Annals of Pure and Applied Mathematics Vol. 8, No. 1, 2014, 67-75 ISSN: 2279-087X (P), 2279-0888(online) Published on 29 October 2014 www.researchmathsci.org

Annals of **Pure and Applied Mathematics**

Weakly ^{*}g Closed Sets in Topological Spaces

N. Meenakumari and T. Indira

PG and Research Department of Mathematics, Seethalakshmi Ramaswami College, Tiruchirappalli-620 002, Tamilnadu, India Email: meenamega25@gmail.com and drtindira.chandru@gmail.com

Received 7 August 2014; accepted 25 September 2014

Abstract. The aim of this paper is to introduce a new class of sets called w^*g - closed sets and investigate some of the basic properties of this class of sets which is the weaker form of *g closed sets.

Keywords: w *g closed sets, w *g open sets

AMS Mathematics Subject Classifications (2010): 54A05

1. Introduction

Levine introduced generalized closed sets [10] and Semiopen sets [11]. Abd El-Monsef, El-Deeb and Mahmoud[1] introduced β sets and Njastad introduced α sets and Mashour, Abd El-Monsef and El-Deeb introduced Pre open sets. Andregvic [2] called β sets as Semipre open sets. Veerakumar introduced g* closed sets [18]. AlsoVeera kumar introduced the notion of *g closed sets and studied its properties. The aim of this paper is to introduce w *g closed sets and investigate some fundamental properties and the relations with related generalized closed sets.

2. Preliminaries

Definitions 2.1. A subset A of a space (X, τ) is called

- 1. A **semi-open** set if $A \subset cl$ (int A) and a semi-closed set if int (cl A) $\subset A$ and $SCL(X,\tau)$ denotes the class of all semi-closed subsets of (X,τ) .
- 2. A **preopen** set if $A \subset int cl (A)$ and a preclosed set if cl (int (A)) $\subset A$, $PC(X, \tau)$ denotes the class of all preclosed subsets of (X, τ) .
- 3. An α -open set if A \subset int(cl(int(A))) and an α -closed set if cl(int cl(A)) \subset A, α C (X, τ) denotes the class of all α -closed subsets of(X, τ).
- 4. A **semi-preopen** set (= β -open) if A \subset cl (int (cl (A))) and a semi-preclosed set (= β -closed) if int (cl (int A)) \subset A. The semi-closure (respectively pre-closure, α -closure, semi-preclosure) of a preclosed) sets that contain A and is denoted by sclA (rep. pclA, α cl A, sp cl A).
- 5. A **Regular open** if int ((cl (A)) = A and Regular closed if cl (int (A)) = A.

Definition 2.2. A subset A of a space (X, τ) is called

- 1. A generalized closed (briefly g-closed) set if cl (A) \subseteq U whenever A \subseteq U and U is open in (X, τ); the complement of a g-closed set is called a g-open set.
- 2. A α -generalized closed set (briefly α g- closed) if α cl (A) \subseteq U whenever A \subseteq U and U is open in (X, τ); the complement of an α g-closed se is called a
- α g-open set.
 3. A generalized α closed set (briefly gα closed) if α cl(A) ⊆U whenever A ⊆ U and U is α open in (X, τ). ; the complement of a gα -closed set is called a gα -open set.
- 4. A rg- closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is Regular open in (X, τ); the complement of a rg -closed set is called a open set.
- 5. A generalized semi- pre closed set (briefly gsp- closed) if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .; the complement of a gsp-closed set is called a gsp-open set.
- A ĝ closed set if cl(A) ⊂ U whenever A ⊂ U and U is Semi open in (X, τ); the complement of a ĝ -closed set is called a ĝ -open.
- 7. A g# closed if cl (int(A)) \subseteq U whenever A \subseteq U and U is α g open in (X, τ); the complement of a g# -closed set is called a g# -open.
- 8. A g*-closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g open in (X,τ) ; the complement of a g*-closed set is called a g*-open.
- 9. A *g closed if cl(A) ⊆U whenever A ⊆U and U is ĝ -open the complement of a *g-closed set is called a *g-open.

3. w *g- closed sets and their properties

Definition 3.1. A subset A of a space (X,τ) is called a weakly *g-closed set(briefly w*g closed) if $cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} open.

