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Abstract. Watson-Crick finite automata are language recoggigievices similar to finite
automata introduced in DNA computing area. We mdefiwatson-Crick online
tessellation automata which work on double-straratealys where the two strands relate
to each other through a complementary relationiiedpoy the DNA complementarity.
Also we define timed Watson-Crick online tessefiatautomaton and some equivalence
results have been established.
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1. Introduction

The remarkable progress made by molecular biologlyteotechnology in the last couple
of decades, particularly in sequencing, synthegizind manipulating DNA molecules,
gave rise to the possibility of using DNA as a supfior computation. The computer
science community quickly reacted to this challeagel many computational models
were built to exploit the advantages of nano-ldéiemolecular computing. One of them
is Watson-Crick automata.

Watson-Crick automata, introduced in [3] represem instance of mathematical
model abstracting biological properties for comgotal purposes. They are finite
automata with two reading heads, working on dowtlanded sequences. One of the
main features of these automata is that charaotersorresponding positions from the
two strands of the input are related by a complaargn relation similar with the
Watson-Crick complementarity of DNA nucleotides.eTtwo strands of the input are
separately scanned from left to right by read dwgds controlled by a common state.

Online tessellation automaton is a recognizing cevor accepting finite arrays
[4]. Online tessellation automaton reads elemdiggonalwise. In this paper we define
Watson-Crick online tessellation automaton anddhguage accepted by it.

Timed (finite) automaton is defined to accept timedrds [1]. It is a finite
automaton with a finite set of real-valued clockk. accepts timed words which are
infinite sequences in which a real valued time ofwrences is associated with each
symbol. The infinite wordi over an alphabét is represented as a function from the set
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N of all positive integers t&. We represent the infinite wod asa = & & ... where
a(i) =a O Z. The set of all infinite words ovéris denoted a&®. If L O X®then L is
called anw-language. Timedvo-double-stranded sequence and timed Watson-@pick
automaton and the language accepted by it areedkfiin this paper we extend the
concept of timed online tessellation automatontfbMWatson-Crick online tessellation
automaton.

2. Preliminaries
Let = be a finite alphabet>” denotes the set of all finite words ou&rA is the empty
word andz" is the set of all non empty finite words oeri.e.,>" =3 \ {A}.

Definition 1. [7] We now define a “complementarity” relation tive alphabek (like the
Watson-Crick complementarity relation among ther fBINA nucleotides)p O X x X

*

which is symmetric. Denot®/K (%) = {(‘g) /la,b0OZ,(a,b)O p} .

The set WK(Z) is called the Watson-Crick domain associate? amdp. The

w
element &8 )... [ OWK (%) are also written in the for Y forw, = a
b, /\ b, b P W,

n

& ... and w = b b, ... b, According to the usual way of representing DNA
molecules as double-stranded sequence, we alse tatproduct monoidl’ x 3 in the

form @j and its elements in the for@j.

Definition 2. [6] A Watson-Crick finite automaton is a 6-tuple M, p, Q, %, F, d)
whereX - a finite alphabet, Q - a finite set of state$,) Z x X~ - is a symmetric relation
(the complementarity relation), 8 Q is the initial state, El Q is the set of final states

*

and S:Qx(g*j ~ 2% is a mapping such th&(s, ();)) #z @ only for finitely many

triples (s, X, YY1 Q xX x 3.

We can also write the transition of M as rewritindes of the form %) - 9

such a rule having the same meaning as&s, @))

u, )\ (w 3 u, \(w w
For| “|| '|0]".|ands,sOQwewrites| “|| '|=s| *|iffs (ulj .
u, {w, p u, J\w, w, u,

s O6.
If =" is the reflexive and transitive closure of theatieih =, then the language
accepted by a Watson-Crick automaton is
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* W * *
L(M) ={w, 0OZ /so( l): s, forsomew, X ands, OF}
WZ
We see that a WK automaton is a finite automatdh widouble-stranded tape (and two

read heads, one for each strand of the tape).

Definition 3. [4] A two dimensional online tessellation autonmath = (Q, %, Qu, 9, F)
where Q - is a finite set of stat&s; is a input alphabet, Q1 Q - is a set of initial states,
FOQ -is a set of final states add: Q x Q xX - 2 is a transition function.
Computation by a two dimensional online tesselfaiatomaton on an infinite array is as
follows.

