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Abgtract. In general, Ramsey theory deals with the guaranteedrrence of specific
structures in some part of a large arbitrary stmgctwhich has been partitioned into
finitely many parts. The integers R(p, q) are knaamclassical Ramsey numbefhe
Ramsey number R(p ,q) is the minimum number n gheh any graph on n vertices
contains either an independent set of size s digaecof size t. In this paper we were
discuss about the examples of Ramsey numbers amdtunds.
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1. Introduction

Ramsey theory got its start and its name when HRamksey [7] published his paper “On
a Problem of Formal Logic" in 1930. Ramsey Thedndies the conditions of when a
combinatorial object necessarily contains some lemajiven objects. The role of
Ramsey numbers is to quantify some of the genedatemtial theorems in Ramsey
Theory.

Ramsey numbers one studies partitions of the enfgs® complete graph, under
the condition that each of the parts avoids soreespecified arbitrary graph, in contrast
to classical Ramsey numbers when the avoided graghsomplete. The theorem was
proved in passing, as a means to a result aboid, lbgt it turned out to be one of the
first combinatorial results that widely attractéeé attention of mathematicians.

Ramsey theory to be applied in many fields likeystouctive methods, computer
algorithms, random graphs and the probabilistichimet

More generally, we consider the following settiNge color the edges df, (a
complete graph on vertices) with a certain number of colors and wewalsether there is
a complete sub graph @ique) of a certain size such that all its edges haeestiime
color.

We shall see that this is always true for a sudfitly largen. Note that the
guestion about friendships corresponds to a caonirKs with 2 colors, “friendly" and
“unfriendly”. Equivalently, we start with an arkitty graph and we want to find either a
clique or the complement of a clique, which is @alanindependent set. This leads to the
definition of Ramsey numbers.
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Van der Waerden's Theorem was proved in 1927, a gadier than Ramsey’s.
Van der Waerden proved that in any finite colorafgthe natural numbers there must
exist, some monochromatic arithmetic progressiomh vk terms. Finally in 1974
Hindman’s Theorem, the most recent theorem proteaddman’s Theorem states that,
for every finite coloring of the natural numberemh exists some infinite subset SN
such that all the finite sums of the elements afé&Smonochromatic.

2. Definitions
Definition 2.1. A clique is a complete sub graph, an independeanissen empty sub
graph.

Definition.2.2. R(s, t) is the minimum number s such that any graphn vertices
contains a clique of order s or an independentfsetder t.
Ex: R(3, 3) =6.

Definition 2.3. A clique of size t is a set of t vertices sucht thlhpairs among them are
edges. An independent set of size s is a set dgdrtices such that there is no edge
between them. Ramsey's theorem states that folaagg enough graph, there is an
independent set of sizor a clique of sizé. The smallest number of vertices required to
achieve this is called Ramsey number.

Definition 2.4. The Ramsey number R(s, t) is the minimum numbeich that any graph
on n vertices contains either an independent sgizefs or a clique of size t. The Ramsey
number R(s;, %,... &) is the minimum number s such that any coloringhef edges of
K, with k colors contains a clique of sizarscolor i, for some i.

Definition 2.5. A sub graph H of G is monochromatic if all its edlgeceive the same
color.

Definition 2.6. The integers R (p, q) are known as classical Rgamsmbers.

Definition 2.7. Given a graph G, a k-coloring of the vertices ois@ partition of V (G)
into k sets €C, . Cy such that for all i, no pair of vertices from &e adjacent. If such a
partition exists, G is said to be k-colorable.

Definition 2.8. Given a graph G, a k-coloring of the edges of @nig assignment of one
of k colors to each of the edges of G.

In our discussion of Ramsey theory, we will deainarrily with 2-colorings of
the edges of graphs. By convention, the colorsrmedeto are typically red and blue.
Figure 1 shows an example of a graph in and sefezalorings of its edges.

Definition 2.9. A graph is r-coloured if we colour each edge of ghaph with one of r
colours.