Example 3.2. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$. Closed sets are ϕ , X, $\{b,c\}, \{a,c\}, \{c\}$. Semi open sets are $\{\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}, \{b,c\}\}$. \hat{g} open sets are $\{\phi, X, \{a\}, \{b\}, \{a,b\}\}$ w*g closed sets are $\{\phi, X, \{b,c\}, \{a,c\}, \{c\}\}$.

Theorem 3.3. If a subset A of a topological space (X, τ) is closed then it is w *g closed. **Proof:** Let A be closed then A = cl (A). Let A \subseteq U, where U is \hat{g} open Now cl (int (A)) \subseteq cl (A) = A \subseteq U => A is w *g closed.

The converse of the above theorem need not be true.

Example 3.4. Let $X = \{a,b,c\} \tau = \{\phi,X,\{a\},\{a,b\}\}$. Closed sets $\{\phi, X, \{b,c\}, \{c\}\}$. Semi open sets $= \{\phi,X,\{a\},\{a,b\},\{a,c\}\}$. \hat{g} -open sets are $\{\phi, X, \{a,b\}, \{a\}, \{b\}\}$ Here $\{a\}$ is w*g is closed but not closed. Weakly ^{*}g Closed Sets in Topological Spaces

Theorem 3. 5. If a subset A of a topological space (X, τ) is Regular closed then it is w*g closed.

Proof: Since A is regular closed cl (int (A)) =A. Let $A \subseteq U$ and U is \hat{g} –open.Now Cl (int (A)) =A $\subseteq U$ Thus A is w *g closed. The converse of the above theorem need not be true.

Example 3.6. Let $X = \{a,b,c\}$ $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$ closed sets $\{\phi, X, \{b,c\}, \{a,c\}, \{c\}\}$. Regular closed sets are $\{\phi, X, \{b,c\}, \{a,c\}\}$ Here $\{c\}$ is w*g closed but not regular closed.

Theorem 3.7. If a subset A of a topological space (X, τ) is pre-closed then it is w*g closed. **Proof:** Let A \subseteq U where U is \hat{g} open. Since A is pre-closed, cl (int (A)) \subseteq A, =>cl (int (A)) \subseteq U. Thus A is w *g closed. The converse of the above theorem need not be true.

Example 3.8. Let $X = \{a,b,c\} \tau = \{\phi, X, \{a\}, \{a,c\}\}$ closed sets $\{\phi, X, \{b,c\}, \{b\}\}$. Semiopensets are $\{\phi, X, \{a\}, \{a,b\}, \{a,c\}\}$ \hat{g} -open sets are $\{\phi, X, \{a,c\}, \{a,c\}\}$ Here $\{a,b\}$ is w*g closed but not pre-closed.

Theorem 3.9. If a subset A of a topological space (X, τ) is α - closed then it is w*g closed. **Proof :** Let A \subseteq U and U be \hat{g} open. Since A is α closed cl (int (cl (A)) \subseteq A, Thus cl (int (A)) \subseteq U => A is w *g closed. The converse of the above theorem need not be true.

Example 3.10. Let $X = \{a,b,c\} \tau = \{\phi, X, \{a\}, \{a,c\}\}.$

Closed sets { φ , X, {b,c}, {b}}. α Open sets { φ , X, {a}, {a,b}, {a,c}}. α Closed sets { φ , X, {b,c}, {b}, {c}}. Semi opensets are { φ , X, {a}, {a,b}, {a,c}}. \hat{g} –open sets are { φ , X, {a, c}, {a,}} Here {a,b} is w *g closed but not α - closed.

Theorem 3. 11. If a subset A of a topological space (X, τ) is *g closed then it is w*g closed. **Proof:** Let A \subseteq U is \hat{g} open.

Since A is *g closed cl (A) \subseteq U, whenever A \subseteq U and U is \hat{g} open. Now cl (int (A)) \subseteq cl (A) \subseteq U where U is \hat{g} open => A is w *g closed. The converse of the above theorem need not be true.

Example 3.12. Let $X = \{a,b,c\} \tau = \{\phi, \{b\}, \{a,b\}\}$. Closed set $\{\phi, X, \{a,c\}, \{c\}\}$ Semi pre open sets = $\{\phi, X, \{b,c\}, \{b\}, \{a,b\}\}$ Semi pre closed sets = $\{\phi, X, \{a\}, \{a,c\}, \{c\}\}$ Here $\{a\}$ is w *g closed but not *g closed.

Theorem 3.13. If a subset A of a topological space (X, τ) is g^* closed then it is w^*g closed.

