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1. Introduction 
Intuitionistic fuzzy set (IFS) introduced by Atanassov [1], which emerges from the 
simultaneous consideration of the degrees of membership and nonmembership with a 
degree of hesitancy has been found to be very useful in dealing with problems involving 
vagueness and uncertainty. IFS theory has been found to support a wealth of important 
applications in many fields such as fuzzy multiple attribute decision making, fuzzy 
pattern recognition, medical diagnosis, fuzzy control and fuzzy optimization [2]. Since 
formal languages are not powerful enough in processing human languages, Lee and 
Zadeh [3] introduced the notion of fuzzy languages and gave some characterizations. 
Fuzzy grammars, automata and languages have contributed to the development of lexical 
analysis and in simulating fuzzy discrete event dynamical systems and hybrid systems 
[4].  

To enhance the processing ability of fuzzy automata, the membership grades 
were extended to several general algebraic structures. Primarily, Qiu has established 
automata theory based on complete residuated lattice-valued logic [5]. Li and Pedrycz [6] 
have studied automata theory with membership values in lattice-ordered monoids. Jin and 
Li [7] have established a fundamental framework of fuzzy grammars based on lattices. 
Fuzzy pushdown automata theory based on complete residuated lattice-valued logic has 
been established in recent years by Xing et al. [8]. This paper deals with the notions of 
intuitionistic fuzzy context-free grammars and intuitionistic fuzzy pushdown automata 
and some results concerning them. Intuitionistic fuzzy context-free languages are 
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expected to reduce the gap between formal languages and the imprecision associated with 
natural languages. 

The remaining part of the paper is arranged as follows. Section 2 describes some 
basic concepts of IFSs. Section 3 gives the definitions of intuitionistic fuzzy pushdown 
automata and languages. In section 4, we establish that every intuitionistic Fuzzy PDA 
that accepts intuitionistic Fuzzy Context Free Language with empty stack has an 
equivalent intuitionistic Fuzzy PDA that accepts the same language with final state and 
vice-versa. It follows that intuitionistic Fuzzy PDA with final states and empty stack are 
equivalent. Section 5 is devoted to the study of intuitionistic fuzzy context-free grammars 
(IFCFGs) and intuitionistic fuzzy context-free languages (IFCFLs). The notions of 
intuitionistic fuzzy Chomsky normal form (IFCNF) and intuitionistic fuzzy Greibach 
normal form (IFGNF) have been proposed. Conclusions and directions for future work 
are presented in Section 6. 
 
2. Basic concepts 
Definition 1.  Let X  be the universe of discourse, an Intuitionistic fuzzy set (IFS) A in X 
is defined as an object of the form  

A = {( x, µA(x), νA(x))  x ∈  X}                         (1) 

here the functions µA: X → [0, 1] and νA : X →[0, 1] denote the degree of membership 
and degree of non-membership  respectively. For every element x ∈  X  

0 ≤ µA (x) + νA (x) ≤ 1.             (2) 

For the sake of simplicity, we use the notation � = (��, ��) instead of � = {(�, �� (�), �� 

(�)) | � ∈ �} .  
Note that if  µA (x) + νA (x) = 1 for every � ∈�, then IFS A reduces to a fuzzy set 

in X.  
 
Definition 2. Let {�� | � ∈	} be a family of IFSs in�.Then the infimum and supremum 
operations of IFSs are defined as follows: 
∩ �� = {< x, ∧ µAi(x), ∨  νAi(x) >   x ∈  X, � ∈  	} 
∪ �� = {< x, ∨ µAi(x),  ∧ νAi(x) >   x ∈  X, � ∈	}          (3) 
here ∧ and  ∨ denote the infimum and supremum of real numbers respectively. 
 
Definition 3. Two IFSs � = (��, ��) and B = (�B, �B) are said to be equal if �� = �B and 
ν� = �B 

 
Definition 4.  Let X and Y be any two sets then an Intuitionistic Fuzzy Relation (IFR) 
from X to Y is an Intuitionistic fuzzy subset of �×�.  The expression R is given by 

R  = {< (�, �), �R(�, �), �R(�, �) > | � ∈�, � ∈�},      
here the mappings �R: � × � → [0, 1] and �R : � ×� → [0, 1] satisfy 
0 ≤ �R (�, �) + �R (�, �) ≤ 1, for all (�, �) ϵ �×�            (4) 
 
Definition 5.  Intuitionistic Fuzzy Binary Relation (IFBR) from � to � is an Intuitionistic 
fuzzy subset of � × �. It is given by the relation  

R = {< (�, �), �R(�, �), �R(�, �) > | (�, �) ∈� × X  },     
where the mappings �R : � × X → [0, 1] and �R: � × X → [0, 1] satisfy 
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0 ≤ �R (�, �) + �R (�, �) ≤ 1, for all (�, �) ∈� × X. 
We will again use the notation R = (µR, �R) instead of R = {< (�, �), �R(�, �), �R(�, �) > 
| (�, �) ∈� × X  }. The reflexive and transitive closure of IFBR R over X is R* = ∪ Rn 

for n = 0 to ∞. Here Rn+1=Rn ∘R for n ≥ 0 and R0 = (�id, �id) defined as  

 �id (x, y) = 1 if x = y, 0 otherwise and  
�id (x, y) = 0 if x = y, 1 otherwise. 

for all  (x, y) ∈� × X. 
  
