Annals of Pure and Applied Mathematics

Vol. 8, No. 2, 2014, 131-141

ISSN: 2279-087X (P), 2279-0888(online) Published on 17 December 2014

www.researchmathsci.org

Annals of
Pure and Applied
Mathematics

On Certain Subclass of Analytic Functions with Respect to 2k-Symmetric Conjugate Points

B.Srutha Keerthi¹ and P. Lokesh²

¹Mathematics Division, School of Advanced Sciences VIT University Chennai Campus, Vandallur Kellambakkam Road Chennai – 600 127, India. E-mail: sruthilaya06@yahoo.co.in

²Department of Mathematics, Bharathiar University, Coimbatore, Tamilnadu, India. E-mail: lokeshpandurangan@gmail.com

Received 15 October 2014; accepted 21 November 2014

Abstract. In the present paper, we introduce new subclass $\mathcal{P}_{SC}^{(k)}(\rho,\lambda,\alpha)$ of analytic function with respect to 2k-symmetric conjugate points. Such results as integral representations, convolution conditions and coefficient inequalities for this class are provided.

Keywords: Analytic functions, Hadamard product, 2k-symmetric conjugate points

AMS Mathematics Subject Classification (2010): 30C45

1. Introduction

Let A denote the class of functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

which are analytic in the open unit disk.

$$U := \{z : z \in \mathbb{C} \text{ and } |z| < 1\}.$$

Also let $S^*(\alpha)$ and $C(\alpha)$ denote the familiar subclasses of \mathcal{A} consisting of functions which are starlike and convex of order α ($0 \le \alpha < 1$) in U, respectively.

Let $S_{SC}^{(k)}(\alpha)$ denote the class of functions in \mathcal{A} satisfying the following inequality:

$$\mathbb{R}\left(\frac{\mathrm{zf}'(z)}{\mathrm{f}_{2k}(z)}\right) > \alpha. \quad (z \in \mathbb{U}), \tag{1.2}$$

where $0 \le \alpha < 1$, $k \ge 2$ is a fixed positive integer and $f_{2k}(z)$ is defined by the following equality:

$$f_{2k}(z) = \frac{1}{2k} \sum_{\nu=0}^{k-1} (\epsilon^{-\nu} f(\epsilon^{\nu} z) + \epsilon^{\nu} \overline{f(\epsilon^{\nu} \overline{z})}), \quad \left(\epsilon = \exp\left(\frac{2\pi i}{k}\right); \ z \in U\right)$$
 (1.3)

And a function $f(z) \in \mathcal{A}$ is in the class $C_{SC}^{(k)}(\alpha)$ if and only if $zf'(z) \in S_{SC}^{(k)}(\alpha)$. The class $S_{SC}^{(k)}(0)$ of functions starlike with respect to 2k-symmetric conjugate points was introduced and investigated by Al-Amiri et al. [1].

Let T be the subclass of A consisting of all functions which are of the form:

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n$$
 $(a_n \ge 0)$.

We denote by S^* , K, C and C^* the familiar subclass of A consisting of functions which are, respectively, starlike, convex, close-to-convex and quasi-convex in U. Thus, by definition, we have (see, for details [4, 6, 7, 8]).

$$S^* = \left\{ f : f \in \mathcal{A} \text{ and } \mathbb{R} \left\{ \frac{zf'(z)}{f(z)} \right\} > 0, \quad (z \in \mathbb{U}) \right\},$$

$$\mathcal{K} = \left\{ f : f \in \mathcal{A} \text{ and } \mathbb{R} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > 0, \quad (z \in \mathbb{U}) \right\}, \text{ and}$$

$$C = \left\{ f : f \in \mathcal{A}, \exists g \in S^* : \text{ such that } \mathbb{R} \left\{ \frac{zf'(z)}{g(z)} \right\} > 0, \quad (z \in \mathbb{U}) \right\}.$$

Definition 1.1. Let $\mathcal{T}(\rho, \lambda, \alpha)$ be the subclass of \mathcal{T} consisting of functions f(z) which satisfy the inequality:

$$\mathbb{R}\left(\frac{\frac{zf'(z) + \rho z^2 f''(z)}{(1-\rho)f(z) + \rho z f'(z)}}{\lambda \left(\frac{zf'(z) + \rho z^2 f''(z)}{(1-\rho)f(z) + \rho z f'(z)}\right) + (1-\lambda)}\right) > \alpha \quad (z \in \mathbb{U})$$

$$(1.4)$$

for some α ($0 \le \alpha < 1$), λ ($0 \le \lambda < 1$) and ρ ($0 \le \rho \le 1$). If $\rho = 0$, a function $f(z) \in \mathcal{A}$ is in the class $C(\lambda, \alpha)$. This class was first introduced and investigated by Altintas and Owa [2], then was studied by Aouf et al. [3].