Proof: Since A is g^* closed, cl (A) $\subseteq U$, A $\subseteq U$ where U is g-open.

Let $A \subseteq U$, where U is \hat{g} open . Now cl (int (cl(A)) \subseteq cl (A) \subseteq U, where U is g -open.

Since \hat{g} open => g-open, cl (int (A)) \subseteq U where U is \hat{g} open. Thus A is w *g closed. The converse of the above theorem need not be true.

Example 3.14. Let $X = \{a,b,c\} \tau = \{\phi, X, \{a\}, \{a,b\}\}.$

In this space $\{b\}$ is not $g \in Cosed$. But $\{b\}$ is $w \in Cosed$.

Theorem 3.15. If a subset A of a topological space (X, τ) is w*g closed then it is gsp closed.

Proof: Let A be w *g closed.

Let $A \subseteq U$, where U is open .Since A is w*g closed we have cl (int (A)) \subseteq U.Now open => \hat{g} open

Int (cl (int (A))) \subseteq U. A U int (cl (int (A))) \subseteq A \subseteq U.That is Spcl (A) \subseteq U => A is gsp closed.

The converse of the above theorem need not be true.

Example 3.16. Let $X = \{a,b,c\}, \quad \tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$ closed sets are $\{\phi, X, \{b,c\}, \{a,c\}, \{c\}\}\$ Semi pre open sets are $\{\phi, X, \{a\}, \{b\}, \{a,c\}, \{b,c\}\}\$ Semi pre closed sets = $\{\phi, X, \{b,c\}, \{a,c\}, \{b\}, \{a\}\}\$ ĝ open sets are = $\{\phi, X, \{a,b\}, \{a\}, \{b\}\}\$ $\{a\}$ is gsp closed but not w *g closed

Theorem 3.17. If a subset A of a topological space (X, τ) is g# closed then it is w*g closed.

Proof: Let $A \subseteq U$ where U is \hat{g} open.

Since A is g# closed cl (int (A)) \subseteq U whenever A \subseteq U and U is α g open.

Since \hat{g} open=> α g open, we have cl(int(A)) \subseteq U whenever A \subseteq U and U is \hat{g} open

=>A is w *g closed

Weakly *g Closed Sets in Topological Spaces

The converse of the above theorem need not be true.

Example 3.18. Let $X = \{a, b, c\}$, $\tau = \{\phi, X, \{a\}, \{b,c\}\}$ closed sets are $\{\phi, X, \{b,c\}, \{a\}\}$ semi open sets are $\{\phi, X, \{a\}, \{b,c\}\}$ ĝ open sets are $\{\phi, X, \{a,b\}, \{a\}, \{b\}, \{a,c\}, \{b,c\}, \{c\}\}$. Here $\{b\}$ is w *g closed but not g# closed

4. Properties of w*g closed sets

Theorem 4.1. A set A is w *g closed iff cl(int(A) - A contain no non empty \hat{g} closed sets

Proof: Let F be \hat{g} closed sets such that $F \subseteq cl$ (int (A)) – A (1) Then $F \subset A^c$ and F^c is \hat{g} open & $A \subseteq F^c$ By the definition of w *g closed set cl (int(A)) $\subseteq F^c$ $F \subseteq (cl (int (A))^c$ (2) \therefore From (1)and (2) $F = \phi$.

Conversely Let $A \subseteq F$ where U is \hat{g} open. If cl (int (A)) \subset U then cl (int(A)) $\cap U^c$ is non empty \hat{g} closed set of cl (int(A)) – A, which is a contradiction.

Theorem 4.2. A w *g closed is regular closed iff cl (int (A)) – A is \hat{g} closed. **Proof:** Since A is regular closed A = cl (int (A))

: cl (int(A)) – A = φ is regular closed and hence \hat{g} closed Conversely, suppose cl (int (A)) – A is \hat{g} closed by theorem4.1 cl (int(A)) – A = φ => A is regular closed

Theorem 4.3. If a subset A of a topological space X is open and w *g closed then A is closed.

Proof: Let A be open. Since every open set is \hat{g} open set, A is \hat{g} open. since A is w *g closed, $cl(int(A)) \subseteq U$ where U is \hat{g} open. Taking A = U we've $cl(int(A)) \subseteq A$

Taking A = 0 we ve $\operatorname{Cr}(\operatorname{Int}(A)) \subseteq A$

=>cl (A) \subseteq A (since Int(A) = A) But A \subseteq cl(A). Hence cl(A)=A and hence A is closed.

