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Abstract.A fuzzy Cech closure space (X, k) is a non-empty fuzzy sefti fuzzyCech
closure operator kXI— 1*where {'is a power set of fuzzy subsets of X, which satssfi
K (@) =0, < A= k (M)< k (A2), K (U A2) = k (M) Uk (1) for all, , A€ 1* . The pair
(X, k) is called fuzzyCech closure space. A fuzzy topological space Xig ® be fuzzy
strongly connected if it has no non zero fuzzy etbsetst andé such thafl+6<1. If X is
not fuzzy strongly connected then it is called fuameakly disconnected. Many
properties which hold in fuzzy topological spacddhim fuzzy Cech closure space as
well. A Cech closure space (X, u) is said to be stronglyeoted if and only if it cannot
be expressed as a disjoint union of countably niariymore than one closed subsets of
X. In strongly connectedech closure space (X, u);€are nonempty disjoint closed
subsets of X then XE;UEU... .

In this paper we introducr ongly connectedness in fuzzy Cech closur e space.

Keywords: Fuzzy Cech closure space, connectedness in fuZegh closure space,
strongly connectedness @tech closure space and strongly connectedness iy €lech
closure space.
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1. Introduction

In 1965 Zadeh [10] in his classical paper genesdlizharacteristic functions to fuzzy
sets. Chang [2] in 1968 introduced the topologstalcture of fuzzy sets. Pu and Liu [7]
defined the concept of fuzzy connectedness usiagyficlosed set. Lowen [5] also
defined an extension of a connectedness in aatestrfamily of fuzzy topologies. Fuzzy
Cech closure operator and fuzZgch closure space were first studied by A.S. Mashho
and M.H. Ghanim [6].

In 1965 Levine [4] defined the concept of stronglynnectedness in topological
space. U. V. Fatteh and D.S. Bassan [3] in 198bduiced the strongly connectedness in
fuzzy topological space. In this paper we introdgg@ngly connectedness in fuzzy
Cech closure space and study some of its properties.
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2. Preliminaries

Definition 2.1.[1] Let X is a non-empty fuzzy set. A function K:-+h1" is called fuzzy
Cech closure operator on X if it satisfies the faflog conditions

1. k(9)=0.

2. A<k(), for all 1€l

3. k(U2A)= k(1) Uk () foralldy,r, €1%.
The pair (X, k) is called fuzzgech closure space.

Definition 2.2. [8] Let X is a nonempty fuzzy set .A function K-b1*is called fuzzy
Cech closure operator on X. A fuzgiech closure space (X, k) is said to be connected if
and only if any F-continuous map f from X to thefu discrete space {0, 1} is constant.

Definition 2.3. [3] A topological space X is strongly connected if amdly if it is not a
disjoint union of countably many but more than ah@sed sets of X. If X is strongly
connected, and;B are nonempty disjoint closed subsets of X, therE,UE,U.............

Definition 2.4. [9] A Cech closure space (X, u) is said to be stronglyneoted if and
only if it cannot be expressed as a disjoint urébrcountably many but more than one
closed sets of X. In connecté€gch closure space (X, u), let &d & are two nonempty
disjoint closed subsets of X thegX,U E..

In strongly connectedech closure space (X, u);'€are nonempty disjoint closed
subsets of X thenXE,UE,U............

3. Strongly connectednessin fuzzy Cech closure space
Definition 3.1. A fuzzy Cech closure space (X, k) is said to be stronglyneoted if and
only if it cannot be expressed as a disjoint urebrcountably many but more than one
fuzzy closed sets. In strongly connected fuZegh closure space (X, k), let &nd E are
two nonempty disjoint fuzzy closed subsets of XthXe'E;U E..

In strongly connected fuzz¢ech closure space (X, u), Ei's are nonempty
disjoint closed subsets of X then
xX> B UEU............