We introduce a special boundary symbal £ below the first row and to the left
of the first column of p and denote the resultinga by b(p). At time t = 0, an initial
state g 0 Q is associated with all positions of #. At time 1, a state fromd(do, b, a11)
is associated with the position (1, 1) holding aAt time t = 2, states are associated
simultaneously with positions (1, 2) and (2, 1)pextively holding & and a;. If s;is
the state associated with the position (1, 1) therstates associated with the position (2,
1) is an element a¥(qo, Si1, &1) and to the position (1, 2) is an elemendhi1, G, aw).
We then proceed to the next diagonal and so on.

3. Watson-Crick online tessellation automaton

Definition 4. Watson-Crick online tessellation automaton is afe¢ M = &, p, Q, @,

F, 0), whereX - is the input alphabep O Z x X is a symmetric relation called the
complementary relation an, Q - is a set of states; @ Q - inital state, F1 Q - is a set of
final states

0:QxQ X@J . s a transition function whe® =¥ [ {A}.

i.e., O(Co, O, (;)) = @, such thatd(q, d, (;)) # @ only for finitely many

(@, dx y)0QxQxx' x¥'.

There are two planes. The automaton reads x frenft plane and y from the
2" plane and enters state gThe f' plane and % plane corresponds to the upper level
strand and lower level strand of a double strarsgéegience.

Computation on the two planes follow the pattern asfline tessellation
automaton. A special boundary symbal#& is below the first row and to the left of the
first column.

At time t = 0, an initial state,ds associated with all positions of #. Attime 1,

Xll

a state frond(qo, G, (y j) is associated with the position (1, 1) holdingir 1% plane

11
and y; in 2" plane. At time t = 2, states are associated simebusly with positions (1,
2) and (2, 1) respectively both in th& dlane and % plane. If q is the state associated
with the position (1, 1) in both the planes them $kate associated with the position (2, 1)

is an element 0d(q., o, (;le) and to the position (1, 2) is an elementd,, O,
21
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(X”j). We then proceed to the next diagonal and so e first plane is the array
12

denoted by pand the second plane is the array denoted.by p
The language accepted by Watson-Crick online tediwsl automaton M is

defined asL c_ora (M) ={p, DZ“/é(qO,(Elj) =q, for some g0 F where pis the

2
array from the ¥ plane and pis the array from the"2plane}.

4. Timed automaton
Definition 5. [2] A non-deterministic finite automaton is a Jke of the form
M= (Q,Z, s F,0) where
Q is the set of states
2 is the alphabet
S O Q is the initial state
F O Q is the set of final states
d:Q xX _ 2%is the transition mapping written &6, a) = swhere s,'s0 Q and &J .
If card@(s, a))< 1 for all sCO Q and &1 Z, then we say that the automaton is
deterministic.
A relation= is defined in the following way on the set @xfor s, $ 0 Q, all =, x O
Y, we write (s, ax}= (8, X) if s O (s, a), by definition (sA\) = (s,A). If = is the
reflexive and transitive closure of the relatien, then the language of the strings
recognized by the automaton M is defined by
L(M) ={x O /(s X)= (s,A), sOF}.
The language accepted by an automaton is caltedular language.
a a a

Letx=aa& .. 0Z" Wesaythatr:s, - S _2> S, _3> ... isarun of M over x if = @
andd(s-1, a) =sfori=1, 2, ... andi$] Q. For a run r the set Inf(r) consists of theestat
s Q such that s 5 for infinitely many i= 0.

The acceptance condition on Inf(r) are givelowe
1. Buchi condition: Inf(r)n F# @
2. Muller condition: A family# 0O 2° of final state sets is considered and Inf(r¥.

Then (M) is thew-language consisting of the word§” such that M has an
accepting run over x. Aw-language L is called-regular if there exists an automaton M
such that L = B(M).

We now recall the definition of timed automata dimded languages [1]. We
define timed words by coupling a real-valued timthvweach symbol in a word. The set
of nonnegative real numbeksis chosen as the time domain.