Definition 2.10. The Ramsey Number,r{®), is the order of the smallest complete graph
which, when r-coloured, must contain monochromidtic
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Figure 1. Four possible 2-colorings of the edges of a graph

Definiton 2.11. The (2,n)-Barbell graph is the simple graph obtdingy
connecting two copies of a complete graphbi{ a bridge and it is denoted by
B(Kn,Kn).

Definition 2.12. [18] The (3,n)-Barbell graph is the simple graph obtaitg
connecting three copies of a complete graplbyKa bridge and it is denoted by
B(K, ,Kn  Ky).

Definition 2.13. A harmonious coloring of a graph G(V,E) is a {olistinguishing
coloring which is also proper. The harmonious chabennumber of G (denoted
by yn (G)) is the smallest number k such that there sxdtarmonious coloring of
G of k colors.

3. Observation
Proposition 3.1. (Putnam 1952).Among any six people, there are three of them any
two of whom are friends, or else no two of whom faiends.

Theorem 3.2.For any two natural numbers, s and t, there eagistatural number, R(s, t)
= n, such that any 2-colored complete graph ofroatieast n, colored red and blue, must
contain a monochromatic red Kr blue K.

Proof: We prove that R(s, t) exists by proving it is bded. We shall use proof by
induction first assuming that R(s —1, t) and R(s,1f) exist. As was shown earlier R(s, 2)
=R(2,s) =s and R(s, 1) = R(1, s) = 1 are trivésiults.

Claim. R(s, )< R(s - 1,t) + R(s, t - 1).

We first take a 2-coloring of a complete graph withe R(s-1, t)+R(s, t- 1)
vertices. We now pick one of the vertices in Kay . We then produce two sets, ad
B,, R« is the set of vertices adjacent to x such thatyegdge connecting a vertex ip ®
x is red. Similarly B is the set of vertices adjacent to x such thatyeedge connecting a
vertex in B to x is blue.

Since K is a complete graph,B= [nN[\(RJ{x}) and so |R|+|B| = n-1. If |R| <
R(s-1,t) and |B < R(s—1, t) then since n = R(s—1, t)+R(s, t-1)must have R + |B{]
<n - 2, a contradiction. So,JB> R(s, t— 1) or|[j> R(s - 1, 1).
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If |B]> R(s,t- 1) and Binduces a red Ks we are done. {fiBduces a blue ¥
then K, must contain a blue Kt sincg Bl {x} must induce a blue K Indeed, each edge
xt is blue for all tU B,, from the definition of Bx. So BL {x} must induce a blue Kif
B, contains a blue K;. The case for Ris completely symmetric, that is, if Rx induces a
blue Kt we are done and ifyRnduces a red K; then K, must contain a red Ksince
Ry U {x} must induce a red K

We have shown that a 2-coloured completplyof order R(s — 1, t) + R(s, t — 1)
must contain a red 4or a blue K proving that R(s, tf R(s — 1, t) + R(s, t = 1). This
completes our induction.

Theorem 3.3. (Schur)For any k there exists n such that for any k-capmf {1,...,n},
there exist X, y, bf the same color such that x + y = z.
Proof: Consider n = Rk(3,..., 3). Given a coloring c : fa][K], define an edge-coloring

of K,.. The color of edge{i, j} is1 {l, j}) = c( |j - i| ). Then, there exists a monochromatic

triangle with vertices i, j ,k.

Assumei<j<k. Then,c(j-) =c(k-j) =c(kd.iThenx=j-i,y=k-j,and z =
k- i is the desired monochromatic solution. If wensider to the linear equationxg +
CoXo +... + GX, = 0, the theorem holds iff some non-empty subS#tecoefficients sum
to 0. This is a special case of Rado's theorem.

Theorem 3.4.For all m= 1 there existsqgisuch that for all primes p > the congruence
X"+ y"=Z" (mod p).

Theorem 3.3. (Ramsey, Erd'os-Szekeres[12]).R(s, t) exists and f,,..., S) in
general R(s, ¥ R(s—1,1) + R(s, t- 1).