We now introduce the following subclass of \mathcal{A} with respect to 2k-symmetric conjugate points and obtain some interesting results.

A function $f(z) \in \mathcal{A}$ is in the class $\mathcal{P}_{SC}^{(k)}(\rho,\lambda,\alpha)$ if it satisfies the following inequality:

$$\mathbb{R}\left(\frac{\frac{zf'(z) + \rho z^{2}f''(z)}{(1 - \rho)f_{2k}(z) + \rho zf'_{2k}(z)}}{\lambda \left(\frac{zf'(z) + \rho z^{2}f''(z)}{(1 - \rho)f_{2k}(z) + \rho zf'_{2k}(z)}\right) + (1 - \lambda)}\right) > \alpha \quad (z \in \mathbb{U}),$$
(1.5)

where $0 \le \alpha < 1$, $0 \le \lambda < 1$, $0 \le \rho \le 1$ and $f_{2k}(z)$ is defined the equality (1.3). If $\rho = 0$, a function $f(z) \in \mathcal{A}$ is in the class $\mathcal{P}_{SC}^{(k)}(\lambda, \alpha)$ which was studied by Luo and Wang [5].

For $\lambda = 0$ in $\mathcal{P}_{SC}^{(k)}(\rho, \lambda, \alpha)$ we get $S_{SC}^{(k)}(\rho, \alpha)$ [10].

Lemma 1.1. Let $\gamma \ge 0$ and $f \in C$, then

$$F(z) = \frac{1+\gamma}{z^{\gamma}} \int_{0}^{z} f(t)t^{\gamma-1} dt \in C.$$

This lemma is a special case of Theorem 4 in [9].

Lemma 1.2. [6] Let $0 < \rho \le 1$ and $f \in C^*$, then

$$F(z) = \frac{1}{\rho} z^{1-\frac{1}{\rho}} \int_{0}^{z} f(t) t^{\frac{1}{\rho}-2} dt \in C^* \subset C.$$

Lemma 1.3. Let $0 \le \rho \le 1$ and $0 \le \alpha < 1$, then we have $\mathcal{P}_{sc}^{(k)}(\rho, \alpha) \subset \mathcal{C} \subset \mathcal{S}$.

Proof: Let $F(z) = (1-\rho)f(z) + \rho \ z \ f'(z), F_{2k}(z) = (1-\rho)f_{2k}(z) + \rho \ z \ f'_{2k}(z)$ with $f(z) \in \mathcal{P}_{sc}^{(k)}(\rho,\alpha)$, substituting z by $\epsilon^{\mu} \ z \ (\mu=0,\,1,\,2,\,...,\,k-1)$ in (1.5), we get

$$R\left(\frac{\frac{\epsilon^{\mu}zf'(\epsilon^{\mu}z) + \rho(\epsilon^{\mu}z)^{2}f''(\epsilon^{\mu}z)}{(1-\rho)f_{2k}(\epsilon^{\mu}z) + \rho(\epsilon^{\mu}z)f'_{2k}(\epsilon^{\mu}z)}}{\lambda\left(\frac{\epsilon^{\mu}zf'(\epsilon^{\mu}z) + \rho(\epsilon^{\mu}z)^{2}f''(\epsilon^{\mu}z)}{(1-\rho)f_{2k}(\epsilon^{\mu}z) + \rho(\epsilon^{\mu}z)f'_{2k}(\epsilon^{\mu}z)}\right) + (1-\lambda)}\right) > \alpha,$$

$$(1.6)$$

From inequality (1.6) we have

$$R\left(\frac{\frac{\overline{\epsilon^{\mu}}\overline{z}f'(\epsilon^{\mu}\overline{z}) + \rho(\overline{\epsilon^{\mu}}\overline{z})^{2}f''(\epsilon^{\mu}\overline{z})}{(1-\rho)\overline{f}_{2k}(\epsilon^{\mu}\overline{z}) + \rho(\overline{\epsilon^{\mu}}\overline{z})\overline{f}'_{2k}(\epsilon^{\mu}\overline{z})}}{\sqrt{\frac{\overline{\epsilon^{\mu}}\overline{z}f'(\epsilon^{\mu}\overline{z}) + \rho(\overline{\epsilon^{\mu}}\overline{z})^{2}f''(\epsilon^{\mu}\overline{z})}{(1-\rho)\overline{f}_{2k}(\epsilon^{\mu}\overline{z}) + \rho(\overline{\epsilon^{\mu}}\overline{z})\overline{f}'_{2k}(\epsilon^{\mu}\overline{z})}}}\right) + (1-\lambda)}\right) > \alpha,$$