Definition 6.  Let R = (�R, �R) be an IFR from � toY and S = (�S, �S) be an IFR from Y to 

Z, the composition of IFRs R and S is an IFS R∘S = (�R∘S, �R∘S) from � to 0 given by 

�R∘S (x, z) = ∨ (µR(x, y) ∧ µS(y, z)  � ∈�) 

               �R∘S (x, z) = ∧ (�R(x, y) ∨  �S(y, z)  � ∈�), for all (x, z) ∈� ×Z .                         (5) 

 
Definition 7. Let A = (�A, �A) be an IFS from X to X. Then the image set of A denoted by 
Im(A) is defined as   Im(A) = Im(�A) ∪ Im(�A) =  {�A(x) x ∈X } ∪  {�A (x) x ∈X  } 

 

Definition 8. For λ1, λ2 ∈[0, 1] where λ1 + λ2 ≤ 1, (λ1, λ2 )-cut of IFS A is defined as 
 A( λ1, λ2)= { x ∈X �A(x) ≥ λ1 and �A(x) ≤ λ2}.  

And support set of A is defined by supp (A) = {x ∈X �A(x) > 0, �A(x) < 1}. If 
supp (A) is finite, then A is called finite IFS. 
 
3. Intuitionistic fuzzy pushdown automata (IFPDA) 
Definition 9. An intuitionistic fuzzy pushdown automaton (IFPDA) is a seven tuple  
M = (2, Σ, Γ, 3, 	, 00, 4), where 
2 is a finite nonempty set of states; 
Σ is a finite nonempty set of input symbols; 
Γ is a finite nonempty set of stack symbols 
3 = (�3, �3) is a finite IF subset of 2 × (Σ ∪ {6}) × Γ × (2 × Γ*) defined by  
 �3 : 2 × (Σ ∪ {6}) × Γ × (2 × Γ*) → [0, 1] and 

�3 : 2 × (Σ ∪ {6}) × Γ × (2 × Γ*) → [0, 1] 
00 ∈ Γ is the start stack symbol; 
	 = (�	, �	) and 4 = (�4 , �4 ) are intuitionistic fuzzy subsets of 2, which are called the 
intuitionistic fuzzy subsets of initial and final states respectively. 
 
Definition 10. The state (configuration) of IFPDA is an IF subset of 2 × Σ* × Γ* given by 
(q, w, u, �, �) which indicates that IFPDA is currently in state q with w as unread part of 
input string, u on the top of the stack with the degree of membership and nonmembership 
�, � ∈[0,1] respectively. 
 
Definition 11. The move of an IFPDA M denoted by ⊢M = (�⊢M, �⊢M) is an IFBR on (2 × 
Σ

* × Γ*) to   (2 × Σ* × Γ*) defined as (q, aw, Zy) ⊢M (p, w, xy) = (�⊢M, �⊢M) where 
        �⊢M ((q, aw, Zy), (p, w, xy)) = �3 (q, a, Z, p, x) and 
        �⊢M ((q, aw, Zy), (p, w, xy)) = �3 (q, a, Z, p, x). 
Here p, q ∈Q, a ∈Σ ∪{ ε}, w ϵ Σ* and x, y ∈Γ*.                                     (6) 
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⊢M
∗ is the reflexive and transitive closure of ⊢M. When no confusion arises, we denote ⊢M 

by ⊢ and ⊢M
∗ by ⊢∗, respectively. Note that ⊢*

 = (�⊢
*
, �⊢

*) is an intuitionistic fuzzy subset  
defined as follows: 
If (q1, w1, ϒ1, �1, �1) ⊢ (q2, w2, ϒ2, �2, �2) ⊢ (q3, w3, ϒ3, �3, �3) ⊢  ….  ⊢ (qk, wk, ϒk, �k, �k) 

is the sequence of moves in IFPDA then (q1, w1, ϒ1, �1, �1) ⊢*
 (qk, wk, ϒk, �k, �k) . Here qi 

∈Q, wi ∈Σ*, ϒi ∈Γ* and �i, �i ∈ [0, 1] for i = 1 to k. 
 
Definition 12. Let M = (2, Σ, Γ, 3, 	, 00, 4) be an IFPDA. The IF language accepted by 
M can be defined in two ways: 
i. Language accepted by M with final states denoted by L(M) = (�L(M) , �L(M) ) where 

�L(M)  and �L(M) are fuzzy subsets of Σ* and are given by  
�L(M) (@) = ⋁{ �	 (B0) ∧ �⊢∗ ((B0 , @, D0 ), (E, 6, F)) ∧ �4 (E) | B0 , E ∈2, F ∈Γ*} 

and 
�L(M) (@) = ⋀{ �	 (B0)  ∨ �⊢∗ ((B0 , @, D0 ), (E, 6, F)) ∨�4 (E)  | B0 , E ∈2, F ∈  Γ*} 

for all @∈Σ*. 
 
ii. Language accepted by M with empty stack denoted by N(M) = (�L(N) , �L(N) ) where 

�L(N)  and �L(N) are fuzzy subsets and are given by   
�L(N )(@) = ⋁{ �	 (B0) ∧ �⊢∗ ((B0 , @, D0 ), (E, 6, 6))  | B0 , E∈2} and 
�L(N) (@) = ⋀{ �	 (B0 ) ∨ �⊢∗ ((B0 , @, D0 ), (E, 6, 6)) | B0 , E ∈2} for all @ ∈Σ*. 
 