Theorem 3.5. For every positive integer k, R(2, k) = k for lalb2

Proof: Choose some positive integer=k2. First we will show that R(2, k) > k-1 by
constructing a 2-coloring on (K; that contains neither a red, Kor a blue K The
coloring in which every edge is blue satisfies ¢hesquirements. It will certainly not
contain a red Kand cannot possibly contain a blug Ko R(2,k) > k -1.

Next, suppose that the edges qfdfe 2-colored in some fashion. If any of the
edges are red, then Will contain a red K If none of the edges are red, then we are left
with a blue K. So R(2, kg k. Thus, we can conclude that R(2, k) = k forkaH 2.

The difficulty of determining additional Ramsey nloiens grows quickly as p and
g increase.

Theorem 3.6.For every positive integer k, R(3, 3) = 6.

Proof. Consider any 2-coloring ongKChoose some vertex v from the graph. Because
there are 5 edges incident to v, by the pigeon pofeiple, at least three of these edges
must be the same color. We will call them vx, wdasz, and we will suppose they are
red. If at least one of xy, xz, or yz is red, thvem have a red K If none of these is red,
then we have a blue ;KThus, R(3; 3)< 6. Next, consider the 2-coloring ons Ks
depicted in Figure 2. This coloring does not comgamonochromatic Kn either red or
blue, so we know that R(3, 3) > 5. Thus, R(38)
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Figure 2: A 2-coloring on K that contains no monochromatig. K

Theorem 3.7. (Ramsey 1930]) R(s, t) is finite for all s, & 2 and for s, t > 2 we have
R(s,)<R(s-1,1) +R(s,t - 1).
Proof: Consider an arbitrary vertex v of the grapy) tthere N=R(s - 1,t) + R(s, t — 1).
Let ¢ be an arbitrary coloring of(KThen, R(s — 1, t) + R(s, t — 1) — 1 edges arhive.
Either R(s - 1, t) of them are red or R(s, t —afg blue. Without loss of generality,
assume we have R(s - 1, t) vertices incident tg mbans of red edges. These vertices
form a Kges-1 graph.

Thus, for each coloring, including coloring c, wither have a blue Kor a red
Ks-1in this Kgs-1ngraph. This completes the proof, as in the latisea red Kis formed
by adding v to the red K...

Theorem 3.8.
S+t-2

For all s, t= 2 we have R(s, § (s—l j
Theorem 3.9.Let m and n be positive integers. Themyr € m, Yy >n)=(m-1)(n -1) +
1, wherey signifies the chromatic number of a graph.
Proof: The assertion is obviously true if onenofindn is one. Assume that, n> 2. Let
G be a graph consisting of disjoiml copies oK, Then y (G) =m-1 and)((G_): n
-1, yieldingthat (y >m, ¥y >n)=Mm-1)(n-1) + 1

On the other hand, & is a graph of ordel = (m- 1)(n - 1) + 1, then by the fact

that x (G)a (G)>Nwe haver (G)z| N |_[(m-1)n-1)+1
xG)| | m1 |

Therefore)((G_) > w(?) = a (G)=n, provingr (LI >m, ) >n)=Mm-1)(n-1) + 1.

Theorem 3.10.(Erd6s,1947ower bounds on Ramsey numbers) For alt ¥ R(k) >
22,

SIt|1 |2 3 4 5 6 7 8 9 1C

1 1 1 1 1 1 1 1 1 1 1

2 1 |2 3 4 5 6 7 8 9 1C

3 1 |3 6 9 14 18 23 28 36 40-43
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D
[N
N
o

