Annals of Pure and Applied Mathematics Vol. 8, No. 2, 2014, 153-159 ISSN: 2279-087X (P), 2279-0888(online) Published on 17 December 2014 www.researchmathsci.org

Conflict-Free Coloring of Extended Duplicate Graph of Twig

E.Esakkiammal, K. Thirusangu and S. Bala

Department of Mathematics S.I.V.E.T. College, Gowrivakkam, Chennai-600 073, India E-Mail :<u>esakkiammal2682@gmail.com</u>, <u>kthirusangu@gmail.com</u>, <u>balasankarasubbu@yahoo.com</u>

Received 1 November 2014; accepted 21 November 2014

Abstract. Graph coloring is one of the most important area of research in graph theory. Conflict-free coloring is defined as a vertex coloring such that for each vertex $v \in V$, there exists a vertex in the neighbourhood of v denoted by N(v), whose color is different from color of each other vertex in N[v]. In this paper, we prove the existence of conflict-freevertex coloring in EDG(T_m) and show that $\chi_{CF}(EDG(T_m)) = \Delta + 1$. As a consequence, we show that the induced subgraph each color class with s vertices is $\overline{K_s}$, where $\overline{K_s}$ is the complement of the complete graph K_s .

Keywords: Conflict-free coloring, extended duplicate graph of twig graphs.

AMS Mathematics Subject Classification (2010): 05C78

1. Introduction

The vertex coloring of a graph is coloring the vertices of the graph in such a way that adjacent vertices have different colors. Motivated by the problem of frequency assignments in cellular networks, Even et.al [3] and Smorodinsky [6] introduced the concept of conflict-free coloring. Pach and Tarados [5] instituted the idea of conflict coloring through graphs and hyper graphs. Glebov et.al [4] further brought forwarded the concept of conflict-free coloring through simple graphs. The Extended Duplicate Graph of Twig graphs was introduced by Thirusanguetal [7]. Other kind of labelling are studied in [8-13].

In this paper, we prove the existence of conflict-free vertex coloring in Extended Duplicate Graph of Twig graphs $\text{EDG}(T_m)$ which yields the result that the induced subgraph ofeach color classwith s vertices is $\overline{K_s}$, where $\overline{K_s}$ is the complement of the complete graph K_s . It is also proved that $\chi_{CF}(\text{EDG}(T_m)) = \Delta + 1$.

2. Preliminaries

In this section we give the basic notions relevant to this paper.

E.Esakkiammal, K. Thirusangu and S. Bala

Definition 2.1. A graph G(V,E) obtained from a path by joining exactly two pendent edges to each internal vertices of a path is called a Twig graph. A Twig graph with *m*internal vertices is denoted by T_m .

Definition 2.2. Let G(V,E) be a simple graph. A duplicate graph of G is $DG=(V_1, E_1)$ where the vertex set $V_1 = V \cup V'$ and $V \cap V' = \varphi$ and $f: V \rightarrow V'$ is bijective and the edgeset E_1 of DG is defined as follows: The edge*uv* is in E if and only if both*uv*'and *u'v* are edges in E_1 .

Definition 2.3. Let $DG=(V_1, E_1)$ be a duplicate graph of the Twig graph G(V,E). We add an edge between any one vertex from V to any other vertex in V^t except the terminal vertices of V and V^t. For our convenience, we take $v_2 \in V$ and $v_2' \in V'$ and thus the edge v_2v_2' is formed. We call this new graph as the extended duplicate graph of the Twig graph T_m and is denoted by $EDG(T_m)$. The vertex set and the edge set of $EDG(T_m)$ are given as follows :

$$\begin{aligned} & \mathsf{V}{=}\{v_1, v_2, \dots, v_{3m+2}, v_1', v_2', \dots, v_{3m+2}'\} \\ & \mathsf{E} = \{v_1 v_2', v_1' v_2, v_2 v_2'\} \mathbf{U} \{v_s' v_l \cup v_{s+3} v_{l+3}' \cup v_s v_l' \cup v_{s+3}' v_{l+3}/s = 2 + 6i, l = s + j + 1; 0 \le i \le \left[\frac{m-2}{2}\right]; 0 \le j \le 2\} \text{ if m is even} \\ & \mathsf{E}{=}\{v_1 v_2', v_1' v_2, v_2 v_2'\} \mathbf{U}\{v_s' v_l \cup v_s v_l'/s = 2 + 6i, l = s + j + 1; 0 \le i \le \left[\frac{m-1}{2}\right]; 0 \le j \le 2\} \cup \{v_{s+3}' v_{l+3} \cup v_{s+3} v_{l+3}'/s = 2 + 6i, = s + j + 1; 0 \le i \le \left[\frac{m-1}{2}\right]; 0 \le j \le 2\} \cup \{v_{s+3}' v_{l+3} \cup v_{s+3} v_{l+3}'/s = 2 + 6i, = s + j + 1; 0 \le i \le \left[\frac{m-3}{2}\right]; 0 \le j \le 2\} \text{ if m is odd} \end{aligned}$$