$$(1.7)$$

Note that $f_{2k}(\epsilon^{\mu} z) = \epsilon^{\mu} f_{2k}(z)$, $f'_{2k}(\epsilon^{\mu} z) = f'_{2k}(z)$, $\overline{f_{2k}(\epsilon^{\mu} \overline{z})} = \epsilon^{-\mu} f_{2k}(z)$ and $\overline{f'_{2k}(\epsilon^{\mu} \overline{z})} = f'_{2k}(z)$, thus, inequalities (1.6) and (1.7) can be written as

$$\mathbb{R}\left(\frac{\frac{zf'(\epsilon^{\mu}z) + \rho z^{2}\epsilon^{\mu}f''(\epsilon^{\mu}z)}{(1-\rho)f_{2k}(z) + \rho zf'_{2k}(z)}}{\lambda\left(\frac{zf'(\epsilon^{\mu}z) + \rho z^{2}\epsilon^{\mu}f''(\epsilon^{\mu}z)}{(1-\rho)f_{2k}(z) + \rho zf'_{2k}(z)}\right) + (1-\lambda)}\right) > \alpha,$$
(1.8)

and

$$R\left(\frac{\frac{z\overline{f'(\epsilon^{\mu}\overline{z})} + \rho z^{2}\epsilon^{-\mu}\overline{f''(\epsilon^{\mu}\overline{z})}}{(1-\rho)f_{2k}(z) + \rho zf'_{2k}(z)}}{\lambda\left(\frac{z\overline{f'(\epsilon^{\mu}\overline{z})} + \rho z^{2}\epsilon^{-\mu}\overline{f''(\epsilon^{\mu}\overline{z})}}{(1-\rho)f_{2k}(z) + \rho zf'_{2k}(z)}\right) + (1-\lambda)}\right) > \alpha$$

$$(1.9)$$

Summing inequalities (1.8) and (1.9), we can obtain

$$R\left(\frac{\frac{z\left[f'(\epsilon^{\mu}z)+\overline{f'(\epsilon^{\mu}\overline{z})}\right]+\rho z^{2}\left[\epsilon^{\mu}f''(\epsilon^{\mu}z)+\epsilon^{-\mu}\overline{f''(\epsilon^{\mu}\overline{z})}\right]}{(1-\rho)f_{2k}(z)+\rho zf_{2k}'(z)}}{\lambda\left(\frac{z\left[f'(\epsilon^{\mu}z)+\overline{f'(\epsilon^{\mu}\overline{z})}\right]+\rho z^{2}\left[\epsilon^{\mu}f''(\epsilon^{\mu}z)+\epsilon^{-\mu}\overline{f''(\epsilon^{\mu}\overline{z})}\right]}{(1-\rho)f_{2k}(z)+\rho zf_{2k}'(z)}\right)+(1-\lambda)}\right)>2\alpha. \quad (1.10)$$

Let $\mu = 0, 1, 2, ..., k-1$ in (1.10), respectively, and summing them we can get

$$\mathbb{R}\left(\frac{z\frac{1}{2k}\sum_{\mu=0}^{k-l}\left[f'(\epsilon^{\mu}z)+\overline{f'(\epsilon^{\mu}\overline{z})}\right]+\rho z^{2}\frac{1}{2k}\sum_{\mu=0}^{k-l}\left[\epsilon^{\mu}f''(\epsilon^{\mu}z)+\epsilon^{-\mu}\overline{f''(\epsilon^{\mu}\overline{z})}\right]}{(1-\rho)f_{2k}(z)+\rho zf_{2k}'(z)}}\right)>\alpha,$$

$$\left(\frac{z\frac{1}{2k}\sum_{\mu=0}^{k-l}\left[f'(\epsilon^{\mu}z)+\overline{f'(\epsilon^{\mu}\overline{z})}\right]+\rho z^{2}\frac{1}{2k}\sum_{\mu=0}^{k-l}\left[\epsilon^{\mu}f''(\epsilon^{\mu}z)+\epsilon^{-\mu}\overline{f''(\epsilon^{\mu}\overline{z})}\right]}{(1-\rho)f_{2k}(z)+\rho zf_{2k}'(z)}\right)+(1-\lambda)}\right)>\alpha,$$

or equivalently,

$$\mathbb{R}\left(\frac{\frac{zf_{2k}'(z) + \rho z^2 f_{2k}''(z)}{(1-\rho)f_{2k}(z) + \rho z f_{2k}'(z)}}{\lambda \left(\frac{zf_{2k}'(z) + \rho z^2 f_{2k}''(z)}{(1-\rho)f_{2k}(z) + \rho z f_{2k}'(z)}\right) + (1-\lambda)}\right) = \mathbb{R}\left(\frac{\frac{zF_{2k}'(z)}{F_{2k}(z)}}{\lambda \left(\frac{zF_{2k}'(z)}{F_{2k}(z)}\right) + (1-\lambda)}\right) > \alpha,$$

that is for $\lambda=0$ $F_{2k}(z)\in S^*(\alpha)$, which is the class of starlike functions of order α in U. Note that $S^*(0)=S^*$, this implies that $F(z)=(1-\rho)$ $f(z)+\rho$ z $f'(z)\in C$. We now split it into two cases to prove

Case (i) When $\rho = 0$, $\lambda = 0$, it is obvious that $f(z) = F(z) \in C$.

