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Abstract. Let G be a (p, q) graph. G is said to be a square difference labeling if there 
exists a injection f : V(G) → {0,1,2,…,n-1} such that the edge set of G has assigned a 
weight defined by the absolute square difference of its end-vertices, the resulting weights 
are distinct. A graph which admits square difference labeling is called square difference 
graph. Shiama has obtained square difference labeling for some graphs like path, cycle, 
star (K1,n-1), fan, crown (Cn⨀K1). Let G be a (p, q) graph. G is said to be a cube difference 
labeling if there exists a injection f: V(G) → {0, 1, 2, …, n-1} such that the edge set of G 
has assigned a weight defined by the absolute cube difference of its end-vertices, the 
resulting weights are distinct. A graph which admits cube difference labeling is called 
cube difference graph. We have proved the square and cube difference labeling for 
graphs like cycle cactus graph Ck

(3) and the tree  <K1,n: 2> and a newly defined key graph  
in this paper. 
 
Keywords:  Square difference labeling, Cube difference labeling, cycle cactus, tree  <K1,n: 
2> and key graph 
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1.  Introduction  
A function f is a square difference labeling of a graph G of size n if f is an injection from 
V(G) to the set {0, 1, 2, … , n-1} such that , when each edge uv of G has assigned the 
weight│[f(u)]2 - [f(v)]2, the resulting weights  are  distinct.  

A function f is a cube difference labeling of a graph G of size n if f is an injection 
from V(G) to the set {0, 1, 2, … , n-1} such that , when each edge uv of G has assigned 
the weight│[f(u)]3 - [f(v)] 3, the resulting weights  are  distinct. The notion of square 
difference and cube difference labeling were introduced by Shiama [3-6]. Graph labeling 
can also be applied in areas such as communication network, mobile telecommunications, 
and medical field. A dynamic survey on graph labeling is regularly updated by Gallian 
[2]. Khan and Pal have investyigated different types of labelling on cactus graphs [10-
16]. The notation and terminology used in this paper are taken from [1]. 
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Definition 1.1. Let G = ( V(G), E(G) ) be a graph .G is said to be square difference 
labeling  if there exist an injection f : V(G) → {0, 1, …., n-1} such that the induced 
function   f * : E(G) → N given by f *(uv) = │[f(u)]2 - [f(v)]2│  is injective. 
 
Definition 1.2. A graph which satisfies the square difference labeling is called the square 
difference graph. 
 
Definition 1.3. Let G = ( V(G), E(G) ) be a graph .G is said to be cube difference labeling  
if there exist an injection f : V(G) → {0, 1, …., n-1} such that the induced function   f * : 
E(G) → N given by f *(uv) = │[f(u)] 3 - [f(v)] 3│  is injective. 
 
Definition 1.4. A graph which satisfies the cube difference labeling is called the cube 
difference graph. 
 
Definition 1.5. A cactus is a connected graph in which any two simple cycles have at 
most one vertex in common Ck

(n) (n copies of cycles Ck). 
 
Definition 1.6. A <K1,n: 2> is a tree of diameter 4 obtained from the n bistar Bn,n by sub 
dividing the middle edge with a new vertex. 
 

Definition 1.7. A key graph is a graph obtained from K2 by appending one vertex of C5 to 

one end point and Hoffman tree PnΘ K1 to the other end point of K2  

2. Main result 
Theorem 2.1. The cycle cactus graph Ck

(3) admits cube difference labeling k ≥ 3. 
Proof: Let Ck

(3) be a cycle cactus graph, k ≥ 3. Where k is the number of vertices in cycle 
Ck of cycle cactus graph Ck

(3). Denote the vertices of the cycle Ck in the cycle cactus 
graph Ck

(3) as u1, u2, …, un in the clockwise direction. Denote the vertices of first copy of 
cycle Ck as un+1, …, un+m in the clockwise direction. Similarly denote the vertices of 
second copy of cycle Ck as un+m+1, …, un+m+p in the clockwise direction. Note that 
│V(G)│= 3n-2 and│ E(G) │= 3n.  

 

 

 

 

 
Figure 1.1: Cycle cactus Ck

(3) 
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The vertex labeling for the graph Ck
(3) is defined as follows. 

 f (u) = 0, f (ui) = i , 1 ≤ i ≤ n                                                                             (1.1) 
Now the edge labels are obtained as follows. 

f is called cube difference labeling if f*(uv) = │[f(u)]3 - [f(v)]  3│for every uv ∈ 
E(G) are all distinct where u, v ≥ 0. 
Let the edge sets be  

                 E1 = {uui  / 0 ≤ i ≤ n} and 
                    E2 = {u iui+1  / 1 ≤ i ≤ n}                                  (1.2) 

Let the edge labels be  
  
 f *(uui)       =  i3,  1 ≤ i ≤ n and 
 f *(u iui+1)  =           3i2 + 3i + 1 , 1 ≤ i ≤ n                              (1.3) 

Hence the edges are distinct. Hence the cycle cactus graph Ck
(3) admits a cube difference 

labeling. 
 

