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Abstract. Let G be a (p, q) graplt is said to be a square difference labeling if ¢her
exists a injection f : V(G)» {0,1,2,...,n-1} such that the edge set of G hasgmexd a
weight defined by the absolute square differencésagnd-vertices, the resulting weights
are distinct. A graph which admits square diffeeefabeling is called square difference
graph. Shiama has obtained square difference tap@r some graphs like path, cycle,
star (K n.), fan, crown (GOK,). Let G be a (p, q) graph. G is said to be a ditberence
labeling if there exists a injection f: V(G) {0, 1, 2, ..., n-1} such that the edge set of G
has assigned a weight defined by the absolute diffexence of its end-vertices, the
resulting weights are distinct. A graph which adnttibe difference labeling is called
cube difference graph. We have proved the squadecabe difference labeling for
graphs like cycle cactus graph™®and the tree <K, 2> and a newly defined key graph
in this paper.

Keywords. Square difference labeling, Cube difference lagelcycle cactus, tree <k
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1. Introduction

A function f is a square difference labeling ofragh G of size n if f is an injection from
V(G) to the set {0, 1, 2, ..., n-1} such that , wheach edge uv of G has assigned the
weight| [f(u)]? - [f(v)]? the resulting weights are distinct.

A function f is a cube difference labeling of aghiai of size n if f is an injection
from V(G) to the set {0, 1, 2, ..., n-1} such thavhen each edge uv of G has assigned
the weight| [f(W)]® - [f(v)]°, the resulting weights are distinct. The notmnsquare
difference and cube difference labeling were inticetl by Shiama [3-6]. Graph labeling
can also be applied in areas such as communiaagiovork, mobile telecommunications,
and medical field. A dynamic survey on graph laigelis regularly updated by Gallian
[2]. Khan and Pal have investyigated different s/oé labelling on cactus graphs [10-
16]. The notation and terminology used in this pae taken from [1].
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Definition 1.1. Let G = ( V(G), E(G) ) be a graph .G is said todmpiare difference
labeling if there exist an injection f : V(G)» {0, 1, ...., n-1} such that the induced
function f*:E(G)— N given by f *(uv) =|[f(u)]” - [f(v)]*| is injective.

Definition 1.2. A graph which satisfies the square difference lalgek called the square
difference graph.

Definition 1.3. Let G = ( V(G), E(G) ) be a graph .G is said tcchbe difference labeling
if there exist an injection f : V(G) {0, 1, ...., n-1} such that the induced function* f
E(G)— N given by f *(uv) =| [f(u)]® - [f(v)]®| is injective.

Definition 1.4. A graph which satisfies the cube difference laleim called the cube
difference graph.

Definition 1.5. A cactus is a connected graph in which any two Engycles have at
most one vertex in common@ (n copies of cycles §.

Definition 1.6. A <K, 2>is a tree of diameter 4 obtained from the n biB{grby sub
dividing the middle edge with a new vertex.

Definition 1.7. A key graph is a graph obtained from 6§y appending one vertex of @
one end point and Hoffman tregtPK; to the other end point of K

2. Main result
Theorem 2.1. The cycle cactus graph/® admits cube difference labeling@.

Proof: Let G® be a cycle cactus graphzK3. Where k is the number of vertices in cycle
C, of cycle cactus graph . Denote the vertices of the cyclg i8 the cycle cactus
graph G® as y, W, ..., U, in the clockwise direction. Denote the verticedist copy of
cycle G as W1, ..., Usm iN the clockwise direction. Similarly denote thertices of
second copy of cycle &S Wim+1, ..., Usmsp IN the clockwise direction. Note that
| V(G)|=3n-2 and E(G) | =3n.

u
n+

Figure1.1: Cycle cactus &
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The vertex labeling for the graph®is defined as follows.
f(uy=0,f(y=i,1<i<n (1.2)
Now the edge labels are obtained as follows.
f is called cube difference labeling if f*(uv) {z[f(u)]3 - [f(W)] 3| for every uve
E(G) are all distinct where u,x0.
Let the edge sets be
E={uu; /0<i<n}and
E= {uius; /1<i<n} (1.2
Let the edge labels be

f *(uu;) = f, 1<i<nand

f*(Uilpy) = FA+3i+1,1<i<n (1.3)
Hence the edges are distinct. Hence the cycle sagaph ¢ admits a cube difference
labeling.

