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Abstract. String-token Petri net was introduced by labeling the tokens as strings over an 
alphabet. Languages in regular and linear families which are two basic classes in the 
Chomsky hierarchy are generated by these Petri nets. An extension of string-token Petri 
net called Tree-token Petri net (TTPN) was introduced by labeling the tokens with trees. 
It was proved that the set of derivation trees obtained by any regular language is accepted 
by a TTPN. In this paper, we prove that the set of derivation trees obtained by any linear 
language is accepted by a TTPN.  
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1. Introduction  
Petri net introduced by Carl Adam Petri in 1962 has served as a basic model of systems 
with concurrency and graphically depicts the structure of a distributed system as a 
directed bipartite graph. As such, a Petri net has place nodes, transition nodes and 
directed arcs connecting places with transitions but there are no arcs between places and 
no arcs between transitions. The place from which an arc enters a transition is called the 
input place of the transition, the place to which an arc enters from a transition is called 
the output place of the transition. Places may contain any number of tokens. A 
distribution of tokens over the places of a net is called a marking. Transitions act on input 
tokens by a process known as firing. A transition is enabled if it can fire, i.e., there are 
tokens in every input place of the transition and when a transition fires, tokens are 
removed from its input places and added at all of the output places of the transition [5]. 

A coloured Petri net (CPN) has the net structure of a Petri net, and colours are 
associated with places, transitions and tokens. A transition can fire with respect to each of 
its colours [3]. A different kind of CPN, called string-token Petri net was introduced in 



P.Usha, K.Thirusangu  and Beulah Immanuel 

220 

 

[1] by labeling the tokens with strings of symbols and the transitions with evolution rules. 
Firing of a transition removes the token with a string label from the input place and 
deposits it in the output places of the transition after performing on the string the 
evolution rule indicated at the transition. This model was examined in [2] for generating 
regular and linear languages of the Chomsky hierarchy in the study of formal languages.  

We defined Tree-token Petri Net (TTPN) [6], an extension of string-token Petri net 
by labeling the tokens with trees. We obtained the derivation trees generated by TTPN 
and showed that the set of derivation trees obtained by any regular language is accepted 
by a TTPN. In this paper, we prove that the set of derivation trees obtained by any linear 
language is accepted by a TTPN. 
 
2. Basic notions 
Definition 2.1. A Multi-set over a non-empty set S, is a function b∈[S→N] where N is 
the set of all non negative integers. A multi-set is a set which contains multiple 
occurrences of the same element. We deal only with finite multi-set, and each multi-set b 
over set is represented as a formal sum b = ∑b(s) s, where the non negative integer b(s) 
denotes the number of occurrences of the element s in the multi-set b. The set of all 
multi-sets over S is denoted by [S]MS  or Bag(S). 
 
Definition 2.2. A String-token Petri net (STPN) is a 5-tuple N = (P, T, C, R(t), M0), 
where P is a set of places; T is a set of transitions; C is a set of colours and CSG is the set 
of all strings over this colour set C, that are associated with the tokens; R(t) is the set of 
evolution rules associated with a transition t; M0, the initial marking, is a function defined 
on P such that, for p ∈ P, M0(p)∈ [CSG]MS. It is further assumed that there are no isolated 
places/transitions. 

We recall the notion of grammar and derivation tree [4]. 

Definition 2.3. A grammar G is a quadruple G = (V, U, S, R) where V is a finite set of 
variables, U is a finite set of terminal symbols, S ∈ V is a special start variable and R is a 
finite set of production rules. G is said to be right-linear (in normal form) if all of its 
productions are of the form A → aB, A → a, A → λ, where A, B ∈ V and a ∈ U. G is said 
to be left-linear in normal form, if all of its productions are of the form A → Ba, A → a,      
A → λ . 
      A language L is said to be regular if and only if there exists a left-linear (or 
equivalently a right-linear) grammar G such that L = L(G). 
      A linear grammar is a grammar in which at most one variable can occur on the right 
side of any production, without restriction on the position of this variable. 
      A language L is said to be linear if and only if there exists a linear grammar G such 
that L = L(G). 
 