Case (ii) When $\lambda=0$ and $0 < \rho \le 1$. From $F(z) = (1-\rho) f(z) + \rho z f'(z)$ and $0 < \rho \le 1$, we have

$$f(z) = \frac{1}{\rho} z^{1-\frac{1}{\rho}} \int_{0}^{z} F(t) t^{\frac{1}{\rho}-2} dt.$$

Since $\gamma = \frac{1}{\rho} - 1 \ge 0$, by Lemma 1.1, we obtain that $f(z) \in C \subset S$. Hence $\mathcal{P}_{cc}^{(k)}(\rho,\alpha) \subset C \subset S$, and the proof is complete.

2. Integral representations

We first give some integral representations of functions in the class $\mathcal{P}_{SC}^{(k)}(\rho,\lambda,\alpha)$.

Theorem 2.1. Let $f(z) \in \mathcal{P}^{(k)}_{SC}(\rho, \lambda, \alpha)$ with $0 < \rho \le 1$. Then

$$\begin{split} f_{2k}(z) &= \frac{1}{\rho} z^{1-\frac{1}{\rho}} \int\limits_{0}^{z} exp \left(\frac{1}{2k} \sum_{\mu=0}^{k-1} \int\limits_{0}^{u} \frac{2(1-\alpha)}{\zeta} \right) \\ & \left(\frac{\omega(\epsilon^{\mu}\zeta)}{1-\lambda-(1+\lambda-2\alpha\lambda)\omega(\epsilon^{\mu}\zeta)} + \frac{\overline{\omega(\epsilon^{\mu}\overline{\zeta})}}{1-\lambda-(1+\lambda-2\alpha\lambda)\overline{\omega(\epsilon^{\mu}\overline{\zeta})}} \right) d\zeta \right) u^{\frac{1}{\rho}-1} du, \end{split}$$

where $f_{2k}(z)$ is defined by equality (1.3), $\omega(z)$ is analytic in $\mathbb U$ and $\omega(0)=0,$ |w(z)|<1.

Proof: Suppose that $f(z) \in \mathcal{P}_{SC}^{(k)}(\rho, \lambda, \alpha)$, we know that the condition (1.5) can be written as follows:

$$\frac{zf'(z) + \rho z^{2}f''(z)}{(1-\rho)f_{2k}(z) + \rho zf'_{2k}(z)} \prec \frac{1 + (1-2\alpha)z}{1-z},$$

$$\lambda \left(\frac{zf'(z) + \rho z^{2}f''(z)}{(1-\rho)f_{2k}(z) + \rho zf'_{2k}(z)}\right) + (1-\lambda)$$

where \prec stands for the subordination. It follows that

$$\frac{zf'(z) + \rho z^2 f''(z)}{(1 - \rho)f_{2k}(z) + \rho z f'_{2k}(z)} \prec \frac{1 + (1 - 2\alpha)\omega(z)}{1 - \omega(z)},$$
$$\lambda \left(\frac{zf'(z) + \rho z^2 f''(z)}{(1 - \rho)f_{2k}(z) + \rho z f'_{2k}(z)}\right) + (1 - \lambda)$$

where $\omega(z)$ is analytic in U and $\omega(0) = 0$, $|\omega(z)| < 1$. This yields

$$\frac{zf'(z) + \rho z^2 f''(z)}{(1 - \rho)f_{2k}(z) + \rho zf'_{2k}(z)} = \frac{(1 - \lambda)[1 + (1 - 2\alpha)\omega(z)]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)\omega(z)},$$
(2.2)

Substituting z by ε^{μ} z ($\mu = 0, 1, 2, ..., k-1$) in (2.2), respectively, we get

$$\frac{\varepsilon^{\mu} z f'(\varepsilon^{\mu} z) + \rho(\varepsilon^{\mu} z)^{2} f''(\varepsilon^{\mu} z)}{(1 - \rho) f_{2k}(\varepsilon^{\mu} z) + \rho\varepsilon^{\mu} z f'_{2k}(\varepsilon^{\mu} z)} = \frac{(1 - \lambda)[1 + (1 - 2\alpha)\omega(\varepsilon^{\mu} z)]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)\omega(\varepsilon^{\mu} z)}.$$
 (2.3)

