*( ) if ,

( ) ( ) if the edge e  and e   a node in common between them

* *( ) ( ) if  and e  and 

each e  is incident with single u  either clockwise or anticlockwise. 

uv u v

e e have
i j i j

DL u e u
i i i i

i i

µ σ
µ µ

µ
σ µ σ µ

 ∈


∧
= 
 ∧ ∈ ∈





 

Case i: It is trivial from our assumption that G is a strong graph. Thus  

( , ) ( ) ( )u v u vµ σ σ= ∧  for all (u,v) in *
DLµ . 

 
Case ii: If ( , ) ( ) ( )DL i ju v e eµ µ µ= ∧  if  *  ,      i ju e v e µ∈= =  are adjacent in in G* 

then ( , ) ( ) ( )DL DL i DL ju v e eµ σ σ= ∧  (by the definition of DLσ ) 

 
Case iii: If ( , ) ( ) ( ) DL i iu v u eµ σ µ= ∧  and each ei is incident to single ui in G*. Then  

 ( , ) ( ) ( )DL DL i DL ju v u eµ σ σ= ∧  (by the definition of DLσ ) 

Hence if G is a strong fuzzy graph, by case i, ii and iii we have 

( , ) ( ) ( )DL DL DLu v u vµ σ σ= ∧ for all (u,v) in *
DLµ . 

 
Theorem 4.5. Let G be a fuzzy graph then  

*

*

*( )

( )  ( ( ) ( )) if 
( ) ( ) ( )  ( ( ) ( )) if u

i

G i i

DL G
i j i i

e

d u u e u
d u e e u e

µ

σ µ σ
µ µ σ µ µ

∈

 + ∧ ∈
=  ∧ + ∧ ∈

∑  

Proof: By definition 1.10, we have ( ) ( , )G
v u
v V

d u u vµ
≠
∈

=∑  

Case i: Let  *u σ∈ , then  

                 
*

( ) ( ) ( , ) + ( , )DL G DL DL i i
v

d u u v u e
σ

µ µ
∈

= ∑  

                                 *

( , ) + (u ) ( )i i
v

u v e
σ

µ σ µ
∈

= ∧∑ (∵in the first summation the vertices  

  which are adjacent in G is also adjacent in DLFG) 
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( ) (u ) ( )G i id u eσ µ= + ∧  

 
Case ii: Let  *u µ∈ , then     

*
( )

,

( ) ( , ) + ( , )
i j

DL G DL i j DL i i
e e

d u e e u e
µ

µ µ
∈

= ∑
*,

( ) ( ) + (u ) ( )
i j

i j i i
e e

e e e
µ

µ µ σ µ
∈

= ∧ ∧∑  

 
 
Remark 4.1. The µ-complement of DL(G) is the fuzzy graph G with its edge 
membership value is always less than G. 
 

 
 

Figure 7: A Fuzzy graph G:(�,µ) 
 
 

 
 

Figure 8: Double layered fuzzy graph ����� � ���	, ��	� 

 
Figure 9: Complement of double layered fuzzy graph ������ � ���	

�
, ��	
�
� 

 
Remark 4.2. If G is a strong fuzzy graph then the µ - complement of DL(G) is isolated 

vertices. Thus ( ) 0 DLd u = for all * *u in Uσ µ . 
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Figure 10: A Fuzzy graph G:(�,µ) 
 

 
Figure 11: Double layered fuzzy graph ����� � ���	, ��	� 

 

 
Figure 12: Complement of double layered fuzzy graph ������ � ���	

�
, ��	
�
� 

 
5. Conclusion 
In this paper, we have defined a new fuzzy graph namely double layered fuzzy graph and 
illustrated with some examples. Further structures can be developed by increasing 
number of vertices and embedded cycles. These structural patterns with the inherent 
cycles give us an indicator to prove further into different patterns in networking models 
or classification tools. 
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