Definition 2.4. A grammar G is a quadruple G = (V, U, S, R) where V is a finite set of 
variables, U is a finite set of terminal symbols, S ∈ V is a special start variable and R is a 
finite set of production rules. G is said to be context-free if all productions have the form  
 A → x, where A ∈ V and x∈ (V ∪ U)*.  
      A language L is said to be context-free if and only if there exist a context-free 
grammar G such that L = L(G). 
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      A derivation tree is an ordered tree in which nodes are labeled with the left sides of 
productions and in which the children of a node represent its corresponding right sides. 

Definition 2.5. Let G = (V, U, S, R) be a context-free grammar. An ordered tree is a 
derivation tree for G if and only if it has the following properties, 

(i) The root is labeled S. 
(ii)  Every leaf has a label from U ∪ λ                              
(iii)  Every interior vertex (a vertex which is not a leaf) has a label from V. 
(iv) If a vertex has label A ∈ V, and its children are labeled (from left to right) a1, a2, 

a3,…, an then R must contain a production of the form A → a1 a2 a3 … an. 
(v) A leaf labeled λ has no siblings, that is, a vertex with a child labeled λ can have 

no other children. 

Definition 2.6. A Tree-token Petri net (TTPN) is a 6-tuple N = (P, T, C, F, R(t), M0), 
where P is a set of places; T is a set of transitions; C is a set of colours and CTR is the set 
of all trees associated with the colour set C (That is trees with nodes labeled with colours 
from the set C); )()( PTTPF ×∪×⊆  is a set of arcs; R(t) is a set of evolution rules 
associated with each transition t of T; M0, the initial marking, is a function defined on P 
such that, for p ∈ P, M0(p)∈ [CTR]MS . It is further assumed that there are no isolated 
places/transitions. 

Definition 2.7. Let V = { A, B, C,…} = Set of Non-terminals. U = {a, b, c,…} = Set of 
terminals, where V, U ⊆ W.   
An evolution rule over WTR, where W is an alphabet, is one of the following, 

� Identity, which keeps the tree unaltered 
� A → s(X,Y)  replaces the node labeled A by a tree, s denoting a split of the node 

into two nodes as shown in Figure 1 

                           

A

YX
 

                              Figure 1: 
A → l(X) replaces the node labeled A by a edge, l denoting the leaf obtained by this 
rule as shown in Figure 2 where A ∈ V and X, Y ∈ W.  

 

                               

A

X
 

                                Figure 2: 
 

Repeated use of these rules generates trees as shown below:  
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Example 2.1. The evolution rules S → s(A, B), A → l(x), B → s(x, a) generate the tree 
represented in Figure 3. 

                         

S

A B

x x a
                           

                               Figure 3: 
 
Example 2.2. The rules S → s(A, c), A → s(X, b),  X → s(x, a), generate the tree shown 
in Figure 4. 

                                

S

A c
bX

ax
 

                                       Figure 4: 
 
We construct TTPNs that generate trees corresponding to above evolutionary rules as 
seen in the following examples:   
 
Example 2.3. When t1 fires, the TTPN N1 generates a tree similar to the one in Figure 1.                                                   

                                 

p1

S

s(a, b)S
p2

t1                   
                                               Figure 5: TTPN N1                                                
 
In N1, when t1 fires token labeled S is removed from p1 the evolution rule S → s(a, b) is 

applied on it and the token labeled with the tree 

S

ba  is put in the place p2.  
 
Example 2.4. The following TTPN N2 generates a tree as in Figure 3. 
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p1

t1

p2

S
t2

p3

p4

t3

s(A, B)S

s(x, a)B

l(x)A

        
                                   Figure 6: TTPN N2 
 
3. Tree-token petri net languages 
We defined a new class of Petri nets where trees are associated with tokens [6]. Firing of 
a transition removes the token with a tree label from the input place and deposits it in the 
output places of the transition after performing on the tree the evolution rule indicated at 
the transition. This model is examined for generating derivation trees corresponding to 
regular and linear languages.   
 