Example 3.1. Let X= {a, b, c} be a fuzzy set. Define fuzgyech closure operator
k: IX—1* such that

[0y A=0,

1{b,c}; if0eA < 1{b,c}

k(A) = l{b,c}; if0eA < 1{b}
| 1{b,c}; if0eA < 1{b}

1y otherwise

Then (X, k) is called fuzz¢ech closure space.

FOS(X) = {{a}, {b}, {c}, {a, b}, {a, ¢}, 0 x, Ix }.
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Here E={b, c} is only a fuzzy closed subset of X, so wannot express X as a union of
count ably many but more than one fuzzy closedetslf X. Hence fuzzgech closure
space (X, k) is strongly connected.

Example 3.2. Let X= {a, b, c} be a fuzzy set. Define fuzgiech closure operator
k: X =1 such that

( A =0,
| 1 {ab}' if0eA < 1{a}
k(4) = { lipey HfOEA <1y
| 1 Ca}, if0 €A <1y
otherwise

Then (X, k) is called fuzz¢ech closure space.

FOS(X) = {{a}, {b}, {c}, {a, b}, {b, c}, {a, ¢}, 0x L} )

Here there are no fuzzy closed subsets of X. Hamzy Cech closure space (X, k) is
strongly connected.

Definition 3.2. A fuzzy Cech closure space (X, k) is said to be weakly diseoted if
and only if it can be expressed as a disjoint ueiocount ably many but more than one
fuzzy closed sets.

Example 3.3. Let X= {a, b} be a fuzzy set. Define fuz£iech closure operator K 4-1*
such that

Oy; A=0,
1{a}; if0eA < 1{a}
1{b}; if0eA < 1{b}
1y; otherwise

k(A) =

Then (X, K) is called fuzz¢ech closure space.

FOS(X) = {1, 04}.

FCS(X) = {{a}, {b}, 1, 0}.

Here BE= {a}, E,= {b} are fuzzy closed subsets of X. So we can egpiX=EU E,.
Hence fuzzyCech closure space (X, k) is not strongly connedtéd.also called weakly
disconnected fuzz¢ech closure space.

Theorem 3.1. An F-continuous image of a strongly connected yuzech closure space

is strongly connected fuzayech closure space.

Proof: Let (X, k) is a fuzzyCech closure spaces. Define an F-continuous function

f: X— f(X). Since (X, k) is a strongly connected fuzZgch closure space. If f(X) is not
strongly connected fuzaglech closure space then by definition it can be esqed as a

disjoint union of countably many but more than fumezy closed subsets of f(X). Since f
is F-continuous and the inverse image of fuzzyedoset is still fuzzy closed, so X can
be expressed as a disjoint union of count ably nautymore than one fuzzy closed
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subsets of X. Therefore fuzgiech closure space (X, k) is not strongly conneatétich
is a contradiction. Hence f(X) is a strongly cortedduzzyCech closure space.

Theorem 3.2. A strongly connected fuzajech closure space is a connected fuzegh
closure space. But converse is not true.

Example 3.4. Consider atrongly connected fuzzy Cech closure space.
Let X={a, b, ¢} be a fuzzy set. Define fuzgyech closure operator K 41" such that

[0y A=0,
| 1{a,b}; if0eA < 1{a}

k(A) =< 1wy if0eA < 1,
| 1{c,a}; if0eA < l{c}

1y otherwise

Then (X, k) is called fuzz¢ech closure space.
FOS(X) = {{a}, {b}, {c}, {a, b}, {b, c}, {a, ¢}, 0x L. )
Here there are no fuzzy closed subsets of X. Hamzy Cech closure space (X, k) is
strongly connected.
Now we define a F-continuous function f-X{0, 1} such that
f{1)}= {a}={b}= {c}= {a, b}= {b, c}= {a, c}=1 ., fY{0}=0.. Here f is a constant
function.
Hence fuzzyCech closure space (X, k) is connected. This shbasa strongly
connected fuzzg¢ech closure space (X, k) is a connected fuzegh closure space.
Now consider @onnected fuzzy Cech closur e space:
Let X= {a, b} be a fuzzy set. Define fuz£iech closure operator K 41* such that

(O A=0,
1{a}; if0eA < 1{a}

k(A) = 1{b}; if0eA < 1{b}
| 1{C'a}; if0eA< 1{C}

1y; otherwise

Then (X, K) is called fuzz¢ech closure space. We define an F-continuous fomcti
f. X— {0, 1} such that #{1} = 1, = 0. Therefore (X, k) is duzzy connected Cech
closur e space.