Clearly $EDG(T_m)$ has 6m+4 vertices and 6m+3 edges where *m* is the number of internal vertices of the Twig graph.

Definition 2.4. Let G=(V,E) be a simple graph. For every vertex $u \in V$, we denote N(*u*) = { $v \in V$: $uv \in E$ }, its neighbourhood and by N(*u*) \cup {u}=N[u], its closed neighbourhood. Also the maximum degree of the graph is denoted by Δ .

Definition 2.5. A vertex coloring χ of G is called conflict-free if for each vertex $u \in V$, there exists a vertex vin N(u) whose color is different from the color of each other vertex in N[u].

The conflict-free chromatic number $\chi_{CF}(G)$ is the smallest r, such that there exists a conflict-free r-coloring of G.

Definition 2.6. For any set S of vertices of graph G, the induced subgraph \leq S>, is the maximal subgraph of G with vertex set S. Thus two vertices are adjacent in S if and only if they are adjacent in G.

Definition 2.7. A graph G is said to be a complete graph if each pair of vertices is adjacent. A complete graph of *n* vertices is denoted by K_n .

Conflict-Free Coloring of Extended DuplicateGraph of Twig

The complement \overline{G} of G is defined to be the graph which has V as its vertex set and two verifices are adjacent in \overline{G} if and only if they are not adjacent in G.

3. Main results

In this section, we present an algorithm to obtain the conflict-free coloring of $EDG(T_m)$. We prove that $EDG(T_m)$ admits conflict-free coloring. We also show that the induced subgraph of each of the color class is a totally disconnected graph. Also we find the conflict-free chromatic number of $EDG(T_m)$ is $\Delta + 1$.

Algorithm 3.1:

```
Procedure: Conflict-free coloring of EDG(T_m)
Input: V \leftarrow \{v_1, v_2, \dots, v_{3m+2}, v_1', v_2', \dots, v_{3m+2}'\}
E \leftarrow \{e_1, e_2, \dots, e_{3m+2}, e_1', e_2', \dots, e_{3m+1}'\}
Output: Conflict-free colored EDG(T_m) graph.
if m=1
            v_1 \cup v_1' \leftarrow C_1
                    v_2 \leftarrow C_2
           v_2' \leftarrow C_3
v_3 \cup v_3' \leftarrow C_4
else
if m=2
                         else
             for n = 2 to m do
                          v_1 \cup v_1' \cup (\bigcup_{i=2}^n v_{3i} \cup v_{3i}') \leftarrow C_1
                         \begin{array}{cccc} v_2 \cup v_7' \cup (\bigcup_{i=3}^n v_{3i+1} \cup v_{3i+1}') \leftarrow C_2 \\ v_2' \cup v_7 & \cup (\bigcup_{i=3k/k \in N}^n v_{3i+2} \cup v_{3i+2}') \leftarrow C_3 \end{array}
                          v_3 \cup v_3' \cup (\bigcup_{i=3k-1/k \in \mathbb{N}}^n v_{3i+2} \cup v_{3i+2}') \leftarrow C_4
end for
end if
end if
if (m \le 3)
         v_4 \cup v_4' \leftarrow C_5
else
v_4 \cup v_4' \cup (\bigcup_{i=3k+1/k \in N}^m v_{3i+2} \cup v_{3i+2}') \leftarrow C_5
end if
v_5 \cup v_5' \leftarrow C_6
end procedure
```


Example 3.1.Conflict-free colored EDG(T_4)graph.

Here C_i for each *i* represent the color, $1 \le i \le 6$. Figure 1: 156

Conflict-Free Coloring of Extended DuplicateGraph of Twig

Theorem 3.1. EDG(T_m) is a conflict-free colorable graph.

Proof: The EDG(T_m) has 6m+4 vertices and 6m+3 edges.