4. Equivalence of IFPDA with final states and IFPDA with empty stack 
Proposition 1.  If I is an intuitionistic fuzzy language accepted with final states by an 
IFPDA M = (2, Σ, Γ, 3, 	, 00, 4), then I is an IFS in Σ*, and the image set of I is finite. 
Proof. First we will prove that I = (�I, �I) is an IFS in Σ* by showing that 0 ≤ �I(@) + 
�I(@) ≤ 1, for any @ = x1 ⋅ ⋅ ⋅ xK, x� ∈ Σ∪{6}, � = 1. . . K. Clearly, 
�I(@)  = ⋁{�	 (B0)  ∧ �⊢∗((B0 , @, D0 ), (E, 6, F)) ∧ �4 (E) | B0 , E∈F, F∈Γ* }  
          = ⋁ {�	 (B0) ∧ �⊢ ((B0 , @, D0 ),  (B1 , x2 ⋅ ⋅ ⋅ xK ,D1F1 ))  
                            ∧ �⊢ ((B1, x2 ⋅ ⋅ ⋅ xK, D1 F1), (B2 , x3 ⋅ ⋅ ⋅ xK,D2 F2 )) ⋅ ⋅ ⋅  
                               ∧ �⊢ ((BK−1, xK, DK−1 FK−1), (BK, 6, FK)) ∧ �4 (BK) | 
                              B0 , B1 , . . . , BK ) ∈ 2,   D1,. . ., DK−1 ∈ Γ, F1, . . ., FK ϵ Γ*}, 
and  
�I (@) = ⋀ {�	 (B0)∨ �⊢∗ ((B0, @, D0), (E, 6, F)) ∨ �4 (E) |B0 , E ∈ F, F ϵ Γ* }  
           = ⋀ {�	(B0 )∨ �⊢ ((B0 , @, D0 ), (B1 , x2 ⋅ ⋅ ⋅xK , D1 F1 ))  
                             ∨ �⊢ ((B1, x2 ⋅ ⋅ ⋅ xK, D1F1), (B2 , x3 ⋅ ⋅ ⋅ xK , D2F2 ))  ⋅ ⋅ ⋅  
                             ∨ �⊢ ((BK−1, xK, DK−1 FK−1), (BK, 6, FK)) ∨ �4 (BK) |  

                                B0 , B1 , . . . , BK  ∈ 2, D1 , . . . , DK−1 ∈ Γ, F1 , . . . , FK ϵ Γ* }. 

On the one hand, 0 ≤ �I (@) + �I (@); on the other hand, there exists a sequence B0, B1,  . 
. . , BK ∈ 2,  D1. . . zK−1 ∈ Γ, F1 , . . . , FK ∈Γ * such that  
�I (@) = �	(B0)∧ �⊢ ((B0 , @, D0 ), (B1 , P2 ⋅ ⋅ ⋅ PK , D1 F1 ))  
                      ∧ �⊢ ((B1 , x2 ⋅ ⋅ ⋅ xK , D1F1 ), (B2 , x3 ⋅ ⋅ ⋅ xK , D2F2 ))  ⋅ ⋅ ⋅ 
                           ∧ �⊢ ((BK−1, xK , DK−1 FK−1 ), (BK , 6, FK )) ∧ �4 (BK).  
Hence �I (@) ≤ �	 (B0) ∨ �⊢ ((B0, @, D0), (B1 , x2 ⋅ ⋅ ⋅ xK ,D1 F1 )) ∨ (B2 , x3 ⋅ ⋅ ⋅ xK , D2F2 )) 
∨ ⋅ ⋅ ⋅ ∨    �⊢ ((BK−1, xK , DK−1FK−1 ), (BK , 6, FK ))  ∨ �4 (BK) 
Therefore, �I (@) + �I (@) ≤ (�	 (B0 ) + �	 (B0 )) ∨ (�⊢ ((B0 ,@, D0 ), (B1 , x2 ⋅ ⋅ ⋅ xK , D1F1 
)) + �⊢ ((B0 , @, D0 ), (B1 , x2 ⋅ ⋅ ⋅ xK ,D1F1 ))) ∨ (�⊢ ((B1 , x2 ⋅ ⋅ ⋅ xK , D1F1 ), (B2 , x3 ⋅ ⋅ ⋅ 
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xK , D2F2 )) +  �⊢ ((B1 ,x2 ⋅ ⋅ ⋅ xK , D1F1 ), (B2 , x3 ⋅ ⋅ ⋅ xK , D2F2 ))) ∨ ⋅ ⋅ ⋅ ∨ (�⊢ ((BK−1 , xK 
,DK−1 FK−1 ), (BK , 6, FK )) + �⊢ ((BK−1 , xK , DK−1 FK−1 ), (BK , 6, FK ))) ∨ (�4 (BK ) + �4 (BK )) ≤ 
1 ∨ 1 ∨ ⋅ ⋅ ⋅ ∨ 1 = 1. 
 
To prove that Im(I) is finite,  let �= Im(�	) ∪ Im(�3) ∪ Im(�4) and �= Im(�	)∪ 
Im(�3)∪Im(�4). Since 3 = (�3, �3) and F = (�4, �4) are finite IFS, �I(@) ∈ � and �I(@)∈ Y 

for any @ = x1 ⋅ ⋅ ⋅ xK.  
Therefore, Im(I) = Im(�I) ∪ Im(�I) is finite. 
 
Proposition 2.  If I is a fuzzy language accepted with empty states by some IFPDA M = 
(2, Σ, Γ, 3, 	, 00, 4), then I is an IFS in Σ*, and the image set of I is finite. 
Proof. Similar to the Proposition 1 
 
Proposition 3.  Let I be IFS in Σ*, then the following statements are equivalent: 

i. f can be accepted by some IFPDA  M = (2, Σ, Γ, 3, 	, 00, 4), 
ii. I can be accepted by some IFPDM M' = (2', Σ, Γ', 3, q0, X0, 4 ') where B0 ϵ 2' 

Proof.  (i) → (ii).  
Construct an IFPDA M ' = (2', Σ, Γ', 3', 	', �0, 4') as follows:  
2' = 2 ∪ {B0}, Γ'= Γ ∪ {�0}, where B0 ∉ 2, �0 ∉ Γ. 
Define an IFS 	' in 2' by 
�	'(B) = 1 if q = q0, �	(B)  if B ≠ B0 and �	' (B) = 0 if q = q0, �	(B)  if B ≠ B0 
Define an IFS 4' in 2' by 
�F' (B) = 0 if q = q0, �F (B) if B ≠ B0 and �F' (B) = 1 if q = q0, �F (B) if B ≠ q0 