Definition 6. [1] A timed sequence=T; T» ... is an infinite sequence of time valugf
R (set of real numbers) with > 0 satisfying the following conditions.

1. monotonicity:T increases strictly monotonically i.e, < Ti,; for all i = 1.

2. for every t R, there is somez 1 such that; > t.
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A timed word oveL is a pair ¢, T) where 0 = G, 05 ... is an infinite word ovex
andt is a time sequence. A timed language @viexa sequence of timed words o¥er
If a timed word ¢, 1) is viewed as an input of an automaton, it prestm symbob; at
time 1. If each symbolg; is interpreted to denote an event occurrence then
corresponding componert is interpreted as the time of occurrenceaf In an
automaton the choice of the next state depends tiqgomput symbol read. Similarly in
the timed automaton defined in [1], the choice alspends upon the time of the input
symbol relative to the times of the previously regchbols. For this purpose a finite set
of real valued clocks are associated with eaclsitian table. A clock can be set to zero
simultaneously with any transition. At any instahe reading of a clock equals the time
elapsed since the last time it was reset. Withh éaansition a clock constraint is
associated such that the transition is considendd ibthe current values of the clocks
satisfy this constraint.

Definition 7. [1] A timed Buichi automaton

M=(Q,Z, Q, C, E, F) where

Q is a finite set of states

2 is a finite alphabet

Qo is a set of initial states

C is a finite set of clocks

F is a set of final states with Blichi acceptanaalimn

EDQ x Q xX x Z x ¢(c) gives the set of transitions ap@) are clock constraints over
C.

An edge (s, § a, 4, 8) represents a transition from state s to statensinput
symbol a. The sqt 00 C gives the clocks to be reset with this transitmdd is a clock
constraint over C defined inductively By= x<c/c<x/-5/6, 0&, where x is a clock
in C and c is a constant in the set of rationals.

A clock interpretation v for a set C of clocks gesi a real value to each clock
i.e., it is a mapping from C tB. We say that a clock interpretation v for C dettsa
clock constraind over C iff d evaluates to true using the values given by v.

Given a timed wordd, 1), the transition of M starts in its start statetirmae 0 with all its
clock initialized to 0. As time advances the valwé# all clocks change reflecting the
elapsed time. At timg, M changes state from s toussing the transition of the form (s,
S, G, Y, 0) reading inpuw; if the current values of clocks satisly With this transition
the clocks inu are reset to 0 and thus start counting time wapect to the time of
occurrence of its transition. A run of timed autdon is defined in the following way. A
run records the state and the values of all thekslat the transition points.

A run r denoted by(S,V) of a timed automaton over a timed wodj t) is an

[ [ O3

infinite sequences of the form:<s;,v, > - <s,,v, > - <s,,v, > - ... where s[J

T T, T3
QandyO (C - R]foralli=0. Arunr=(5V) of atimed Buichi automaton over a

timed word 6, 1) is called an accepting run if Inf() F # @ For a timed Buchi
automaton M, the language L(M) of timed word itequis is defined to be the set{{) /
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M has an accepting run ovat, (T)}. A timed language L is a timed regular langué#de
= L(M) for some timed Blchi automaton M.

5. Timed Watson-Crick online tessellation automaton
Watson-Crick online tessellation automaton canxtereled to define infinite arrays and
thereby we define timed Watson-Crick online tessielh automaton ow-arrays.

Definition 8. A timed Watson-Crick online tessellation automatogiven as M =, p,
Q, o, F, 9, C,¢(C)) whereX is the input alphabep, [0 Z x X is a symmetric relation, Q is
a set of states, (@l Q is the initial state, C = {C,, ..., G} is a finite set of clocks

0:QxQ X@S.j —. 2% Cis a transition function whek& = = [ {A}.

ie., S(ql,qz,();': B =(d5,C,)

@AC)={v, :@)xQx{ci} LR, i=1,..n}

X..
R, is the set of positive real numbers alu{(y"