From (2.3), we have

$$\frac{\overline{(\varepsilon^{\mu}\overline{z})}\overline{f'(\varepsilon^{\mu}\overline{z})} + \rho\overline{(\varepsilon^{\mu}\overline{z})}^{2}\overline{f''(\varepsilon^{\mu}\overline{z})}}{(1-\rho)\overline{f_{2k}}(\varepsilon^{\mu}\overline{z}) + \rho\varepsilon^{\mu}\overline{z}\overline{f'_{2k}}(\varepsilon^{\mu}\overline{z})} = \frac{(1-\lambda)[1+(1-2\alpha)\overline{\omega}(\varepsilon^{\mu}\overline{z})]}{1-\lambda-(1+\lambda-2\alpha\lambda)\overline{\omega}(\varepsilon^{\mu}\overline{z})}.$$
 (2.4)

Note that $f_{2k}(\epsilon^{\mu} z) = \epsilon^{\mu} f_{2k}(z)$ and $f_{2k}(\epsilon^{\mu} \overline{z}) = \epsilon^{-\mu} f_{2k}(z)$, summing equalities (2.3) and (2.4), we can obtain

$$\frac{z(f'(\epsilon^{\mu}z) + \overline{f'(\epsilon^{\mu}\overline{z})}) + \rho z^{2}(\epsilon^{\mu}f''(\epsilon^{\mu}z) + \epsilon^{-\mu}\overline{f''(\epsilon^{\mu}\overline{z})})}{(1 - \rho)f_{2k}(z) + \rho zf'_{2k}(z)} \\
= \frac{(1 - \lambda)[1 + (1 - 2\alpha)\omega(\epsilon^{\mu}z)]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)\omega(\epsilon^{\mu}z)} + \frac{(1 - \lambda)[1 + (1 - 2\alpha)\overline{\omega(\epsilon^{\mu}\overline{z})}]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)\overline{\omega(\epsilon^{\mu}\overline{z})}}.$$
(2.5)

Let $\mu = 0, 1, 2, ..., k-1$ in (2.5), respectively, and summing them we can get

$$\frac{zf'_{2k}(z) + \rho z^{2}f''_{2k}(z)}{(1 - \rho)f_{2k}(z) + \rho zf'_{2k}(z)} = \frac{1}{2k} \sum_{\mu=0}^{k-1} \frac{(1 - \lambda)[1 + (1 - 2\alpha)\omega(\varepsilon^{\mu}z)]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)\omega(\varepsilon^{\mu}z)} + \frac{(1 - \lambda)[1 + (1 - 2\alpha)\omega(\varepsilon^{\mu}\overline{z})]}{1 - \lambda - (1 + \lambda - 2\alpha\lambda)\omega(\varepsilon^{\mu}\overline{z})}.$$
(2.6)

From (2.6), we can ge

$$\begin{split} &\frac{f_{2k}'(z) + \rho z f_{2k}''(z)}{(1-\rho)f_{2k}(z) + \rho z f_{2k}'(z)} - \frac{1}{z} \\ &= \frac{1}{2k} \sum_{\mu=0}^{k-1} \frac{1}{z} \Biggl(\frac{(1-\lambda)[1 + (1-2\alpha)\omega(\epsilon^{\mu}z)]}{1-\lambda - (1+\lambda - 2\alpha\lambda)\omega(\epsilon^{\mu}z)} + \frac{(1-\lambda)[1 + (1-2\alpha)\overline{\omega(\epsilon^{\mu}\overline{z})}]}{1-\lambda - (1+\lambda - 2\alpha\lambda)\overline{\omega(\epsilon^{\mu}\overline{z})}} - 2 \Biggr). \end{split}$$

Integrating (2.7), we have

$$\begin{split} log\!\!\left(\frac{(1\!-\!\rho)f_{2k}(z)\!+\!\rho zf_{2k}'(z)}{z}\right) &= \frac{1}{2k} \sum_{\mu=0}^{k\!-\!1} \int\limits_{0}^{z} \frac{2(1\!-\!\alpha)}{\zeta} \\ & \left(\frac{\omega(\epsilon^{\mu}\zeta)}{1\!-\!\lambda\!-\!(1\!+\!\lambda\!-\!2\alpha\lambda)\omega(\epsilon^{\mu}\zeta)} \!+\! \frac{\omega(\epsilon^{\mu}\bar{\zeta})}{1\!-\!\lambda\!-\!(1\!+\!\lambda\!-\!2\alpha\lambda)\omega(\epsilon^{\mu}\bar{\zeta})}\right) \! d\zeta. \end{split}$$

That is

$$(1-\rho)f_{2k}(z) + \rho z f_{2k}'(z) = z \exp \frac{1}{2k} \sum_{\mu=0}^{k-1} \int_{0}^{z} \frac{2(1-\alpha)}{\zeta} d\zeta$$

$$\left(\frac{\omega(\epsilon^{\mu}\zeta)]}{1-\lambda-(1+\lambda-2\alpha\lambda)\omega(\epsilon^{\mu}\zeta)} + \frac{\omega(\epsilon^{\mu}\bar{\zeta})}{1-\lambda-(1+\lambda-2\alpha\lambda)\omega(\epsilon^{\mu}\bar{\zeta})}\right) d\zeta. \tag{2.8}$$

The assertion (2.1) in Theorem 2.1 can now easily be derived from (2.8).