Definition 3.1. A L-type TTPN language L is defined as L = {CTR /CTR ∈ M(p) ∈ M is a 
reachable marking of N, p ∈ PF}, if there exists a TTPN N = (P, T, C, F, R(t), M0), and PF 
is a set of final places.   
     In other words, L-type TTPN language is defined in terms of trees corresponding to 
some reachable markings in a specified set of final places PF, where L is a set of all trees 
generated in the places for all reachable markings.                
 
Theorem 3.1. Let TR(G) be the set of derivation trees corresponding to a regular 
language generated by left-linear grammar G = (V, U, S, R)  then there exists a L-type 
language L accepted by TTPN, N such that TR(G) = L. 
Proof: Let G = (V, U, S, R), V = {A1, A2, A3,…, An}, U = {a1, a2, a3,…, an}, S∈V and R is 
set of productions of the form Ai → Aj ak, Aj → ak. Construct a TTPN, N = (P, T, C, F, 
R(t), M0) as follows.  P is the set of places labeled by the non-terminals A1, A2, A3,…, An 
and a final place pf. T is the set of transitions. Let C = V ∪ U be the colour set and tokens 
in places be trees associated with C. Initially a tree with a single node labeled S is placed 
in the place with label S and all other places are empty. For every rule Ai → Aj ak, 
introduce a transition labeled Ai → s(Aj, ak) with Ai as the input place and Aj as the output 
place. For every rule Aj → ak introduce a transition labeled as Aj → l(ak) with Aj as the 
input place and pf  as the output place.  

By this construction we obtain a TTPN such that initially only the transitions with 
input place labeled S are enabled. On firing any one of these transitions, say the transition 
with evolution rule S → s(Ai, ak), the rule is applied on the token and is deposited in the 
output place labeled Ai. Then all the transitions with input place Ai are enabled. On firing 
any one of these transitions, say transition with the rule Ai → s(Aj, ak), the rule is applied 
on the token and deposited in the place Aj. This process is continued till the token reaches 
a place with input place Aj with an output transition labeled with the rule Aj → l(ak). 
When this transition fires, the rule Aj → l(ak) is applied and the token is deposited in the 
final place pf. For any string accepted by the grammar G, we obtain a derivation tree CTR 
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∈ M(pf) ∈ M, M is a reachable marking of N. It is clear that these are the only trees are 
accepted by the language L. Thus the set of derivation trees TR(G) = L.  
 
Example 3.1. Let G = (V, U, S, R) where V = {S, A}, is the set of non-terminals and U = 
{ a, b, c}, is the set of terminals and R is a set of productions of the form S → Aa, A → 
Ab, A → c. 

Construct a TTPN N3 = (P, T, C, F, R(t), M0) as specified by theorem 3.1, P is the set 
of places labeled by the non-terminals S, A and a final place pf. Let C = V ∪ U be the 
colour set and tree tokens in places be trees over C. Initially a tree with a single node 
labeled S is placed in the place with label S and all other places are empty. For the 
production rule S → Aa, initial place labeled as S is the input and A is the output place for 
the transition t1, labeled as S → s(A, a). For the production rule A → Ab, the input and 
output place is A for the transition t2, labeled as A → s(A, b), (Here we can fire t2 n 
times). For the rule A → c the input and output places are A and pf respectively for the 
transition t3 labeled as A → l(c). On firing the transitions in TTPN N3, generates the 
derivation tree as in Figure 8, corresponding to a regular language generated by left-linear 
grammar G is accepted by this TTPN such that TR(G) = L. 

