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1. Introduction 
We consider only finite undirected graphs without loops or multiple edges. Notation and 
terminology not defined here follow those in [2]. For a graph = ( , )G V E , we use n  and 

e  to denote its order | |V  and size | |E , respectively. We use � � �� � �� � � �

�� � 	 to denote the degree sequence of a graph. The eigenvalues of a graph G  are 
defined as the eigenvalues of its adjacency matrix ( )A G . The largest eigenvalue, denoted 

( )Gρ , of a graph G  is called the spectral radius of G . The signless Laplacian 

eigenvalues of a graph G  are defined as the eigenvalues of the matrix 
( ) := ( ) ( )Q G D G A G+ , where ( )D G  is the diagonal matrix 1 2( , ,..., )ndiag d d d  and 

( )A G  is the adjacency matrix of G . The largest signless Laplacian eigenvalue, denoted 

( )q G , of a graph G  is called the signless Laplacian spectral radius of G .  
 
2. Main results 
In [4], Li obtained sufficient conditions which are based on the spectral radius for some 
Hamiltonian properties of graphs. In [5], Li obtained sufficient conditions which are based 
on the signless Laplacian spectral radius for some Hamiltonian properties of graphs. Using 
similar ideas as the ones in [4] and [5], we will present sufficient conditions which are 
based on the spectral radius or the signless Laplacian spectral radius for a graph to be k  - 
connected. The results are as follows.  
 
Theorem 1. Let G  be a connected graph of order 2n ≥  and let 1 1k n≤ ≤ − . If  

 
25 ( 5) 8( 3 ( 1)( 1))

> ,
4

n k n k n k n kρ + − + + − + + − + − − ∆ −
 

then G  is k - connected.  
 
Theorem 2. Let G  be a connected graph of order 2n ≥  and let 1 � � � �  1. If  
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2( 1) ( 1) 8(( 2) 1)

> ,
2

n k
q

∆ − + ∆ − + − ∆ + −
 

then G  is k -connected.  
Since 1n∆ ≤ − , Theorem 1 and Theorem 2  have the following Corollary 1 and 

Corollary 2 , respectively.  
 
Corollary 1. Let G  be a connected graph of order 2n ≥  and let 1 1k n≤ ≤ − . If  

 
25 ( 5) 8( 3 ( 1)( 2))

> ,
4

n k n k n k n k nρ + − + + − + + − + − − −
 

then G  is k - connected.  
 
Corollary 2. Let G  be a connected graph of order 2n ≥  and let 1 � � � �  1. If  

 
2( 2) ( 2) 8(( 2)( 1) 1)

> ,
2

n n n n k
q

− + − + − − + −
 

then G  is k - connected.  
In order to prove Theorem 1 and Theorem 2 , we need the following results as our 

lemmas.  
 
Lemma 1. ([1]) Let G  be a graph of order 2n ≥  with degree sequence 

1 2 nd d d≤ ≤ ≤⋯  and let 1 1k n≤ ≤ − . If  

 1

1
1 , 2 ,

2 i n k

n k
i d i k d n i− +

− +≤ ≤   ≤ + − ⇒ ≥ −  

then G  is k  - connected.  
 
Lemma 2. ([6]) Let G  be a connected graph with degree sequence 1 2 nd d d≤ ≤ ≤⋯ . 

Then for each i  with 1 i n≤ ≤ ,  

 
21 ( 1) 4( 1)( )

( ) .
2

i i n id d i d d
Gρ

− + + + − −
≤  

Moreover, if =i n , the equality holds if and only if G  is a regular graph. If 
1 1i n≤ ≤ − , the equality holds if and only if G  is either a regular graph or bidegreed 
graph in which 1 2= = = = 1n n n id d d n− − + −⋯  and 1 1= = = =n i n id d d δ− + − ⋯ .  

 
Lemma 3. ([7]) Let G  be a connected graph with degree sequence 1 2 nd d d≤ ≤ ≤⋯ . 

Then for each i  with 1 i n≤ ≤ ,  

 
22 1 (2 1) 8( 1)( )

( ) .
2

n i i n n id d d d i d d
q G

+ − + − + + − −
≤  

Moreover, if =i n , the equality holds if and only if G  is a regular graph. If 
1 1i n≤ ≤ − , the equality holds if and only if G  is either a regular graph or bidegreed 
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graph in which 1 2= = = = 1n n n id d d n− − + −⋯  and 1 1= = = =n i n id d d δ− + − ⋯ .  

   
Lemma 4. ([3]) Let G  be a graph of order n  with maximum degree ∆ . Then  

 ( ) 2 .q G ≤ ∆  

Moreover, if G  is connected, then equality holds if and only if G  is regular.  
Proof of Theorem 1. Let G  be a graph satisfying the conditions in Theorem 1. Suppose 
that G  is not k  - connected. Then, from Lemma 1, there exists an integer j  such that 

1 1
1

2 2

n k n k
j

− + − +≤ ≤   ≤ , 2jd j k≤ + − , and 1 1n kd n j− + ≤ − − . Obviously, 

1jd ≥ . Let =i j  in Lemma 2 . Then we have that  

 

21 ( 1) 4( 1)( )
.

2
j j n jd d j d d

ρ
− + + + − −

≤  

Thus  

 2 ( 1) ( 1)( ).j j n jd d j d dρ ρ≤ − + + − −  

Therefore  

 2 ( 3) 2 ( 1)( 1).j k j k jρ ρ≤ + − + + − + − ∆ −  
Hence  

 2 1 1 1
3 2 1 ( 1).

2 2 2

n k n k n k
k kρ ρ − + − + − +   ≤ + − + + − + − ∆ −   

   
 

By solving the inequality, we have that  

 
25 ( 5) 8( 3 ( 1)( 1))

,
4

n k n k n k n kρ + − + + − + + − + − − ∆ −
≤  

which is a contradiction.  
This completes the proof of Theorem 1.                                               □   
 
Proof of Theorem 2. Let G  be a graph satisfying the conditions in Theorem 2 . Suppose 
that G  is not k -connected. Then, from Lemma 1, there exists an integer j  such that 

1 1
1

2 2

n k n k
j

− + − +≤ ≤   ≤ , 2jd j k≤ + − , and 1 1n kd n j− + ≤ − − . Obviously, 

1jd ≥ . Let =i j  in Lemma 3. Then we have that  

 

22 1 (2 1) 8( 1)( )
.

2
n j j n n jd d d d j d d

q
+ − + − + + − −

≤  

Thus  

 2 ( 2 1) 2 (1 ) 2( 1)( ).n j j n n jq q d d d d j d d≤ + − + − + − −  

Therefore,  

 2 ( 1) 2 ( 1) 2( 1)( ).n j n n jq q d d q d j d d≤ − + − + + − −  

By Lemma 4 , we have that  
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 2 ( 1) 2( 2)( 1) ( 1)( 1).q q j k n k≤ ∆ − + + − ∆ + + − − ∆ −  
Hence  

 2 ( 1) ( 3)( 1) ( 1)( 1).q q n k n k≤ ∆ − + + − ∆ + + − − ∆ −  
By solving the inequality, we have that  

 
2( 1) ( 1) 8(( 2) 1)

,
2

n k
q

∆ − + ∆ − + − ∆ + −
≤  

which is a contradiction.  
This completes the proof of Theorem 2 .                                             □   
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