Theorem 2.2. Let $f(z) \in \mathcal{Q}_{SC}^{(k)}(\rho, \lambda, \alpha)$ with $k \ge 2$. Then

$$\begin{split} f(z) &= \frac{1}{\rho} z^{1-\frac{1}{\rho}} \int\limits_{0}^{z} \int\limits_{0}^{u} exp \Biggl(\frac{1}{2k} \sum_{\mu=0}^{k-1} \int\limits_{0}^{\xi} \frac{2(1-\alpha)}{\zeta} \\ & \left(\frac{\omega(\epsilon^{\mu}\zeta)}{1-\lambda-(1+\lambda-2\alpha\lambda)\omega(\epsilon^{\mu}\zeta)} + \frac{\overline{\omega(\epsilon^{\mu}\overline{\zeta})}}{1-\lambda-(1+\lambda-2\alpha\lambda)\overline{\omega(\epsilon^{\mu}\overline{\zeta})}} \right) d\zeta \Biggr) \\ & \frac{(1-\lambda)[1+(1-2\alpha)\omega(\xi)]}{1-\lambda-(1+\lambda-2\alpha\lambda)\omega(\xi)} \, d\xi u^{\frac{1}{\rho}-2} du. \end{split} \tag{2.9}$$

where $\omega(z)$ is analytic in U and $\omega(0) = 0$, $|\omega(z)| < 1$.

Proof: Suppose that $f(z) \in \mathcal{P}_{SC}^{(k)}(\rho, \lambda, \alpha)$, from equalities (2.1) and (2.2), we can get

$$\begin{split} zf'(z) + \rho z^2 f''(z) &= ((1-\rho)f_{2k}(z) + \rho z f_{2k}'(z)) \frac{(1-\lambda)[1+(1-2\alpha)\omega(z)]}{1-\lambda-(1+\lambda-2\alpha\lambda)\omega(z)} \\ &= exp \frac{1}{2k} \sum_{\mu=0}^{k-1} \int\limits_0^z \frac{2(1-\alpha)}{\zeta} \\ & \left(\frac{\omega(\epsilon^\mu \zeta)}{1-\lambda-(1+\lambda-2\alpha\lambda)\omega(\epsilon^\mu \zeta)} + \frac{\overline{\omega(\epsilon^\mu \overline{\zeta})}}{1-\lambda-(1+\lambda-2\alpha\lambda)\overline{\omega(\epsilon^\mu \overline{\zeta})}} \right) d\zeta \\ & \frac{(1-\lambda)[1+(1-2\alpha)\omega(z)]}{1-\lambda-(1+\lambda-2\alpha\lambda)\omega(z)}. \end{split}$$

Integrating the equality, we can easily get (2.9).

3. Convolution conditions

In this section, we provide some convolution conditions for the class $\mathcal{Q}_{SC}^{(k)}(\rho,\lambda,\alpha)$. Let f, $g \in \mathcal{A}$, where f(z) is given by (1.1) and g(z) is defined by

П

$$g(z) = z + \sum_{n=2}^{\infty} c_n z^n.$$

Then the Hadamard product (or convolution) f * g is defined (as usual) by

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n c_n z^n = (g * f)(z).$$

Theorem 3.1. A function $f(z) \in \mathcal{P}^{(k)}_{SC}(\rho, \lambda, \alpha)$ if and only if

$$+\rho z \left(\frac{z}{(1-z)^{2}} \left((1-e^{i\theta}) - \lambda (1+(1-2\alpha)e^{i\theta}) \right) - \frac{(1-\lambda)(1+(1-2\alpha)e^{i\theta})}{2} h \right)' \right] (z)$$

$$-(1-\lambda)(1+(1-2\alpha)e^{i\theta} f * \left(\frac{1-\rho}{2}h + \frac{\rho}{2}zh'\right)(\overline{z}) \right\} \neq 0$$
(3.1)

for all $z \in U$ and $0 \le \theta < 2\pi$, where

$$h(z) = \frac{1}{k} \sum_{v=0}^{k-1} \frac{z}{1 - \varepsilon^{v} z}.$$
 (3.2)