Theorem 4.4. If A is both open and w *g closed in X then it is both regular open and regular closed in X. **Proof:** If A is open and w *g closed, then by theorem (4.3) A is closed i.e. cl(A) = A. Also as A is open, int(A) = A =>A = int (cl (A))=>A is regular open

Also A = cl(int(A))=>A is regular closed.

Theorem 4.5. If A is both open and w *g closed in X then it is rg-closed. **Proof**: If A is both open and w *g closed in X then by theorem (4.4) A is closed i.e. cl(A) = A. **Also** By theorem (4.4), A is regular open and regular closed. Let $A \subseteq U$, where U is regular open.

Therefore, $cl(A) \subseteq U = A$, whenever $A \subseteq U$ is regular open =>A is rg-closed.

Theorem 4.6. If A is both semi-open and w *g closed in X then it is *g closed. **Proof:** Let A be both w *g closed and semi-open.

Let $A \subseteq U$ where U is \hat{g} open.

Then by the definition of w *g closed, $cl(int(A)) \subseteq U$ since A is semi-open, $cl(A) \subseteq cl(int(A))$, ([2] Theorem 1.1)

=>cl (A) \subseteq cl(int (A)) \subseteq U

=>cl (A) \subseteq U where U is \hat{g} -open Hence A is *g closed.

Theorem 4.7. Let A be w *g closed and suppose that F is closed then $A \cap F$ is w *g closed.

Proof: Let A be a w *g closed and F be closed. To Prove : $A \cap F$ is w *g closed Let $A \cap F \subseteq U$, U is \hat{g} -open since F is closed, $A \cap F$ is closed in $A \cap A \cap F \subseteq A$ =>cl (int $(A \cap F)) \subseteq$ cl $((A \cap F)) = A \cap F \subseteq U$, =>cl (int $(A \cap F)) \subseteq U$ =>A $\cap F$ is w *g closed.

Theorem 4.8. If a subset A of (X,τ) is both closed and α g-closed then A is w *g-closed **Proof:** Let A be α g-closed.

Let $A \subseteq U$ where U is \hat{g} -open since every \hat{g} -open set is α g-open, U is α g-open α cl(A) \subseteq Uwhich implies \bigcup cl(int(cl(A)) \subseteq U

Since A is closed cl (A) =A, cl (int (A)) \subseteq U =>A is w*g closed.

Theorem 4.9. Let (X,τ) be a topological space and $A \subseteq Y \subseteq X$. If A is w *g closed in X then A is w *g closed relative to Y.

Proof: Let $A \subseteq Y \cap U$ where U is \hat{g} –open in (X, τ) , since A is w *g closed,

= cl (int (A)) \subseteq U where A \subseteq U and U is \hat{g} –open

Weakly *g Closed Sets in Topological Spaces

 $=>Y \cap cl (int (A)) ⊆ Y \cap U$ i.e. $cl_y(int(A)) ⊆ Y \cap U$ =>A is w *g closed in Y.

Theorem 4.10. If a subset A of a topological space (X,τ) is nowhere dense, then it is w *g closed

Proof: If A is nowhere dense, then $int(A) = \varphi$ Let $A \subseteq U$ where U is \hat{g} -open =>cl (int (A)) =cl (φ) = $\varphi \subseteq U$ and hence A is w*g closed.

5. Weakly *g open sets

Definition 5.1. A subset A of a topological space (X,τ) is called weakly *g open(w *g open) set if its complement is w *g closed in (X,τ) .

Theorem 5.2. If subset A of a topological space (X,τ) is open then it is w *g open **Proof:** Let A be an open set in (X,τ) . Then A^c is closed in (X,τ) since every closed set is w *g-closed, A^c is w *g-closed

Hence A is w *g open.

Theorem 5.3. A subset A of a topological space (X,τ) is regular open then it is w *g open set

Proof: Let A be a regular open then A^c is regular closed i.e. $A^c = cl(int(A^c))$. Let $A^c \subseteq U$, where U is \hat{g} -open $=>cl(int(A^c)) = A^c \subseteq U$, where U is \hat{g} -open $=>cl(int(A^c)) \subseteq U$, where U is \hat{g} -open $=>A^c$ is w *g closed. Hence A is w *g open.

Proposition 5.4.