 
Define an IFS 3' in 2' × (Σ ∪{ 6}) × Γ' × 2' × Γ'∗ by mappings �3', �3': 2' × (Σ ∪ {6}) × Γ' 
× 2' × Γ'* → [0, 1] defined as 
�3

' (B0, 6, �0, E, 00) = �	 (E),  
�3' (B0, 6, �0, E, 00) = �	 (E), 
�3' (B, a, D, E, S) = �3 (B, a, D, E, S),  
�3' (B, a, D, E, S) = �3 (B, a, D, E, S), where B, E ∈2, a ∈Σ ∪ {6}, D ∈ Γ, S∈Γ*;  
For a ∈Σ, p ∈Q, S ∈Γ* define �3' (B0, a, D, E, S) = 0 and �3' (B0, a, D, E, S) = 1.  
 
Then for any @ = x1 ⋅ ⋅ ⋅ xK ∈ Σ*, x� ∈ Σ ∪ {6}, � = 1. . . K, we have  
�L(M' )(@) = ⋁{ �	'(B)∧�⊢M'((B, @, �0), (E0 , @, 00))∧ �⊢M' ((E0, @, 00), (B1 , x2 ⋅ ⋅ ⋅ xK , D1 F1))  
                                ∧ �⊢M' ((B1, x2 ⋅ ⋅ ⋅ xK , D1 F1 ), (B2 , x3 ⋅ ⋅ ⋅ xK , D2 F2 )) ∧ ⋅ ⋅ ⋅  
                                ∧ �⊢M' ((BK−1, xK, DK−1 xK−1), (BK, 6, FK)) ∧ �4'(BK) |  
                                B ∈  2', E0 , B1 , . . . , BK ∈2'  , D1 , . . . , DK−1 ∈ Γ' , F1 , . . . , FK ∈ Γ'* }  
                     = ⋁ {1∧ �	 (E0) ∧�⊢M ((E0, @, 00), (B1, x2 ⋅ ⋅ ⋅ xK, D1 F1))  
                                ∧ �⊢M ((B1, x2 ⋅ ⋅ ⋅ xK, D1 F1), (B2, x3 ⋅ ⋅ ⋅ xK, D2 F2)) ∧ ⋅ ⋅ ⋅  
                                ∧ �⊢M ((BK−1, xK, DK−1 FK−1), (BK , 6, FK )) ∧ �4 (BK ) |  
                                E0, B1, BK ∈2 , D1 , . . ., DK−1 ∈ Γ, F1 , . . . , FK ∈ Γ* } 
                     = �L(M) (@), and  
�L(M')(@) = ⋀{ �	' (B)∨ �⊢M' ((B,@,�0), (E0,@, 0)) ∨ �⊢M' ((E0 , @, 00), (B1, x2 ⋅ ⋅ ⋅ xK , D1F1 ))  
                                ∨ �⊢M' ((B1, x2 ⋅ ⋅ ⋅ xK, D1 F1), (B2, x3 ⋅ ⋅ ⋅ xK, D2 F2)) ∨ ⋅ ⋅ ⋅  
                                ∨ �⊢M' ((BK−1, xK, DK−1 FK−1), (BK, 6, FK)) ∨ �4' (BK) | 
                                B ∈ 2' , (E0 , B1 , . . . , BK ) ∈ 2' , D1 , . . . , DK−1 ∈ Γ' , F1 , . . .,FK ∈Γ*}   
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                 = ⋀ {0 ∨ �	 (E0) ∨ �⊢M ((E0, @, 00), (B1, x2 ⋅ ⋅ ⋅ xK, D1F1))  
                             ∨ �⊢M ((B1, x2 ⋅ ⋅ ⋅ xK , D1F1 ), (B2 , P3 ⋅ ⋅ ⋅ PK , D2F2 )) ∨ ⋅ ⋅ ⋅  
                             ∨ �⊢M ((BK−1, PK , DK−1FK−1 ), (BK , 6, FK )) ∨ �4 (BK ) |  
                             E0, B1, . . . , BK ∈ 2,  D1. . . DK−1 ∈ Γ, F1. . . FK ∈ Γ*} = �L(M) (@). 
Therefore L (M') = L (M). 
 
From the above proposition we can see that any IFPDA can be assumed to be M = (2, Σ, 
Γ, 3, B0, �0, 4'). 
 
Proof.  (ii) → (i).  
Suppose the IFS � is accepted by the IFPDA M= (2', Σ, Γ', 3', B0, �0, 4'). We construct 
an IFS 	 in 2' as follows 
�	 (B) = 1 if q=q0, 0 if q ≠ q0 
�	 (B) = 0 if q=q0, 1 if q ≠ q0 

Then, it follows that M accepts f. 
 