FOS(X) = {1, 04}

FCS(X) = {{a}, {b}, 1, 0}.

Here B= {a}, E,= {b} are fuzzy closed subsets of X. So we can egpiX=gU E,.
Hence (X, k) is not strongly connected fuzzgch closure space. It is also calleebkly
disconnected fuzzy Cech closure space.

Theorem 3.3. A fuzzy Cech closure space (X, k) is said to be stronglyneoted fuzzy
Cech closure space if and only if it has no non Zaray open setd andé such that
A#1, §#1 andA+6>1.

80



Strongly Connectedness in Fuzzy Closure Space

Proof: Necessary: Let fuzzyCech closure space (X, k) is strongly connecteH. fis no
non zero fuzzy closed sets f and g such that f+gethat it has not non zero fuzzy open
setg=f' and §=g’ such thafl#1, §#1 andA + § > 1.Hence it has no non zero fuzzy open
setsl andd such thafl£1, §#1 andA+6>1.

Sufficient: Let X has no non zero fuzzy open sktndd such thait£l, §#1 andA+6>1.
so that it has no non zero fuzzy closed agtband §'=g such that#1, g¢1 and f+ ¢ 1.
Hence fuzzyCech closure space (X, k) is strongly connected.

Theorem 3.4. If A is a subset of fuzzy connectétbch closure space (X, k) and A is a
strongly connected fuzzy subset of X if and onlfoif any fuzzy open setsandé in X,
Hy <A + 8 implies eithemq,<A orp, <6.

Proof: Necessary: Let A is strongly connected fuzzy subset of coneeduzzyCech
closure space (X, k). Let fuzzy open sendé such thafiy <A + 8, if uy£4 andyuy £6,
thenA/A#1, 6/A+#1, andA/A + 6/A >1.So0 A is not strongly connected fuzzy subset of X.
It is a contradiction. Hence there exists fuzzyropetst andé in X, uy <4 + § implies
eitherp,<A or p,<é.

Sufficient: Let any fuzzy open sefsandd in X, py <A + & implies eithe, <4 or p, <6.
If A is not a strongly fuzzy connected subset ofTken there exists fuzzy closed sets f
and g in X such that
(1) fIA#0,
(2) o/A+0, and
(3) f/A+ g/A<L1.

If we putA=1-f andé=1-g, themt/A=1-f/A, §/A=1-g/A. So (1), (2), and (3) imply
thatp,<A+6 butp,£4 andu, £48. It is a contradiction. Hence A is a fuzzy strongl
connected subset of X.

Theorem 3.5. If F is a subset of a fuzzy connec(éelgh closure space X such tigtis
fuzzy closed in X, then X is strongly connectedzig€ech closure space implies that F
is a fuzzy strongly connected subset of X.

Proof: Suppose F is not fuzzy strongly connected subset dthen there exists fuzzy
closed sets f and k in X such that (L)AD-(2) k/F£0, and (3) f/F + k/E1.(3) implies that
(f Aug) + (K Apg) <1, by (1) and (2) Aug #£0, kK Aup#0. So X is not fuzzy strongly
connected, which is a contradiction. Hence X iszzy strongly connected subset of X.

Conclusion: In this paper the idea of fuzzy strongly connecésgnwas introduced and
relationship between the fuzzy strongly connectssirend fuzzyCech closure space
were explained.
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