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Abstract. In this paper, we consider a two persons zero gamme with imprecise values
in payoff matrix. All the imprecise values are assd to be octagonal fuzzy numbers.
An approach for solving problems by using rankirfgtitee fuzzy numbers has been
considered to solve the fuzzy game problem. Bygusamking to the payoffs we convert
the fuzzy valued game problem to crisp valued garoblem, which can be solved using
the traditional method.
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1. Introduction

The mathematical treatment of the Game theory wadenavailable in 1944, when John
von Newmann and Oscar Morgenstern published thwda article ‘Theory of games

and economic Behavior' [12]. The problem of Gameotly defined as a body of

knowledge that deals with making decisions when twanore intelligent and rational

opponents are involved under conditions of conflintl competition. Game theory has
played an important role in the fields of decisimaking theory such as economics,
management etc. When we apply the Game theory telrabme practical problems
which we encounter in real situations, we have rtovk the values of payoffs exactly.

However, it is difficult to know the exact valuespayoffs and we could only know the
values of payoffs approximately. In such situatjiahss useful to model the problems as
games with fuzzy payoffs.

In a fuzzy game problem, all parameters are fuzaybrers. Fuzzy numbers may be
normal (or) abnormal, triangular or trapezoidal astagonal. Basirzadeh [2] have
proposed a method for ranking fuzzy numbers usioyits in which he has given a
ranking for triangular and trapezoidal fuzzy nunsbeA ranking usinga-cuts was
introduced on octagonal fuzzy numbers in [10]. gsthis ranking, the fuzzy Game
problem is converted to a crisp value problem, Wwhian be solved using the traditional
method.
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11. Fuzzy st

Let X be a non empty set. A fuzzy set A in X is reltderized by its membership function
A—[0,1] and A(X) is interpreted as the degree of mersihip of element x in fuzzy A for
each ¥ X.

The Value zero is used to represent completemembership; the value one is used
to represent complete membership and values in eegtware used to represent
intermediate degrees of membership. The mapping Also called the membership
function of fuzzy set A.

1.2.Crisp set
A crisp set is a special case of a fuzzy set, iiclwvthe membership function only takes
two values, commonly defined as 0 and 1.

1.3. Fuzzy number
A fuzzy numberd is a fuzzy set on the real line R, must satisle following
conditions.

(i) There exist atleast one,eR with u ;7 (x,)=1

(i) pz(x) is piecewise continuous.

(iii) A must be normal and convex.

2. Octagonal fuzzy numbers[10]
Definition 2.1. An octagonal fuzzy number denoted Ayis defined to be the ordered
quadruple
A, = (4(r), si(t), s:(t), 1x(r)) for re[0,k] and €[k,w] where

1. k(r) is a bounded left continuous non-decreasingtfon over [0,w], [0<w;<K]

2. 5(t) is a bounded left continuous non-decreasingtfan over [K,w], [k<w,<w]

3. s(t) is a bounded left continuous non-increasingfiom over [K,w], [k<w,<w]

4. J(r) is a bounded left continuous non-increasingfiom over [0,w], [0<w;<K]

Definition 2.2. A fuzzy numberd is a normal octagonal fuzzy number denoted by

(B, 80,85,80,8,8,8,8) Where aca<a<a<a<a<a<ag are real numbers and its
membership functiopz(x) is given below

r ] for z < @
L f T = e
k foras <€ x:= @y
k(- l:i) fora; <= x<a,
Ly—ids
uyix) =4 1 fore, =x <as

k+(1-k) (=) fora; <x<a,

Ly —ily

K fora, =x < ay
o f dg—x e
k {ll."T) fora, <x < g,
L forx = a
where 0 < k< 1.
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2.3. a -cut of an octagonal fuzzy number
Thea -cut of an octagonal fuzzy numbér= (a,a,a,a4,8,3,8,8) IS

[j] :{ [ﬁ‘rl + {%} (n‘: - ﬂij; g — {%) ('”9 — a?j] for o e [D,k]

[as + [:TT_:} (as —az). ag- ( )iﬁﬂc. —as)] fora = (k. 1]

ax—k

1-k

3. Ranking of octagonal fuzzy numbers[10]
A measure of fuzzy numbek,, is a functionM, : R, (I)—R™ which assigns a non-
negative real numbéd, (4,,) that expresses the measuredyf.