Proposition 4. Let f be IFS in a nonempty set Σ*. Then the following statements are 
equivalent: 
(i) f can be accepted by an IFPDA  M = (2, Σ, Γ, 3, 	, 00, φ) by empty state; 
(ii) There exists an IFPDA M' = (2', Σ, Γ', 3', B0, �0,φ) recognizing f 
 
Proof. Similar to Proposition 3 
 
Proposition 5. Let f be IFS in a nonempty set Σ∗. Then the following statements are 
equivalent: 
(i) f can be accepted by an IFPDA  M = (2, Σ, Γ, 3, 	, 00, F) by final state; 
(ii) There exists an IFPDA M' = (2',Σ, Γ',3',B0, �0 , φ)  recognizing f  with empty stack, 
where B0 ϵ 2' 
 
Proof.  (i) → (ii).  
Let M = (2, Σ, Γ, 3, 	, 00, F) be a IFPDA that accepts f = (�f, �f) by final state.   
Construct an IFPDA M ' = (2', Σ, Γ', 3', 	', �0, 4') as follows:  
2' = 2 ∪ {B0', qe}, Γ'= Γ ∪ {�0}, where B0 ∉ 2, �0 ∉ Γ. 
Define an IFS 	' in 2' by 
�	' (B) = 1 if q = q0', �	(B)  if B ≠ B0' and �	' (B) = 0 if q = q0', �	 (B)  if B ≠ B0' 
Define an IFS 4' in 2' by 
�F' (B) = 0 if q = q0', �F (B) if B ≠ B0 and �F' (B) = 1 if q = q0', �F (B) if B ≠ q0 

Define an IFS 3' in 2' × (Σ ∪ {6}) × Γ' × 2' × Γ'∗ by mappings �3', �3': 2' × (Σ ∪ {6}) × Γ' 
× 2' × Γ'∗ → [0, 1] as 
�3

' (B0', 6, �0, E, 00) = �	 (E),  
�3' (B0', 6, �0, E, 00) = �	 (E), 
�3

' (B, 6, any, qe, 6) = �F (q),  ∀ q ∈ F,  
�3' (B, 6, any, qe, 6) = �F (q) ∀ q ∈  F, 
�3

' (qe, 6, any, qe, 6) = 1  
�3' (qe, 6, any, qe, 6) = 0  
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�3' (B, a, D, E, S) = �3 (B, a, D, E, S),  
�3' (B, a, D, E, S) = �3 (B, a, D, E, S), where B, E ∈2, a ∈Σ ∪ {6}, D ∈Γ, S ∈Γ*;  
Otherwise, �3' (B0, a, D, E, S) = 0 and �3' (B0, a, D, E, S) = 1.  
 
Then for any @ = x1 ⋅ ⋅ ⋅ xK ∈Σ*, x� ∈ Σ ∪ {6}, � = 1. . . K, we have  
�L(M' ) (@) = ⋁{ �	'(B)∧ �⊢M'((B, @, �0), (E0 , @, 00) ∧ �⊢M' ((E0, @, 00), (B1, x2 ⋅ ⋅ ⋅ xK, D1F1))  
                                 ∧ �⊢M' ((B1 , x2 ⋅ ⋅ ⋅ xK , D1 F1 ), (B2 , x3 ⋅ ⋅ ⋅ xK , D2F2 )) ∧ ⋅ ⋅ ⋅  

                                     ∧ �⊢M' ((BK−1 , xK , DK−1 xK−1 ), (BK , 6, FK ))  
                                     ∧ �⊢M' ((BK , 6, FK )), (Be , 6, 6 )) | 
                                E0 , B1 , . . . , BK  ∈2' , D1 , . . . , DK−1 ∈ Γ' , F1 , . . . , FK ∈ Γ'* }  
                 = ⋁ {1 ∧ �	 (E0) ∧ �⊢M ((E0, @, 00 ), (B1 , x2 ⋅ ⋅ ⋅ xK , D1F1 ))  
                           ∧ �⊢M ((B1, x2 ⋅ ⋅ ⋅ xK , D1 F1 ), (B2 , x3 ⋅ ⋅ ⋅ xK , D2F2 )) ∧ ⋅ ⋅ ⋅  
                           ∧ �⊢M ((BK−1, xK , DK−1 FK−1 ),(BK , 6, FK )) ∧ 1∧ 1∧ 1…∧ 1 |  
                           (E0, B1, . . . , BK ) ∈2, D1 , . . ., DK−1 ∈ Γ, F1 , . . . , FK ∈ Γ* }  
                 = ⋁ {�	 (E0)∧ �⊢M ((E0, @, 00 ), (B1 , x2 ⋅ ⋅ ⋅ xK , D1 F1 ))  
                                  ∧ �⊢M ((B1, x2 ⋅ ⋅ ⋅ xK , D1 F1 ), (B2 , x3 ⋅ ⋅ ⋅ xK , D2F2 )) ∧ ⋅ ⋅ ⋅  
                                  ∧ �⊢M ((BK−1, xK , DK−1 FK−1 ),(BK , 6, FK ))  |  
                                  (E0, B1, . . . , BK ) ∈2 , D1 , . . ., DK−1 ∈  Γ, F1 , . . . , FK ∈ Γ* } 
                 = �L(M) (@), and  
�L(M' ) (@) = ∧{ �	'(B)⋁�⊢M' ((B, @, �0), (E0, @, 00)) ∧ �⊢M' ((E0, @, 00), (B1 , x2 ⋅ ⋅ ⋅ xK , D1F1 ))  
                                ⋁ �⊢M' ((B1, x2 ⋅ ⋅ ⋅ xK, D1 F1), (B2, x3 ⋅ ⋅ ⋅ xK, D2F2)) ∧ ⋅ ⋅ ⋅  
                                ⋁ �⊢M' ((BK−1, xK, DK−1xK−1), (BK, 6, FK))  
                                ⋁�⊢M' (((BK, 6, FK)), (Be, 6, 6)) | 
                                (E0, B1, . . . , BK ) ∈2', D1, . . . , DK−1 ∈  Γ' , F1 , . . . , FK ∈Γ'* }  
                 = ∧ {0 ⋁ �	 (E0) ⋁�⊢M ((E0, @, 00), (B1, x2 ⋅ ⋅ ⋅ xK, D1F1))  
                            ⋁ �⊢M ((B1, x2 ⋅ ⋅ ⋅ xK, D1F1), (B2, x3 ⋅ ⋅ ⋅ xK, D2F2)) ⋁ ⋅ ⋅ ⋅  
                            ⋁ �⊢M ((BK−1, xK, DK−1FK−1), (BK, 6, FK )) ⋁ 0 ⋁ 0 ⋁ 0…⋁ 0 |  
                            (E0, B1,  . . .  , BK ) ∈ 2, D1,  . . . , DK−1 ∈ Γ, F1 , . . . , FK ∈ Γ* } 
                 = ∧ {�	 (E0) ⋁ �⊢M ((E0, @, 00), (B1, x2 ⋅ ⋅ ⋅ xK, D1F1))  
                                     ⋁ �⊢M ((B1, x2 ⋅ ⋅ ⋅ xK, D1 F1), (B2, x3 ⋅ ⋅ ⋅ xK, D2F2)) ⋁ ⋅ ⋅ ⋅  
                                     ⋁ �⊢M ((BK−1, xK, DK−1FK−1), (BK, 6, FK)) |  
                                     E0, B1, . . . , BK  ∈ 2 , D1 , . . ., DK−1 ∈ Γ, F1 , . . . , FK ∈  Γ* } 
                 = �L(M) (@) 
Therefore L (M') = L (M). 
 
