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Abstract. In general, Ramsey theory deals with the guaranteed occurrence of specific 
structures in some part of a large arbitrary structure which has been partitioned into 
finitely many parts. The integers R(p, q) are known as classical Ramsey numbers. The 
Ramsey number R(p ,q) is the minimum number n such that any graph on n vertices 
contains either an independent set of size s or a clique of size t. In this paper we were 
discuss about the examples of Ramsey numbers and their bounds. 
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1. Introduction 
Ramsey theory got its start and its name when Frank Ramsey [7] published his paper “On 
a Problem of Formal Logic" in 1930. Ramsey Theory studies the conditions of when a 
combinatorial object necessarily contains some smaller given objects. The role of 
Ramsey numbers is to quantify some of the general existential theorems in Ramsey 
Theory.  

Ramsey numbers one studies partitions of the edges of the complete graph, under 
the condition that each of the parts avoids some pre specified arbitrary graph, in contrast 
to classical Ramsey numbers when the avoided graphs are complete. The theorem was 
proved in passing, as a means to a result about logic, but it turned out to be one of the 
first combinatorial results that widely attracted the attention of mathematicians.  

Ramsey theory to be applied in many fields like, constructive methods, computer 
algorithms, random graphs and the probabilistic method 

More generally, we consider the following setting. We color the edges of Kn (a 
complete graph on n vertices) with a certain number of colors and we ask whether there is 
a complete sub graph (a clique) of a certain size such that all its edges have the same 
color. 

We shall see that this is always true for a sufficiently large n. Note that the 
question about friendships corresponds to a coloring of K6 with 2 colors, “friendly" and 
“unfriendly". Equivalently, we start with an arbitrary graph and we want to find either a 
clique or the complement of a clique, which is called an independent set. This leads to the 
definition of Ramsey numbers. 
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Van der Waerden’s Theorem was proved in 1927, a year earlier than Ramsey’s.     
Van der Waerden proved that in any finite coloring of the natural numbers there must 
exist, some monochromatic arithmetic progression with k terms. Finally in 1974 
Hindman’s Theorem, the most recent theorem proved. Hindman’s Theorem states that, 
for every finite coloring of the natural numbers there exists some infinite subset S � N 
such that all the finite sums of the elements of S are monochromatic. 
 
2. Definitions 
Definition 2.1. A clique is a complete sub graph, an independent set is an empty sub 
graph. 
 
Definition.2.2. R(s, t) is the minimum number s such that any graph on n vertices 
contains a clique of order s or an independent set of order t.  
Ex: R(3, 3) = 6. 
 
Definition 2.3. A clique of size t is a set of t vertices such that all pairs among them are 
edges. An independent set of size s is a set of s vertices such that there is no edge 
between them. Ramsey's theorem states that for any large enough graph, there is an 
independent set of size s or a clique of size t. The smallest number of vertices required to 
achieve this is called a Ramsey number. 
 
Definition 2.4. The Ramsey number R(s, t) is the minimum number s such that any graph 
on n vertices contains either an independent set of size s or a clique of size t. The Ramsey 
number Rk(s1, s2,… sk) is the minimum number s such that any coloring of the edges of 
Kn with k colors contains a clique of size si in color i, for some i. 
 
Definition 2.5. A sub graph H of G is monochromatic if all its edges receive the same 
color. 
 
Definition 2.6.  The integers R (p, q) are known as classical Ramsey numbers. 
 
Definition 2.7. Given a graph G, a k-coloring of the vertices of G is a partition of V (G) 
into k sets C1,C2,…Ck such that for all i, no pair of vertices from Ci are adjacent. If such a 
partition exists, G is said to be k-colorable.   
 
Definition 2.8. Given a graph G, a k-coloring of the edges of G is any assignment of one 
of k colors to each of the edges of G. 

In our discussion of Ramsey theory, we will deal primarily with 2-colorings of 
the edges of graphs. By convention, the colors referred to are typically red and blue.  
Figure 1 shows an example of a graph in and several 2-colorings of its edges.   

 
Definition 2.9. A graph is r-coloured if we colour each edge of the graph with one of r 
colours. 
 
Definition 2.10. The Ramsey Number, Rr(s), is the order of the smallest complete graph 
which, when r-coloured, must contain monochromatic Ks. 
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Figure 1:  Four possible 2-colorings of the edges of a graph. 
 