18 25 3541 | 4961 |56-84 | 73-11t | 92-14¢

5 1 |5 14 25 43-48 | 58-87 | 8C-14< | 101- 12¢&- 143-
216 316 442

6 1 |6 18 3541 | 58-87 | 10z- 115 127- 16¢- 17¢
165 298 495 780 1171

7 1 |7 23 49-61 | 8C- 115 20¢- 21¢- 23z 29¢-
143 298 540 1031 | 1713 2826

8 1 |8 28 56-84 | 101- 127- 21¢- 282- 317 317
216 495 1031 | 1870 | 3583 6090

9 1 1|9 36 73 12¢&- 16¢- 23 317- 56%- 58(-
115 | 316 780 1713 | 3583 | 6588 12677

10 |1 |1C |40 |92- 14%- 17¢ 28¢- 317- 58(- 79¢-
43 | 149 | 442 1171 | 2826 | 6090 | 12677 | 23556

Table 3.1:Known Ramsey numbers R(s ,t) and bounds.

Cycles.The initial general result for cycleR,(C;,C,) =2n—-1forn=4 , was obtained
by Chartrand and Schuster in 1971. The completdisalof the cas® (C,, ,C,) was
obtained soon afterwards, independently by FauaindeSchelp and Rosta3].

Theorem 3.11(Triple odd cycles - Kohayakawa, Simonovits, Skqka005, 2009)
R(C,.C,,C,) =4n - 3 for all sufficiently large odd n.

Theorem 3.12(Faudree, Schelp ,1974; Rosta, 1973 [20])
R(C,.Ch)=2n-1 fordn<n,modd, (n,m) =/ (3,3)
n-1+nm/2 fordm<n, mandneven, (n,m) =/ (4,4)
max {n-1+m/ 2, 2n-1 } for 4<m< n, meven andn odd

Conjecture 3.12.The cycle-complete graph Ramsey number,riG) is the smallest
integer N such that for every graph G of order Ntams Cm ora(G) > n. The graph (n-

1)Kn.1 shows that r(G K,) > (m - 1)(n -1) + 1.The above result was improved by

Nikiforov [19] when he proved the equality forxn + 2.
Erd’os gave the following conjecture: K&, =(m-1)(n-1) + 1, for all m
>n> 3 except r(gKs) = 6.

Theorem 3.14.The Ramsey number of cydlg versusW,is R(C,,W,) = 2n -1, forn>5.
Theorem 3.15The Ramsey number cydlg versuswW4 isR (C,, Ws) = 3n -1, forn> 5.
Theorem 3.16 (Surahmat, etb 200Bor alln> 3, R(P,W,) =2n-1and R(P ,, Ws) =

3n-2.

m(m-2)

Theorem3.17.1f n > and m> 4 even the®R(P,,W,) = 2n -1.
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Theorem 3.18.(eth, Surahmat 2001) > w and m>5 odd then R(P,W,) =

3n-2.
Theorem 3.19.For any complete graph K [B(Kn,Kn)]=2n-1, n>2.
Theorem 3.20. [18]For any complete graph Ky, [B(Kn,Kn Kp)]=30-2, & 2.

From the theorems we observed that , the salfioe the harmonious coloring
of barbell graphs for 2 copies and the Ramsey mumbf paths and wheels for n,m
(theorem 3.17 and 3.19) the values are samediffdrent conditions.

Similarly we observed that , the values forhlaemonious coloring of barbell
graphs for 3 copies and the Ramsey number ofatth wheels for n, m (theorem 3.18
and 3.20) the values are same with different itimmd.

4. Applications

In real life Ramsey numbers are used .As noteSllagy, combinatorial games “serve as
models that simplify the analysis of competitiveuations as models that simplify the
analysis of competitive situations with opposingtiea that pursue different interests"
and finding a winning strategy to a combinatoriairg can be translated into finding a
strategy to cope with many kinds of real world peols such as found in
telecommunications, circuit design, scheduling,vwadl as a large number of other
problems of industrial relevance."

If we consider this problem in terms of people gbamty, Ramsey's Theorem
guarantees that there is some smallest numberopi@at the party required to ensure
that there is either a set of p mutual acquain®meey mutual strangers. Thus, the old
puzzle that asks us to prove that with any six feapa party, among them there must be
a set of three mutual acquaintances or a set e thnutual strangers actually requires us
to showthat R(3,3)=6.