Proposition 6. Let f be IFS in a nonempty set Σ∗. Then the following statements are 
equivalent: 
(i) f can be accepted by an IFPDA  M = (2, Σ, Γ, 3, 	, 00, φ) by empty stack; 
(ii) There exists an IFPDA M' = (2', Σ, Γ',3', B0, �0 , F)  recognizing  f  with final state 
Proof.  (i) → (ii).  
Let M = (2, Σ, Γ, 3, 	, 00 , φ) be a IFPDA that accepts f = (�f, �f) by empty stack.   
Construct an IFPDA M' = (2', Σ, Γ', 3', 	', �0, 4') as follows:  
2' = 2 ∪ {B0', qf}, Γ'= Γ ∪ {�0}, where B0 ∉ 2, �0 ∉ Γ. 
Define an IFS 	' in 2' by 
�	' (B) = 1 if q = q0', �	(B)  if B ≠ B0' and �	' (B) = 0 if q = q0', �	' (B)  if B ≠ B0' 
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Define an IFS 4 ' in 2' by 
�F' (B) = 0 if q = q0', �F (B) if B ≠B0 and �F' (B) = 1 if q = q0', �F (B) if B ≠ q0 

 
Define an IFS 3' in 2' × (Σ ∪ {6}) × Γ' × 2' × Γ'* by mappings �3', �3': 2' × (Σ ∪ {6}) × Γ' 
× 2' × Γ'*→ [0, 1] defined as 
�3

' (B0', 6, �0, E, 00) = �	 (E),  
�3' (B0', 6, �0, E, 00) = �	 (E), 
�3

' (B, 6, �0, qf, 6) = 1,  
�3' (B, 6, any, qf, 6) =0, 
�3' (B, a, D, E, S) = �3 (B, a, D, E, S),  
�3' (B, a, D, E, S) = �3 (B, a, D, E, S), where B, E ∈  2, a ∈ Σ ∪ {6}, D ∈  Γ, S ∈Γ*;  
Otherwise, �3' (B0, a, D, E, S) = 0 and �3' (B0, a, D, E, S) = 1.  
 
Then for any @ = x1 ⋅ ⋅ ⋅ xK ∈ Σ*, x� ∈ Σ ∪ {6}, � = 1. . . K, we have  
�L(M' )(@) = ⋁{ �	' (B)∧�⊢M'((B, @, �0), (E0 , @, 00))∧�⊢M' ((E0 , @, 00), (B1 , x2 ⋅ ⋅ ⋅ xK , D1F1 ))  
                                ∧ �⊢M' ((B1, x2 ⋅ ⋅ ⋅ xK , D1F1 ), (B2 , x3 ⋅ ⋅ ⋅ xK, D2F2 )) ∧ ⋅ ⋅ ⋅  

                                    ∧ �⊢M' ((BK−1, xK, DK−1xK−1), (BK, 6, FK))  
                                    ∧ �⊢M' (((BK, 6, �0)), (Bf, 6, 00)) | 
                                   (E0, B1, . . . , BK ) ∈  2', D,  . . . , DK−1 ∈Γ' , F1 , . . . , FK ∈  Γ'* }  
                 = ⋁ {1 ∧ �	 (E0) ∧ �⊢M ((E0, @, 00), (B1 , x2 ⋅ ⋅ ⋅ xK , D1F1 ))  
                           ∧ �⊢M ((B1, x2 ⋅ ⋅ ⋅ xK, D1F1), (B2, x3 ⋅ ⋅ ⋅ xK, D2F2)) ∧ ⋅ ⋅ ⋅  
                           ∧ �⊢M ((BK−1, xK, DK−1FK−1), (Bf , 6, FK )) ∧ 1 |  
                           (E0, B1, . . . , BK ) ∈ 2 , D1 , . . ., DK−1 ∈ Γ, F1 , . . . , FK ∈ Γ* }  
                 = ⋁{ �	 (E0)∧�⊢M ((E0, @, 00), (B1, x2 ⋅ ⋅ ⋅ xK , D1F1)) �⊢M'(((BK, 6, �0)), (Bf, 6, 00)) 
                                 ∧ �⊢M ((B1, x2 ⋅ ⋅ ⋅ xK, D1 F1), (B2, x3 ⋅ ⋅ ⋅ xK, D2 F2)) ∧ ⋅ ⋅ ⋅  
                                 ∧ �⊢M' (((BK, 6, �0)), (Bf, 6, 00)) |  
                                 (E0, B1, . . . , BK ) ∈ 2 , D1 , . . ., DK−1 ∈ Γ, F1 , . . . , FK ∈ Γ* } 
                 = �L(M) (@), and  
 