Ma(AW)zg L5 @) + L) dr + % [0 (8) +52(0) dt where 8a < 1.

Definition 3.1. The measure of an octagonal fuzzy number is olddiyethe average of
the two fuzzy side areas, left side area and sgtd area, from membership functiorto
-axis.

Definition 3.2. Let 4 be a normal octagonal fuzzy number. The valigé™(4), called
the measure ofl is calculated as follows:

Mo (A) =3 [X(L () + L () dr +3 (51 (£) + 5,(8)) dt where &k < 1.
%[(al +a, +a; +ag)k+ (az+ay+as+ag)(1—k) where Gk < 1.

Defintion 3.3. Pure strategy. Pure strategy is a decision making rule in whicte on
particular course of action is selected.

For fuzzy games the min-max principle isaibed by Nishizaki[10]. The course of
the fuzzy game is determined by the desire of A&ximize his gain and that of restrict
his loss to a minimum.

Defintion 3.4. Saddle point. If the maxmin value equals the minimax value, thies
game is said to have a saddle point and the cameépy strategies which give the
saddle point are called optimal strategies. Theuarnof payoff at an equilibrium point is
called the crisp game value of the game matrix.

3.1. Solution of all 2x2 matrix game
. (11 412
Consider the general 2x2 game mattix (a21 azz)

To solve this game we proceed as follows:
0] Test for a saddle point.
(i) If there is no saddle point, solve by finding edgiaf strategies.
The Optimal mixed strategies for player A p7,(p,) and
For player B =44, q2)

_ az2—0q2
where P1= (a11+azz)—(asz+az1)

; p2=1p

— Az2—0a21
(a11+azz)—(aiz+az1)

a1 , q =1-q, and
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V= A11022—~ Q12 A21
(az1tazz)—(aiz+az1)

Value of the game

Example 3.1. Consider the following fuzzy game problem.
PlayerB
(2,4,5,6,7,8,9,11) (2,3,4,5,6,7,8,9)
Plaver A ((Z10123456) (32, -101.2.38)
Solution:

By definition of octagonal fuzzy numbdiris calculated as
e k
Mo (A) =3 [7 (1 (1) + L) dr + [(s1 (8) + 55(8)) dt where 8k < 1.
[(ay +a,+a;,+ag)k+ (az+ay +as+ag)(1—k) where 8k <1.

=

Step 1:
Convert the given fuzzy problem into a crisp vabueblem.
This problem is done by taking the value of k & @e obtain the value 8,°“(a;;).

a,1=(2,4,5,6,7,8,9,11) Mo (ay1) = [(2+4+9+11)(0.4)+(5+6+7+8)(D-4)]
226(0.4)+26(0.6) =6.5
a,,=(2,3,4,5,6,7,8,9) Mo (a1) =7 [(2+3+8+9)(0.4)+(4+5+6+7)(0-4)]
$22(0.4)+22(0.6)]=5.5
a,1=(-1,0,1,2,3,4,5,6) My°“ (az,) :% [(-1+0+5+6)(0.4)+(1+2+3+4)(D:-4)]
2[10(0.4)+10(0.6) =2.5
az»=(-3,-2,-1,0,1,2,3,4) M,°“ (ayy) :% [(-3-2+3+4)(0.4)+(-1+0+1+2)(D-4)]
=[2(0.4)+2(0.6)] =0.5

Since the condition a; + a, + a; + ag = az + a, + as + a4 is satisfied by all the
octagonal numbers for any value of k. We will det same matrix as below.