- 1. Every α open set in(X, τ) is w*g open in (X, τ) but not conversely.
- 2. Every pre open set $in(X,\tau)$ is w*g open in (X,τ) but not conversely.
- 3. Every *g open set $in(X,\tau)$ is w*g open in (X,τ) but not conversely.
- 4. Every g# open set in(X, τ) is w*g open in (X, τ) but not conversely.
- 5. Every w*g open set in(X,τ) is gsp open in (X,τ) but not conversely.

Theorem 5.5. A subset A of a topological space (X,τ) is w *g open if and only if $G \subseteq$ int(cl(A)) whenever $G \subseteq A$ and G is \hat{g} -closed. **Proof:** Assume that A is w *g open then A^c is w *g closed. Let G be \hat{g} -closed set in (X,τ) contained in A. Then G^c is \hat{g} -open containing A^c i.e. A^c \subseteq G^c

=>cl (int (A^c)) \subseteq G^c (since A^c is w *g closed)

(1)

=>G \subseteq int (cl (A)) Conversely, assume that G \subseteq int(cl(A)) whenever G \subseteq A Now since G^c is \hat{g} –open containing A^c i.e. A^c \subseteq G^c cl(int(A^c) \subseteq G^c =>A^c is w*g closed =>A is w*g open.

REFERENCES

- 1. M.E.Abd El-Monsef, S.N.El.Deeb and R.A.Mohamoud, β open sets and β continuous mappings, *Bull. Fac. Sci. Assiut Univ.*, 12 (1983) 77-80.
- 2. D Andrijievic, Semi-preopen sets, Mat Vesnic, 38(1) (1986) 24-32.
- 3. K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in Topological spaces, *Mem. Fac. Kochi Univ. Ser. A. Maths.*, 12 (1991) 5-13.
- 4. P.Bhatacharya and B.K.Lahiri, Semi-generalized closed sets in topology, *Indian J. Math*, 29(3) (1987) 375-382.
- 5. N.Biswas, On Characterizations of semi-continuous functions, Atti. Accad. Naz. Lincei Rend. Cl. Fis. Mat. Natur., 48(8) (1970) 399-402.
- 6. R. Devi. K, Balachandran and H.Maki generalized α closed maps and α generalized closed maps, *Indian J. Pure. Appl. Math.*, 29(1) (1998) 37-49.
- 7. J.Dontchev, on generalizing semi- preopen sets, *Mem, Fac. Sci. Kochi. Ser. A, Math.*, 16(1995) 35-98.
- 8. T.Indira and S.Geetha, $\tau \alpha^*$ -G α closed sets in topological spaces, Annals of Pure and Applied Mathematics, 4(2) 2013, 138-144.
- 9. T.Indira and K.Rekha, Application of *b-open Sets **b-Open Sets in Topological Spaces, *Annals of Pure and Applied Mathematics*, 1(1) (2012) 44-56.
- 10. N.Levine, Generalized closed sets in topology, *Rend. Circ. Math. Palermo*, 19(2) (1970) 89-96.
- 11. N.Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, 70 (1963) 36-41.
- 12. H.Maki, R.Devi and K. Balachandran, Associated topologies of generalized α -closed sets and α generalized closed sets, *Mem. Fac. Scr. A, Math*, 15(1994) 51-63.
- 13. A.Narmadha and Nagaveni, On regular b-open sets in topological spaces, Int. Journal of Math. Analysis, 7 (19) (2013) 937-948.
- 14. O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965) 961-970.
- 15. N. Palaniappan and K.C.Rao, Regular generalized closed sets, *Yungpook Math J*, 33(2) (1993) 211-219.
- 16. M.K.R.S.Veerakumar, g[#]-closed sets in topological spaces, *Mem. Fac. Sci. Kochi* Univ. Ser. A., Math., 24 (2003) 1-13.
- 17. M.K.R.S.Veerakumar, g[#]-semiclosed sets in topological spaces, *Indian J. Math*, 44(1) (2002) 73-87.
- 18. M.K.R.Sveerakumar, Between closed sets and g-closed, *Mem. Fac. Sci. Koch Univ. Ser. A. Math.*, 21 (2000) 1-19.

Weakly *g Closed Sets in Topological Spaces

- 19. M.K.R.S.Veerakumar, Between Ψ -closed sets and gsp-closed sets, *Antartica J. Math.*, 2(1) (2005) 123-141.
- 20. M.K.R.S.Veerakumar, ĝ -closed sets and GIC-functions, Indian J. Math., 43(2) (2000) 231-247.