To prove $\text{EDG}(T_m)$ is a conflict-free colorable graph, it is enough to prove that the vertex of maximum degree, either v_2 or v_2' is conflict-free colorable.

Using Algorithm 3.1, the color class C₂ has vertices

 $v_2, v'_7, v_{10}, v'_{10}, v_{13}, v'_{13}, \dots, v_{3m+1}, v'_{3m+1}$. Thus $v_2 \in C_2$. Also the neighbours of v_2 are $\{v_1', v_2', v_3', v_4', v_5'\}$ where $v_1' \in C_1, v_2' \in C_3, v_3' \in C_4$,

 $v_4' \in C_5, v_5' \in C_6$. That is each neighbours of v_2 is in different color classes.

Similarly for all the vertices of $EDG(T_m)$ in a color class has neighbours in different color classes.

Hence EDG(T_m) is a conflict-free colorable graph.

Theorem 3.2. In Extended Duplicate Graph EDG(T_m), the induced subgraph of each color class with n_i vertices is totally disconnected graph \overline{K}_{n_i} where \overline{K}_{n_i} is the complement of the complete graph K_{n_i} .

Proof: Denote the vertex set of EDG(T_m) as V =

 $\{v_1, v_2, \dots, v_{3m+2}, v_1', v_2' \dots \dots, v_{3m+2}'\}$

Using algorithm, the colors in EDG(T_m) are classified as follows : The color class

$$C_1 = \begin{cases} v_1 \cup v'_1 \text{ if } m = 1\\ v_1 \cup v_1' \cup (\cup_{i=2}^n v_{3i} \cup v_{3i}') & \text{if } 2 \le n \le m \end{cases}$$

The color class

$$C_2 = \begin{cases} v_2 \text{if } m = 1 \\ v_2 \cup v_7' \text{if } m = 2 \\ v_2 \cup v_7' \cup (\bigcup_{i=3}^n v_{3i+1} \cup v_{3i+1}') & \text{if } 3 \le n \le m \end{cases}$$

The color class

$$C_{3} = \begin{cases} v_{2}' & \text{if } m = 1 \\ v_{2}' \cup v_{7} & \text{if } m = 2 \\ v_{2}' \cup v_{7}(\bigcup_{i=3k/k \in \mathbb{N}}^{n} v_{3i+2} \cup v_{3i+2}') & \text{if } 3 \le n \le m \\ The \text{ color } \text{class} C_{4} = \begin{cases} v_{3} \cup v_{3}' \cup (\bigcup_{i=3k-1/k \in \mathbb{N}}^{n} v_{3i+2} \cup v_{3i+2}') & \text{if } 2 \le n \le m \\ \end{array} \end{cases}$$

The color class $C_5 = \begin{cases} v_4 \cup v_4' \text{ if } m \le 3 \\ v_4 \cup v_4' \cup (\bigcup_{i=3k+1/k \in \mathbb{N}}^n v_{3i+2} \cup v_{3i+2}') & \text{if } 4 \le n \le m \end{cases}$ The colorclass $C_6 = v_5 \cup v_5' \quad \forall m.$

Let n_i be the number of colors in C_i where $1 \le i \le 6$ respectively in the EDG(T_m) graph. Thus the vertices in the induced subgraph obtained from each of the color classes are not adjacent, since they are not adjacent in EDG(T_m).

E.Esakkiammal, K. Thirusangu and S. Bala

Hence the induced subgraph of n_i vertices relative to each of the above color class is a totally disconnected graph \overline{K}_{n_i} , where \overline{K}_{n_i} is the complement of the complete graph K_{n_i} , $1 \le i \le 6$.

Theorem 3.3. The conflict-free chromatic number of EDG(T_m) is $\Delta + 1$. **Proof:** Consider the EDG(T_m) which has 6m+4 vertices. Denote them as

 $\mathbf{V} = \{v_1, v_2, \dots, v_{3m+2}, v'_1, v_2', \dots, v_{3m+2}'\} = \mathbf{V}_1 \cup \mathbf{V}_2$

where $V_1 = \{v_1, v_2, v_3, v_4, v_5, v_1', v_2', v_3', v_4', v_5'\}$ and $V_2 = V \setminus V_1$.

Case (i) : m = 1

Consider the vertex set V_1 of EDG(T_1). Since deg(v_2) = deg(v_2'), $|N(v_2)| = |N(v'_2)| = \Delta$ and $|N(v_i)| = |N(v'_i)| < \Delta$ where $1 \le i \le 5$, $i \ne 2$. Hence $\Delta + 1$ colors are needed to color $N[v_2]$.