An illustration of the above theorem is shown igufe 1.2

Figure 1.2: Cube difference labeling of cycle cactu$’C

Theorem 2.2. The <K ; 2> admits cube difference labeling.

Proof: Let <K, 2> be a tree. Denote the vertices which are adjdo y as y, ..., Win
the anticlockwise direction. Denote the verticescwtare adjacent to the vertex.uas
Unszr Unsa -..,Uhem IN the clockwise direction. Let;uu, u,.;be the path. Note that
|V(G)|=2n+3and EG)|=2n+2.
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Figure2.1. Tree K< 2>

The vertex labeling for the tree <K 2> is defined as follows.

f(u) 0,
f(uy) i, 1<i<n (2.1)
From the above definition in (2.1) it is obvioustlhe vertex labels are distinct.
Now the edge labels are obtained as follows.
fis called cube difference labeling if f *(uv) Hf(u)]*>-[f(v)]®| for every uve
E(G) are all distinct where u,x0.
Let the edge sets be

E; = {uu /1<i<n}

E> = {uy /1<i<n,2<j<n+m} (2.2)
Let the edge labels be

f*(uu) = P, 1<i<n

fxuy) = P, 1<i<n,2<j<n+m (2.3)

Hence the edges are distinct. Hence the treg;<¥% admits cube difference labeling.
An illustration of the above theorem as follows.

2

26

124,

5
Figure 2.2: Cube difference labeling of <lg 2>
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Figure 2.3: Cube difference labeling of <k 2>

Theorem 2.3. The key graph §€9P, admits a square difference labeling.

Proof: Let the graph G be a key grapb@F,. The vertex set of G is { ww;

Wj,

Vo, VIV2,eennnnnn. Vi, U Upy.eeenes.s. U} where w, 1<i<4,u,v0<i<n. Clearly G has

2n+5 vertices and 2n+5 edges.

Y] Vv “ee
Vo 1 2 Via A
w, w, ‘ ‘ | |
u
w 1 uZ un-l l"In
2 w,

Figure 2.4: Key graph GOP,

Let | V(G) | = 2n+5 and| E(G)| = 2n+5.

The mapping f: V(G}- {0,1,2,...,n-1} is defined by f(u) = 0, f(u= |,
1<i < n and the induced function f * : E(G} N is defined by

(@) £* (uuy) = | [fu)]? = [fu))?| =7
(i) * (Uiliee) :| [f(Ui)]z—[f(Ui+1)]2| =2i+1,
Ki<n.

(i * (Uiti) = | [fU)]* - [f(u)]?| = 4i + 4,

Here the edge sets are

® E;={uu/ 0<i<n}
(i) E,={ujus1 / 1<i<n}
(iii) Es = {uuso/ 1<i<n}
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Here the edges are distinct. Hence the key gra@PCadmits a square difference
labeling.

Theorem 2.4. The key graph X Cs® P, )admits cube difference labeling.

Proof: Denote the key graphs® P, as G. The vertex set of G is {{W\,, Wi, Vo,
ViVo, e Vi, U Upyeennenne. W} wherew, 1<i<4,u,v,0<i<n. Clearly G has 2n+5
vertices and 2n+5 edges.

Define f: V(G)— {0,1,2,.....,2n+4} as follows,
flu) =0, fu) =i, 2<i<n,f(v) =i, 1<i<n, f(w) =i, 1<i<5,
and the induced function f* : E (G} N is defined by
(i) fe(uuy) = [[f(W)F — [fu)]’= #, 1<i<2n.
(i) P (Uiisr) = [[F(U)]® = [f(ui)]?|= 3F+3i+1, Ki<2n.
(i) F(uitiv2) = [[f(W)]° = [f(u2)]’|= 6F+12i+8, i< 2n.

Here the edge sets is E = {Wy,1, 0<i <4} U {vo Ws}U {Vi Vs 1<i<n-1} U
{u,1<i<n-1} U {vovi}

Here the edges are distinct. Hence the key gra@PCadmits a cube difference

labeling.

3. Conclusion

In this paper the cycle cactus graphs, tree &R > and key graph are investigated for
the square and cube difference labeling. This lapetan be verified for some other
graphs.
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