Proof: Suppose that $f(z) \in \mathcal{P}_{SC}^{(k)}(\rho,\lambda,\alpha)$, since the condition (1.5) is equivalent to

$$\frac{zf'(z) + \rho z^{2}f''(z)}{(1-\rho)f_{2k}(z) + \rho zf'_{2k}(z)} \neq \frac{1 + (1-2\alpha)e^{i\theta}}{1-e^{i\theta}},$$

$$\lambda \left(\frac{zf'(z) + \rho z^{2}f''(z)}{(1-\rho)f_{2k}(z) + \rho zf'_{2k}(z)}\right) + (1-\lambda)$$

for all $z \in U$ and $0 \le \theta < 2\pi$. And the condition (3.2) can be written as follows:

$$\frac{1}{z} \left\{ (zf'(z) + \rho z^2 f''(z))((1 - e^{i\theta}) - \lambda (1 + (1 - 2\alpha)e^{i\theta})) - (1 - \lambda)[(1 - \rho)f_{2k}(z) + \rho zf'_{2k}(z)](1 + (1 - 2\alpha)e^{i\theta}) \right\} \neq 0.$$
(3.4)

On the other hand, it is well known that

$$zf'(z) = f(z) * \frac{z}{(1-z)^2}.$$
 (3.5)

And from the definition of $f_{2k}(z)$, we know

$$f_{2k}(z) = z + \sum_{n=2}^{\infty} \frac{a_n + \overline{a_n}}{2} c_n z^n = \frac{1}{2} ((f * h)(z) + \overline{(f * h)(z)}),$$
 (3.6)

where h(z) is given by (3.6). Substituting (3.5) and (3.6) into (3.4), we can easily get (3.1). This completes the proof of Theorem 3.1.

4. Coefficient inequalities

In this section, we provide the sufficient conditions for functions belonging to the class $\mathcal{P}^{(k)}_{SC}(\rho,\lambda,\alpha)$.

Theorem 4.1. Let $0 \le \alpha < 1$, $0 \le \lambda < 1$ and $0 \le \rho < 1$. If

$$\sum_{n=1}^{\infty} [(1-\rho) + \rho(nk+1)][(1-\lambda) | (nk+1)a_{nk+1} - R(a_{nk+1}) |$$

$$+ (1-\alpha)(\lambda(nk+1)a_{nk+1} + (1-\lambda) | R(a_{nk+1}) |]$$

$$+ \sum_{\substack{n=2\\n \neq lk+1}}^{\infty} (1-\lambda)n[(1-\rho) + \rho n] | a_n | \le 1-\alpha$$
(4.1)

Then $f(z) \in \mathcal{P}^{(k)}_{SC}(\rho, \lambda, \alpha)$.

Proof: It suffices to show that

$$\frac{zf'(z) + \rho z^{2}f''(z)}{(1-\rho)f_{2k}(z) + \rho zf'_{2k}(z)} - 1 < 1 - \alpha,$$

$$\lambda \left(\frac{zf'(z) + \rho z^{2}f''(z)}{(1-\rho)f_{2k}(z) + \rho zf'_{2k}(z)}\right) + (1-\lambda)$$

Note that for |z| = r < 1, we have

$$\begin{split} \frac{zf'(z) + \rho z^2 f''(z)}{(1-\rho)f_{2k}(z) + \rho z f_{2k}'(z)} - 1 \\ \frac{\lambda \left(\frac{zf'(z) + \rho z^2 f''(z)}{(1-\rho)f_{2k}(z) + \rho z f_{2k}'(z)}\right) + (1-\lambda)}{1 - \sum_{n=2}^{\infty} (1-\lambda)[(1-\rho) + \rho n](na_n - R(a_n)b_n)z^{n-1}} \\ = \frac{\left|\sum_{n=2}^{\infty} (1-\lambda)[(1-\rho) + \rho n](na_n - R(a_n)b_n)z^{n-1}\right|}{1 + \sum_{n=2}^{\infty} [(1-\rho) + \rho n](na_n + (1-\lambda)R(a_n)b_n)z^{n-1}} \\ \leq \frac{\sum_{n=2}^{\infty} (1-\lambda)[(1-\rho) + \rho n]\left|na_n - R(a_n)b_n\right|\left|z\right|^{n-1}}{1 - \sum_{n=2}^{\infty} [(1-\lambda)[(1-\rho) + \rho n]\left|na_n - R(a_n)b_n\right|} \\ \leq \frac{\sum_{n=2}^{\infty} (1-\lambda)[(1-\rho) + \rho n]\left|na_n - R(a_n)b_n\right|}{1 - \sum_{n=2}^{\infty} [(1-\rho) + \rho n]\left[na_n + (1-\lambda)b_n\left|R(a_n)\right|\right]} \end{split}$$

where

$$b_{n} = \frac{1}{k} \sum_{v=0}^{k-1} \varepsilon^{(n-1)v} = \begin{cases} 1, & n = lk+1, \\ 0, & n \neq lk+1. \end{cases}$$
 (4.2)

This last expression is bounded above by $1 - \alpha$ if

$$\sum_{n=2}^{\infty} \left[(1 - \rho + \rho n) \left[(1 - \lambda) \left| na_{n} - R(a_{n})b_{n} \right| + (1 - \alpha)(\lambda na_{n} + (1 - \lambda)b_{n} \left| R(a_{n}) \right| \right] \le 1 - \alpha,$$
(4.3)

Since inequality (4.3) can be written as inequality (4.1), hence f(z) satisfies the condition (1.5). This completes the proof of Theorem 4.1.