Since $N(v_i) \cap N(v'_i) = \varphi$, $N[v_2]$ and $N[v'_2]$ receives same colors whereas v_2 and v'_2 receives different colors among the $\Delta + 1$ colors.

Hence, EDG(T_1) is $\Delta + 1$ conflict-free colorable.

Case (ii) : $m \ge 2$ and m is finite

Using case (i) the vertices of V₁ are colored. The vertices in V₂ are colored as follows. For n= 2,3,4,...m, let $l_{n} = \{3n-4,3n,3n+1,3n+2\}$ and $S_n = \{3n-1\}$. Now

$$N(v_i) \cap N(v_j) = \begin{cases} \{v_k'\} & \text{if } i, j \in l_n, i \neq j \text{ and } k \in S_n \\ \phi & \text{otherwise} \end{cases}$$

$$N(v_i') \cap N(v_j') = \begin{cases} \{v_k\} & \text{if } i, j \in l_n, i \neq j \text{ and } k \in S_n \\ \phi & \text{otherwise} \end{cases}$$

Also $N(v_s) \cap N(v'_t) = \varphi$ for $1 \le s, t \le 3m+2$.

Thus the colors used to color these vertices in V_1 is enough to color the vertices of V_2 .

Hence $EDG(T_m)$ is $\Delta + 1$ conflict-free colorable.

4. Conclusion

In this paper, we proved the existence of conflict-free coloring in EDG(T_m) and the induced subgraph of each of the color class is a totally disconnected graph. Also we proved that the conflict-free chromatic number of EDG(T_m) is $\Delta + 1$.

REFERENCES

1. A.Dey and A.Pal, Fuzzy graph coloring technique to classify the accidental zone of a traffic control, *Annals of Pure and Applied Mathematics*, 3(2) (2013) 169-178.

Conflict-Free Coloring of Extended DuplicateGraph of Twig

- 2. S.Chandra Kumar and T.Nicholas, b-coloring in square of cartesian product of two cycles, *Annals of Pure and Applied Mathematics*, 1(2) (2012) 131-137.
- 3. G.Even, Z.Lotker, D.Ron and S.Smorodinsky, Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks, *SIAM Journal on Computing*, 33(1) (2003)94-136.
- 4. R.Gleboy, T.Szabo and G.Tardos, Conflict free coloring of graphs, *Combinatorics, Probability and Computing*, 23(3) (2014) 434 -438.
- 5. J.Pach and G.Tardos, Conflict-free colorings of graphs and Hypergraphs, Combinatorics, *Probability and Computing*, 18 (2009) 819-834.
- S.Smorodinsky, Conflict –free coloring and its applications,to appear in *Geometry -Intuitive, Discrete and Convex*, (I.Barany, K.J.Boroczky, G.Fejes Toth, and J. Pach, eds.) Bolyai Society Mathematical Studies, Springer. Preprint available on http://arxiv.org/pdf/1005.3616.pdf.
- K.Thirusangu, B.Selvam and P.P.Ulaganathan, Cordial labelling in extended duplicate twig graphs, *Int. J. Computer Mathematical Sci. Appl.*, 4(3-4) (2010) 319-328.
- 8. N.Khan, M.Pal and A.Pal, *L*(0,1)-labelling of cactus graphs, *Communications and Network*, 4 (2012) 18-29.
- 9. N.Khan and M.Pal, Cordial labelling of cactus graphs, *Advanced Modeling and Optimization*, 15 (2013) 85-101.
- 10. N.Khan and M.Pal, Adjacent vertex distinguishing edge colouring of cactus graphs, *Inter. J. Engineering and Innovative Technology*, 4(3) (2013) 62-71.
- 11. S.Paul, M.Pal and A.Pal, L(2,1)-Labeling of Permutation and Bipartite Permutation Graphs, *Mathematics in Computer Science*, DOI 10.1007/s11786-014-0180-2.
- 12. S.Paul, M.Pal and A.Pal, L(2,1)-labeling of interval graphs, J. Appl. Math. Comput., DOI 10.1007/s12190-014-0846-6.
- 13. M.Pal and G.P.Bhattacharjee, An optimal parallel algorithm to color an interval graph, *Parallel Processing Letters*, 6 (4) (1996) 439-449.