An illustration of the above theorem is shown in Figure 1.2 
 

 

 

 

 

 

 

Figure 1.2: Cube difference labeling of cycle cactus C6
(3) 

Theorem 2.2. The <K1,n: 2> admits  cube difference labeling. 
Proof: Let <K1,n: 2> be a tree. Denote the vertices which are adjacent to u1 as u2, …, un in 
the anticlockwise direction. Denote the vertices which are adjacent to the vertex un+1 as 
un+2, un+3, …,un+m in the clockwise direction. Let u1, u0, un+1be the path. Note that 
│V(G)│= 2n + 3 and│ E(G) │= 2n + 2. 
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Figure 2.1. Tree K<1,n: 2> 

The vertex labeling for the tree <K1,n: 2> is defined as follows. 

f(u)  =  0,   
f(ui)  = i,     1 ≤ i ≤ n                                                              (2.1) 

From the above definition in (2.1) it is obvious that the vertex labels are distinct. 
Now the edge labels are obtained as follows. 
 f is called cube difference labeling if f *(uv) = │[f(u)]3 –[f(v)] 3│for every uv ∈ 
E(G) are all distinct where u, v ≥ 0. 
Let the edge sets be 

E1  =  {uui  / 1 ≤ i ≤ n} 
E2 =  {uiuj   / 1 ≤ i ≤ n , 2 ≤ j ≤ n+m}                                              (2.2) 

Let the edge labels be 
f *(uui)   =  i3 ,     1 ≤ i ≤ n 
f *(u iuj)  =  i3 – j3 ,   1 ≤ i ≤ n , 2 ≤ j ≤ n+m                                       (2.3) 
 

Hence the edges are distinct. Hence the tree <K1,n: 2>  admits cube difference labeling.   
An illustration of the above theorem as follows. 
 

 

 

Figure 2.2: Cube difference labeling of <K1,4: 2> 
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Figure 2.3: Cube difference labeling of <K1,6: 2> 

Theorem 2.3. The key graph C5⨀Pn admits a square difference labeling. 
Proof: Let the graph G be a key graph C5⨀Pn. The vertex set of G is { w1, w2,……….. w4, 
v0, v1,v2,……….vn, u1,u2,……….un} where wi , 1 ≤ i ≤ 4, ui, vi 0 ≤ i ≤ n. Clearly G has 
2n+5 vertices and 2n+5 edges. 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.4: Key graph C5⨀Pn 
 
 Let │V(G)│= 2n+5 and │E(G)│= 2n+5. 
 The mapping f : V(G) → {0,1,2,…,n-1} is defined by f(u) = 0, f(ui) = i,    
        1 ≤ i ≤ n and the induced function f * : E(G) → N is defined by 

(i) f * (uui) = │[f(u)] 2 – [f(ui)]
2│  = i2,            1 ≤ i ≤ n. 

(ii)  f * (u iui+1)  =│[f(u i)]
2–[f(ui+1)]

2│  = 2i + 1,     1 ≤ i ≤ n. 
(iii)f * (u iui+2)  = │[f(u i)]

2 – [f(ui+2)]
2│    = 4i + 4,     1 ≤ i ≤ n. 

      
 Here the edge sets are  
(i) E1= {uui/ 0 ≤ i ≤ n} 
(ii)  E2= {uiui+1 / 1 ≤ i ≤ n} 
(iii)  E3 = {uiui+2/ 1 ≤ i ≤ n} 
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Here the edges are distinct. Hence the key graph C5⨀Pn admits a square difference 
labeling. 

Theorem 2.4. The key graph  kn( C5 ⨀ Pn )admits  cube difference labeling. 
Proof: Denote the key graph C5⨀ Pn as G. The vertex set of G is { w1, w2,... w4, v0, 
v1,v2,……….vn, u1,u2,……….un} where wi , 1 ≤ i ≤ 4, ui, vi 0 ≤ i ≤ n. Clearly G has 2n+5 
vertices and 2n+5 edges. 
 
Define f : V(G) → {0,1,2,…..,2n+4} as follows, 
f(u1) = 0, f(ui) = i,  2 ≤ i ≤ n , f(vi) = i,  1 ≤ i ≤ n, f(wi) =  i,  1 ≤ i ≤ 5, 
and the induced function f* : E (G) → N is defined by  

(i) f*(uu i) = |[f(u)]3 – [f(ui)]
3|= i3 , 1 ≤ i ≤ 2n. 

(ii)  f*(u iui+1) = |[f(ui)]
3 – [f(ui+1)]

3|= 3i2+3i+1, 1≤ i ≤ 2n. 
    (iii)      f*(uiui+2) = |[f(ui)]

3 – [f(ui+2)]
3|= 6i2+12i+8, 1≤ i ≤ 2n. 

 
Here the edge sets is E = { wi wi+1, 0 ≤i ≤ 4} ∪ { v0, w5}∪ { v i vi+1, 1 ≤ i ≤ n-1} ∪              
                                        { ui vi , 1 ≤i ≤ n-1} ∪ { v0 v1} 
Here the edges are distinct. Hence the key graph C5⨀Pn admits a cube difference 
labeling. 
 

3. Conclusion  
In this paper the cycle cactus graphs, tree <K1,n: 2 > and key graph are investigated for 
the square and cube difference labeling. This labeling can be verified for some other 
graphs.           
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