          

t2

 A

t1 t3

pf

S

S s(A, a)

A s(A, b)

A l(c)
S

A a

bA

bA

bA

c

S

 
                Figure 7: TTPN N3                                                                   Figure 8: when t2 fires 3 times   
 
Theorem 3.2. Let TR(G) be the set of derivation trees corresponding to linear language 
generated by linear grammar G = (V, U, S, R) then there exists a L-type language L 
accepted by TTPN, N such that TR(G) = L. 
Proof:  Let G = (V, U, S, R), V = {A1, A2, A3,…, An}, U = {a1, a2, a3,…, an}, S∈V and R is 
set of productions of the form Ai → ar  Aj,  Aj → Ai ak, Ai → ak /λ. Construct a TTPN, N = 
(P, T, C, F, R(t), M0) as follows.  P is the set of places labeled by the non-terminals A1, 
A2,  A3,…, An and a final place pf. T is the set of transitions. Let C = V ∪ U be the colour 
set and tokens in places be trees associated with C. Initially a tree with a single node 
labeled S is placed in the place with label S and all other places are empty. For every 
production rule Ai → ar Aj introduce a transition labeled as Ai → s(ar, Aj) with Ai  as the 
input place and Aj as the output place. For the rule Aj → Ai ak introduce a transition 
labeled as Aj → s(Ai, ak) with Aj as the input place and Ai as the output place. For the rule 
Ai → ak /λ introduce a transition with input place Ai and the output place pf labeled as      
Ai → l(ak) /λ. 

By this construction we obtain a TTPN such that initially only the transitions with 
input place labeled S are enabled. On firing any one of these transitions, say the transition 
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with evolution rule S → l(Ai), the rule is applied on the token and is deposited in the 
output place labeled Ai. Then all the transitions with input place Ai are enabled.  

On firing any one of these transitions, say transition with the rule Ai → s(ar, Aj), the 
rule is applied on the token and is deposited in the output place Aj. Then all the transitions 
with input place Aj are enabled. On firing any one of these transitions, say transition with 
the rule Aj → s(Ai, ak), the rule is applied on the token and is deposited in the output place 
Ai. The process is continued till the token reaches a place with input place Ai with an 
output transition labeled with the rule Ai → l(ak) /λ. When this transition fires, the rule    
Ai → l(ak) /λ is applied and the token is deposited in the final place pf.  

For any string accepted by the grammar G, we obtain a derivation tree CTR ∈ M(pf) 
∈ M, M is a reachable marking of N. It is clear that these are the only trees are accepted 
by the language L. Thus the set of derivation trees TR(G) = L. 
 
Example 3.2. Let G = (V, U, S, R) where V = {S, A, B}, is the set of non-terminals and         
U = {a, b}, is the set of terminals and R is a set of productions of the form S → A, A → 
aB/ λ, B → Ab. 

Construct a TTPN N4 = (P, T, C, F, R(t), M0) as specified by theorem 3.2, P is the set 
of places labeled by the non-terminals S, A, B and a final place pf. Let C = V ∪ U be the 
colour set and tree tokens in places be trees over C. Initially a tree with a single node 
labeled S is placed in the place with label S and all other places are empty. For the 
production rule S → A, S as the input and A as the output place for the transition t1, 
labeled as S → l(A). For the rule A → aB, A as the input and B as the output place for the 
transition t2, labeled as A → s(a, B). For the rule B → Ab, the input and output places are 
B and A respectively for the transition t3, labeled as B → s(A, b) (Here we can fire t2 and 
t3 n times). The transition t4, labeled as A → λ with A and pf as the input and output places 
respectively. On firing the transitions in TTPN N4, generates the derivation tree as in 
Figure 10(a) and (b), corresponding to a linear language generated by linear grammar G 
is accepted by this TTPN such that TR(G) = L.                                                                         

         

t2

 AS 

t1

t3

S

 l(A) A 
t4

B s(A, b)

A s(a, B)

 B

 pf

S

A

Ba

bA

Ba

bA

S

A

S

                                                                  
                                 Figure 9:  TTPN N4                                             Figure 10: (a)          (b) 
                                                                                         (a) when t2 and t3 fire 2 times. 
                                                                                             (b)  when t1 and t4 only fire.                                                                                                            
 
4. Conclusion 
We have examined the languages generated by TTPNs and proved that TTPNs can be 
constructed to generate the set of derivation trees corresponding to two classes of 
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languages of the Chomsky hierarchy namely regular and linear languages. Extending this 
concept to other classes of languages is considered for future work. 
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