�L(M' )(@) = ∧{ �	' (B)⋁�⊢M' ((B, @, �0), (E0 , @, 00)) ∧ �⊢M' ((E0 , @, 00), (B1, x2 ⋅ ⋅ ⋅ xK, D1F1))  
                                ⋁ �⊢M' ((B1, x2 ⋅ ⋅ ⋅ xK, D1F1), (B2, x3 ⋅ ⋅ ⋅ xK, D2F2)) ∧ ⋅ ⋅ ⋅  
                                ⋁ �⊢M' ((BK−1, xK, DK−1xK−1), (BK, 6, FK))  
                                ⋁�⊢M' (((BK, 6, FK)), (Bf, 6, 6)) | 
                                (E0, B1, . . . , BK ) ∈  2', D1, . . . , DK−1 ∈ Γ' , F1 , . . . , FK ∈ Γ'*}  
                 = ∧ {0 ⋁ �	 (E0) ⋁�⊢M ((E0, @, 00), (B1, x2 ⋅ ⋅ ⋅ xK, D F1))  
                            ⋁ �⊢M ((B1, x2 ⋅ ⋅ ⋅ xK, D1F1), (B2, x3 ⋅ ⋅ ⋅ xK, D2F2)) ⋁ ⋅ ⋅ ⋅  
                            ⋁ �⊢M ((BK−1, xK, DK−1 FK−1), (Bf, 6, FK)) ⋁ 0 |  
                            (E0, B1, . . . , BK ) ∈ 2, D1, . . . , DK−1 ∈Γ, F1 , . . . , FK ∈ Γ* } 
                 = ∧ {�	 (E0) ⋁ �⊢M ((E0, @, 00), (B1, x2 ⋅ ⋅ ⋅ xK, D1F1))  
                                     ⋁ �⊢M ((B1, x2 ⋅ ⋅ ⋅ xK, D1F1), (B2, x3 ⋅ ⋅ ⋅ xK, D2F2)) ⋁ ⋅ ⋅ ⋅  
                                     ⋁ �⊢M' (((BK, 6, �0)), (Bf, 6, 00)) |  
                                     (E0, B1, . . . , BK ) ∈  2, D1, . . ., DK−1 ∈ Γ, F1 , . . . , FK ∈  Γ* } 
                 = �L(M) (@) 
 
Therefore L (M') = L (M). 
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Theorem 1. If L is an intuitionistic fuzzy language (IFL) accepted by an IFPDA M with 
final states, there exists an IFPDA M′ that accepts L with empty stack 
 
Proof: By Proposition 5 and Proposition 6, it follows that the two IFLs accepted by 
empty stack and final state are equivalent. 
 
5. Intuitionistic fuzzy context-free grammars and languages 
 
Definition 12. An Intuitionistic Fuzzy Grammar (IFG) is a system W = (X, Y, I, P), where  

i. X is a finite nonempty set of variables; 
ii. T is a finite nonempty set of terminals, T ∩ N = φ 
iii.  I intuitionistic fuzzy set of start symbols(variables) 
iv. P  is a finite set of productions over T∪N, P = { x → Z  x ∈ (X ∪ Y)*N(X ∪ Y)*, 

y ∈(X∪Y)*} is an IFS over (X ∪ Y)* × (X ∪ Y)*defined as P = (�P , �P)  where 
�P (x, y) = �P (x → y) and  
�P (x, y) = �P (x → y)  

are membership degree and nonmembership degree that x will be replaced by y, 
respectively. 

For [, Z ∈(X ∪ Y)* , if � → � ∈\, then [�Z is said to be directly derivable 
from [�Z, denoted by [�Z ⇒ [�Z, and define �P ([�Z ⇒ [�Z) = �P (� → �), �P ([�Z ⇒ 
[�Z) = �P (� → �). If [1 . . .  [^ are strings in (X ∪ Y)∗ and [1 → [2 , . . . , [^−1 → [^ 
∈\, then [1 is said to derive [^ in W, or, equivalently, [^ is derivable from [1 in W. This 
is expressed by [1 ⇒∗ [^ or simply [1 ⇒∗ [^. The expression [1 → [2 → ⋅ ⋅ ⋅ → [^ is 
referred to as a derivation chain from [1 to [^.  
 
Proposition 7.  The language generated by IFG is an intuitionistic fuzzy language (IFL) 
 
Proof: An intuitionistic fuzzy grammar W generates an intuitionistic fuzzy language L(W) 
= (�W, �W) in the following manner. For any string @n ∈ Y* , K ≥ 1, �W(@n) = ⋁{ �	 (@0 ) ∧ 
�P (@0 ⇒ @1 ) ∧ ⋅ ⋅ ⋅ ∧ �P (@K−1 ⇒ @K ) | @0 ∈X, @1 , . . . , @K−1 ∈  (X ∪ Y)∗ }, and �W(@n) 
= ⋀{ �	 (@0 ) ∨ �P (@0 ⇒ @1 ) ∨ ⋅ ⋅ ⋅ ∨ �P (@K−1 ⇒ @K) | @0 ∈  X, @1 . . .  @K−1 ∈  (X ∪ Y)*}. 
�W(@n) and �W(@n) express the membership and non membership degrees of @n in the 
language generated by grammar W, respectively. Obviously, L(W) = (�W,�W) is well 
defined. And also, for any string @n ∈ Y*, K ≥ 1, there is a derivation from @0 to @K, that 
is, @0 ⇒ @1 ⇒ ⋅ ⋅ ⋅ ⇒ @K−1 ⇒ @K.  Therefore, 
�W(@n) + �W(@) ≤ �W(@n) + �	 (@0 ) ∨ �a (@0 ⇒ @1 ) ∨ ⋅ ⋅ ⋅ ∨�a (@K−1 ⇒ @K ) = (�W(@n) 