Theorem 4.2. Let $0 \le \alpha < 1$, $0 \le \lambda < 1$ and $0 \le \rho \le 1$ and $f(z) \in \mathcal{T}$. Then $f(z) \in \mathcal{TP}_{SC}^{(k)}(\rho, \lambda, \alpha)$ if and only if

$$\begin{split} \sum_{n=1}^{\infty} & [(1-\rho) + \rho(nk+1)][(nk+1) - \alpha([\lambda(nk+1) + (1-\lambda)]a_{nk+1})] \\ & + \sum_{n=2}^{\infty} n[(1-\rho) + \rho n]a_n \leq 1 - \alpha. \end{split} \tag{4.4}$$

Proof: In view of Theorem 4.1, we need only to prove the necessity. Suppose that $f(z) \in \mathcal{TP}^{(k)}_{SC}(\rho,\lambda,\alpha)$, then from (1.5), we can get

$$\mathbb{R}\left(\frac{1-\sum_{n=2}^{\infty}n[(1-\rho)+\rho n]a_{n}z^{n-1}}{1-\sum_{n=2}^{\infty}\{\lambda[n((1-\rho)+\rho n)a_{n}]+(1-\lambda)[((1-\rho)+\rho n)a_{n}b_{n}]\}z^{n-1}}\right)>\alpha, \quad (4.5)$$

where b_n is given by 4.2. By letting $z \to 1^-$ through real values in (4.5), we can get

$$\frac{1 - \sum_{n=2}^{\infty} n[(1-\rho) + \rho n] a_n}{1 - \sum_{n=2}^{\infty} {\{\lambda[n((1-\rho) + \rho n) a_n] + (1-\lambda)[((1-\rho) + \rho n) a_n b_n]\}}} \ge \alpha,$$

or equivalently,

$$\sum_{n=2}^{\infty} [(1-\rho) + \rho n] + (n - \alpha(\lambda n + (1-\lambda))a_n b_n) \le 1 - \alpha, \tag{4.6}$$

substituting (4.2) into inequality (4.6), we can get inequality (4.4) easily. This completes the proof of Theorem 4.2.

Acknowledgement. The first author thanks the support provided by Science and Engineering Research Board (DST), New Delhi. Project No: SR/S4/MS:716/10 with titled "On Certain Subclass of Analytic Functions with respect to 2k-Symmetric Conjugate Points".

REFERENCES

- 1. H.Al-Amiri, D.Coman and P.T.Mocanu, Some properties of starlike functions with respect to symmetric conjugate points, *Internat. J. Math. Math. Sci.*, 18 (1995) 469–474.
- 2. O.Altintas and S.Owa, On subclasses of univalent functions with negative coefficients, *Pusan Kyongnam Math. J.*, 4 (1988) 41–56.
- 3. M.K.Aouf, H.M.Hossen and A.Y.Lashin, Convex subclass of starlike functions, *Kyungpook Math. J.*, 40 (2000) 287–297.
- 4. P.L.Duren, *Univalent Functions*, Springer-Verlag, New York, 1983.
- 5. Hong.-C.Luo and Z.-G.Wang, Some subclasses of analytic functions with respect to 2k-symmetric conjugate points, *Research Group in Mathematical Inequalities and Applications*, 11(3) (2008) 1–7.
- 6. K.I.Noor, On quasi-convex functions and related topics, *Internat. J. Math. Math. Sci.*, 10 (1987) 241–258.
- 7. S.Owa, M.Nunokawa, H.Saitoh and H.M.Srivastava, Close-to-convexity, starlikeness and convexity of certain analytic functions, *Appl. Math. Lett.*, 15 (2002) 63–69.

- 8. H.M.Srivastava and S. Owa (Eds.), *Current Topics in Analytic Function Theory*, World Scientific, Singapore, 1992.
- 9. Z.-R.Wu, The integral operator of starlikeness and the family of Bazilevic functions, *Acta Math. Sinica*, 27 (1984) 394–409.
- 10. Z.-G.Wang and D.-Z.Chen, On subclasses of close-to-convex and quasi-convex functions with respect to 2k-symmetric conjugate points, *Lobachevskii Journal of Mathematics*, 26 (2007) 127–135.