Step 2:
The pay-off matrix is
Player B
6.5 5.5
Player A (2.5 0.5)
Minimum of I row = 55
Minimum of 2" row = 05
Maximum of £'column = 6.5
Maximum of 2%column = 5.5

Max(min)=5.5;  Mini(max)=5.5
It has saddle Point.
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The Crisp solution to the problem is saddle poi#sB,), Value of the game=5.5.

Example 3.2. Consider the following fuzzy game problem.

PlayerB
(-1,0,1,2,3,4,5,6) (8,9,10,11,12,13,14,15))

Player A ((4,5,6,7,8,9,10,1 1) 0,1,2,3,4,5,6,7)

Solution: )
By definition of octagonal fuzzy numbdris calculated as

Mo®t (A) =3 [X(ly () + L)) dr +5 [°(s () + 55()) dt where 8k < 1.
[(ai +ay,+a; +ag)k+ (az + a4 +as+ag)(1—k) where 8k < 1.

e

Step 1
Convert the given fuzzy problem into a crisp eafuwoblem.
This problem is done by taking the value of k & ®e obtain the value 81,°*“(a;;).

a:11=(-1,0,1,2,3,4,5,6) My°“(ay4) :% [(-1+0+5+6)(0.4)+(1+2+3+4)(1-0.4)]
= [10(0.4)+10(0.6) = 2.5

a12=(8,9,10,11,12,13,14,15) | p,°“*(a,,) :%[(8+9+14+15)(0.4)+(10+11+12+13)(J.

0.4)]
=[46(0.4)+46(0.6) = 11.5
a,1=(4,5,6,7,8,9,10,11) My°(ay,) = % [(4+5+10+11)(0.4)+(6+7+8+9)(1-
0.4)]
%[30(0.4)+30(0.6) =75
a;»=(0,1,2,3,4,5,6,7) My°(ayy) = % [(0+1+6+7)(0.4)+(2+3+4+5)(0-4)]

=[14(0.4)+14(0.6) = 3.5

Since the condition a; +a, + a; + ag = az + a, + as + a4 is satisfied by all the
octagonal numbers for any value of k. We will det same matrix as below.

Step 2:
The pay-off matrix is
Player B
25 115
Player A (7.5 3.5 )
Minimum of I row = 25
Minimum of 2 row = 35
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Maximum of £'column = 7.5
Maximum of 2%column = 11.5
Max(min)=3.5; Mini(max)=7.5
It has no saddle Point.

Step 3: To find Optimum mixed strategy and value of the gam
Herea,,=2.5, a,,=11.5, a,;=7.5, a,,=3.5

Ayp—0q2 3.5-11.5 8 8_5

P1 = Giitag)—(@iatar)  (25435)—(75+115) 13 p=1p=15=5

Ayp—0pq 3.5-7.5 4 4_9

N = e anta - Garim—tsiis 130 LTl aFlgEg

Strategy for player A=, p,) = (%, %)

Strategy for player Bg, q;) = 13, 19—3) and

Value of the game \="i12z2” %1z 421

(ar1tazz)—-(aiz+az1)

_(2.5)(3.5)-(7.5)(11.5) _ 8.75-86.25_ —77.5_ 77.5

T (25+35)—(7.5+11.5)  6-19 _ -13 _ 13
Remark 1. If the Octagonal numbers are slightly modified battthe conditiom, +
a, +a; +ag # az + a, + as + a¢ is not satisfied, then for such a problem theitkah

for different values of k @ < 1) can be easily checked to lie in a finite interval

Remark 2. In the above two examples we have considered 2y fuzzy games but
the method applied here can be used to solvenaxiy fuzzy game.

4. Conclusion

In this paper, a method of solving fuzzy game problusing ranking of fuzzy numbers
has been considered. The parameter k can be ntbdifieably by the decision maker to
get the desired result. We may get different fugzame value for different values of k for
the same fuzzy game.
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