+ �	 (@0 )) ∨ (�W(@n) + �P (@0 ⇒ @1 )) ∨⋅ ⋅ ⋅ ∨ (�W(@) + �P (@K−1 ⇒ @K )) ≤ (�	 (@0 ) + 

�	 (@0 )) ∨ (�P(@0 ⇒ @1 ) + �P (@0 ⇒ @1 )) ∨ ⋅ ⋅ ⋅ ∨ (�P (@K−1 ⇒ @K ) + �P (@K−1 ⇒ @K )) 
≤ 1. 
Definition 13. For any intuitionistic fuzzy grammars W1 and W2, if L (W1) = L (W2) in the 
sense of equality of intuitionistic fuzzy sets, then the grammars W1 and W2 are said to be 
equivalent 
 
Proposition 8. Let � be IFS over Y∗. Then the following statements are equivalent: 
(i)  � is generated by a certain IFG W = (X, Y, \, 	) 
(ii) � is generated by an IFG W′ = (X′, Y′, \′, c) 
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Proof: (i) → (ii). 
Let � be generated by an intuitionistic fuzzy grammar W = (X, Y, \, 	). Then we construct 
an IFG     W′= (X′, Y′, \′, c) as follows: 
X′ = X ∪ {c}, c ∉ X; Y′ = Y, \′ = \ ∪ \1, where  
\1 = {c →B | B @ supp (	), �P (c → B) = �	 (B), �P (c → B) = �	 (B)}.  
Next we show that L (W′) = L (W).  
In fact, W′= (X′, Y′, \′, I′) where 	′ is an IFS over X′ defined as �	′(c) = 1, �	′(c) = 0; 
�	′(B) = 0 and �	′ (B) = 1 ∀B ∈ X. For any @K ∈ Y*, K ≥ 1,  
�W′(@K)=⋁{ �	′(@0)∧�P(@0⇒@1)∧ ⋅ ⋅ ⋅ ∧�P(@K−1 ⇒@K) | @0 ∈ X′, @1 , . . . ,@K−1∈(X′∪ Y′)*}         
         = ⋁{ �P (c ⇒ @1) ∧ �P (@1 ⇒ @2) ∧ ⋅ ⋅ ⋅ ∧ �P (@K−1⇒@K) |@1 , . . . , @K−1 ∈(X′∪ Y′)*}  
         = ⋁{�P(c⇒B) ∧ �P(B⇒@2) ∧ ⋅ ⋅ ⋅ ∧ �P(@K−1⇒@K) | B ∈ X, @2 , . . . ,@K−1 ∈(X ∪ Y)*}  

          = ⋁{�	 (B) ∧ �P (B ⇒ @2 ) ∧ ⋅ ⋅ ⋅ ∧ �P (@K−1 ⇒ @K ) | B∈X, @2 , . . . , @K−1 ∈(X∪Y)*}  

          = �W(@K) and  

�W′(@K)=⋀{ �	′(@0)∨�P(@0⇒@1)∨ ⋅ ⋅ ⋅ ∨�P(@K−1⇒@K) | @0 ∈X′, @1 , . . . , @K−1∈(X′∪ Y′)*}     
         = ⋀{ �P (c ⇒ @1) ∨ �P (@1⇒@2) ∨ ⋅ ⋅ ⋅ ∨ �P (@K−1⇒@K ) | @1 , . . . , @K−1∈ (X′ ∪ Y′ )*}  
         = ⋀{ �P (c⇒B)∨�P(B ⇒ @2) ∨ ⋅ ⋅ ⋅ ∨ �P (@K−1⇒@K ) |B ∈X, @2, . . . , @K−1 ∈(X ∪ Y)*} 
         = ⋀{ �	 (B) ∨ �P (B @2 ) ∨ ⋅ ⋅ ⋅ ∨ �P (@K−1 ⇒ @K ) | B ∈X, @2 , . . . , @K−1 ∈(X ∪ Y)*}  
         = �W(@K).     
Hence L(W′ ) = L(W). 
(i) → (ii). The proof is obvious 
 
Definition 14. 
(1) An IFG W = (X,Y, \, 	) is said to be intuitionistic context free grammar (IFCFG) if it 

has only productions of the form � → @ ∈\ with � ∈X and @ ∈ (X ∪ Y)* . And the 
language L(W), generated by the IFCFG W, is said to be an intuitionistic fuzzy context-
free language (IFCFL). 
 

(2) An IFCFG W = (X, Y, \, c) is called an intuitionistic fuzzy Chomsky normal form 
(IFCNF) if it has only productions of the form �→ef/a ∈\ or c → 6, where �, e, f 
∈X,e ≠ c, f ≠c and g ∈Y.  

(3) An IFCFG W = (X, Y, \, c) is called an intuitionistic fuzzy Greibach normal form 
(IFGNF) if all the productions are of the form � → g� ∈ \ or c → 6, where � ∈X, g 
∈Y, and � ∈(X - {c}) * 

 

6. Conclusions 
We have defined intuitionistic fuzzy pushdown automata and the two different ways 
accepting languages by empty stack and final states. We also established that the 
languages accepted by IFPDA (with final state) are equivalent to those accepted by 
IFPDA (with empty stack). Secondly, we have introduced the notions of IFCFGs, 
IFCNFs, and IFGNFs. Our future work will be on related concepts, such as the 
equivalence of IFCFG and IFPDA, Converting IFCFG to IFPDA and vice-versa, 
algebraic properties of IFCFLs. 
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