F O Q is set of final states.
The language accepted by the timed Watson-Crickenéssellation automaton

is defined asLTyc_ora (M) = { (p1, T) / p is accepted by Biichi acceptance condition
andt is a time sequence amgs Zij - «+1 Ki}-

j,ql,ij =k; and

i

Examplel. Let M = &, p,Q,0,F,0,C,¢(C)) wherez = {a, b, c},p =((a, a), (b, b), (c, c)),
Q = {q0! ql! q21 q31 q4}! F= {Q4}, C= {Cla CQ, Q’n C4}! ([(C) : {Vi : (gl) X Q X C| — R+,

i=1,.. njandd:Qx Qx @j _, R C given by

8o, by (7)) = (@0 ), 3 @ () = (@, C3), (e @ () = (ks C),
80 & (00) = (@ G 8(0s b () = (@ C), 8(do () = (@ C9),
8o G (00) = (@ G 8 & (£)) = (@ G, Baw a (3)) = (@, ©),
8o o (1)) = (@ C), 8o (2) = (@ C), 8(e @ (£) = (@ )
80 o (2) = (@ C), 8 G (5)) = (G C). (ks G (1)) = (@ €0,

(0 G (5) = (@ C)
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vl((i), o, C) = 1 and 0 elsewhere, 2((/2)1 &, C;) = 2 and 0 elsewhere
v2((2), g, G&)=2and0 elsewhere,s((/g), &, C) = 3 and 0 elsewhere

v3(( g), &, C3) = 3 and 0 elsewhere, 4((/75), s, Cy) = 4 and 0 elsewhere.

LYwe-ora (M) = {(p, T) O Z*/ number of consecutive columns containing thieleg’ =
number of consecutive columns containing the lettérfollowed by infinite finite

number of columns containing the letter "¢’ in pléor n# 1,
tt=2ifori=3n, t=1foriz3n.

Definition 9. A timed online tessellation Muller automaton isiple

M=, p Q, g 0 C,@C), F) whereZ, p, Q, @, 6, C, ¢(C) are as in Definition 8 and
#0 2%is a family of final states. The collection of tained arrays (pr) accepted by M
is denoted as. 7\ c_qra (M) .

Theorem 1. For a timed Watson-Crick online tessellation autmmathe acceptance
conditions Btichi and Muller are equivalent.
Proof: Let M = Z, p, Q, @, F, 9, C, ¢(C)) be a timed Watson-Crick online tessellation
automaton accepted by the Bichi acceptance modeansider the timed online
tessellation automaton 'Mvhere the acceptance is in the Muller mode widh shme
timed transition table as that of M and with theggatance familyr={Q' 0 Q, Q n F#
@. Then (M) = L(M").

Conversely given the timed Watson-Crick OTA in Mulimode, we construct a
timed Watson-Crick OTA in Biichi mode accepting shene array language.

Let the timed Watson-Crick OTA be given by M Z, 0, Q, @, 9, C, ¢(C), .

We see thatl e oramuier (M) = Um L rwe-oramuer (Ag) where A= (Z, p, Q, @, §,
C, C), {F}).

Hence it is enough to construct for each acceptaaté, a timed Watson-Crick

0w

OTA in Biichi mode adA ¢ acceptingLyc_orasucni (Ar)-
Assume F = {g , ..., }. States of AL are of the form gwhere qCl Q and

i 0{0, 1,2, .., k}. The initial state ifg 8}. The automaton simulates the transition of
A.

X.
For every ftransiton in A of the formé‘{ql,qz,( “D:qij and

Yi

Xj - , N N R |

V, V. ,0;,C, | =k; the automatorA; has a transitio'| q;',q3, v =qj, i1 =
ij [

0,1,2 ..,k and/{();/?),qij ,ij =K, .
i
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i

X..
For every transitiorﬁ(ql,qz{yu D where g, @ 00 F for each i = 1, ..., k there

) (X
isanAf transitionf{ s g’(y” D where
ij
j=(@,+1) modk if q,=q;
j,Z2(,+1) mod Kk if j, =i,.
The only final state i:q:ﬁ. Hence we have seen the equivalence of Bichi autkMof
timed Watson-Crick OTA.

6. Conclusion

Watson-Crick online tessellation automaton has baefined. Timed Watson-Crick
online tessellation automaton is defined and thévatence of Blchi and Muller timed
Watson-Crick online tessellation automaton has Ipeeved.
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