We should also note that Ramsey's Theorem can herajzed to account for
colorings in any finite number of colors, not j@stolorings.

Ramsey's Theorem guarantees that this smallegfeint®(p, q) exists but does
little to help us determine what its value is, giveome positive integers, p and g. In
general, this is actually an exceedingly diffiquibblem.

Ramsey graph games start with a complete graphnd the players color an
edge on their turn, each player uses a unique.dol@n avoidance game each player is
given a graph which if she colors a sub graph igpimo to this graph
monochromatically in her color, she losses.

In an achievement game she would win by coloringhsa sub graph
monochromatically. The avoidance version is caaud after Simmons who introduced
it in 1969. Sim has been studied extensively, ngtap Frank Harary who is known for
his work in graph theory.

Starting with the achievement game, which resemilespopular Tic-Tac-Toe,
suppose as in the case of R(3; 3) = 6 that thex@ anlayers and they are trying to form
monochromatic Ks. If the graph they are coloring is;,iKthen there will be a winner
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because It has already proved that R(3; 3) = @lwitieans that any way the two players
color their graph, someone will eventually coldf-a

However, if they are playing on & lhen the unique R(3; 3) critical graph shows
that they may tie, meaning neither achieves theal.df they play on Kthey must tie as
there is only a singleszko color and each will color at least one of thges

Theorem 4.1 In the achievement Ramsey games, if all playsrdrging to achieve the
same graph, and there is a winning strategy, theelongs to the first player.

Proof: This is a standard strategy stealing argumensotheone other than the first
player, say the'kplayer, had a winning strategy then the first ptaiynagines she is this
player. On each turn she imagines k-1 additiongeedave been colored one each in the
colors of the k-1 players preceding her, and theecss an edge to color dictated by the
K"-player's wining strategy. But in following thigategy, the first player does not lose
because each of her moves were part of a winnnagegly which means that she could
not have lost before her next turn.

If there are not k edges left on player one's tthig means player one did not
follow player K's strategy as player K wins at &ten the turn before. If the first player
does not lose, then thé& kplayer does not win. So only player one may hawéraing
strategy, continuing the example above.

If the players are attempting to form monochrom#tis on K,, then as Khas
only 6 edges, if the first player wins, she mussdmn her third turn. However, after two
turns she threatens to complete at most op@rKher next turn, and if player 2 after
seeing player one's second move, is sure to dotoniissing edge in thesKhat player
one threatens to complete, player 2 achieves st &edraw. So again, with best play on a
K4 the result is a tie because the above theordigtes player one should not lose.

If they play on a K player one wins. Player one need only stop playend
avoid forming a 5-cycle as this is the unique RY3¢ritical graph. It turns out that this is
always possible; the observation that achievingl@e of the same color incident to a
vertex disallows 5-cycles will help in executingstistrategy. Finally, for =6 if they
play on K,

Ramsey theory promises that one of the player wihgn the theorem indicates
that the first player has a winning strategy. SonBay theory is intimately linked to the
outcome of this combinatorial game.

5. Open problems

Clearly this field still offers a huge number ofempproblems. The most obvious of which
are finding more Ramsey numbers and improving tbantls we currently know.
However, there are many related open problems.

1

Proposition 5.1 The limitn- o, R(n, n)n exists.
1

Problem 5.2.Determine the value of ¢ = limitna o, R(n, n)n
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3
. n . .
Problem 5.3. Prove or disprove that R(4, n) T_ for some c, provided n is
og.n

sufficiently large.

Problem 5.4 We have the bound$ 2 R(3,3,..., 3)< (k + 1)!,do these Ramsey numbers
grow faster than exponential in k?

6. Conclusion

In this paper, we were discussed about the examgfleRamsey numbers and their
bounds. Here we gave the comparison between thed&anumbers for paths and wheels
with harmonious chromatic number barbell graph cAlge discussed about the open
problems in Ramsey theory.
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