Definition 2.11. The (2,n)-Barbell graph is the simple graph obtained by 
connecting two copies of a complete graph Kn by a bridge and it is denoted by 
B(Kn ,Kn ). 
 
Definition 2.12.  [18] The (3,n)-Barbell graph is the simple graph obtained by 
connecting three copies of a complete graph Kn by a bridge and it is denoted by 
B(Kn  ,Kn  , Kn). 
 
Definition 2.13. A harmonious coloring of a graph G(V,E) is a  line-distinguishing 
coloring which is also proper. The harmonious chromatic number of G (denoted 
by χh (G)) is the smallest number k such that there exists a harmonious coloring of 
G of k colors. 
 
3. Observation 
Proposition  3.1. (Putnam 1952).  Among any six people, there are three of them any 
two of whom are friends, or else no two of whom are friends. 
 
Theorem  3.2. For any two natural numbers, s and t, there exists a natural number, R(s, t) 
= n, such that any 2-colored complete graph of order at least n, colored red and blue, must 
contain a monochromatic red Ks or blue Kt. 
Proof: We prove that R(s, t) exists by proving it is bounded. We shall use proof by 
induction first assuming that R(s −1, t) and R(s, t − 1) exist. As was shown earlier R(s, 2) 
= R(2, s) = s and R(s, 1) = R(1, s) = 1 are trivial results. 
Claim. R(s, t)  ≤ R(s − 1, t) +  R(s, t − 1). 

We first take a 2-coloring of a complete graph with n = R(s−1, t)+R(s, t− 1) 
vertices.  We now pick one of the vertices in Kn, say x. We then produce two sets, Rx and 
Bx, Rx is the set of vertices adjacent to x such that every edge connecting a vertex in Rx to 
x is red. Similarly Bx is the set of vertices adjacent to x such that every edge connecting a 
vertex in Bx to x is blue. 
      Since Kn is a complete graph Bx = [n]\(Rx�{x}) and so |Rx|+|Bx| = n−1. If |Rx| < 
R(s−1, t) and  |Bx| < R(s−1, t) then since n = R(s−1, t)+R(s, t−1) we must have |Rx| + |Bx| 
≤ n − 2, a contradiction. So |Bx|  ≥  R(s, t − 1) or|Rx| ≥ R(s − 1, t). 
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           If  |Bx| ≥ R(s, t − 1) and Bx induces a red Ks we are done. If Bx induces a blue Kt−1 

then Kn must contain a blue Kt since Bx � {x} must induce a blue Kt. Indeed, each edge 
xt is blue for all t � Bx, from the definition of Bx. So Bx � {x} must induce a blue Kt if 
Bx contains a blue Kt−1. The case for Rx is completely symmetric, that is, if Rx induces a 
blue Kt we are done and if Rx induces a red Ks−1 then Kn must contain a red Ks since      
Rx � {x} must induce a red Ks. 
        We have shown that a 2-coloured complete graph of order R(s − 1, t) + R(s, t − 1) 
must contain a red Ks or a blue Kt, proving that R(s, t) ≤ R(s − 1, t) + R(s, t − 1).   This 
completes our induction. 
  
Theorem 3.3. (Schur) For any k there exists n such that for any k-coloring of {1,…,n}, 
there exist x, y, z of the same color such that x + y = z. 
Proof: Consider n = Rk(3,…, 3). Given a coloring c : [n] → [k], define an edge-coloring 

of Kn. The color of edge{i, j} is � {I, j}) = c( ij − ). Then, there exists a monochromatic 

triangle with vertices i, j ,k.  
Assume i < j < k. Then,c(j-i) = c(k - j) = c(k -  i). Then x = j - i, y = k - j, and z = 

k- i is the desired monochromatic solution. If we consider to the linear equation c1x1 + 
c2x2 +… + cnxn = 0, the theorem holds iff some non-empty subset of the coefficients sum 
to 0. This is a special case of  Rado's theorem. 

 
Theorem  3.4. For all m ≥ 1 there exists p0 such that for all primes p > p0 the congruence                  
xm + ym ≡ zm (mod p). 
 
Theorem 3.3. (Ramsey, Erd‘os-Szekeres[12]).  R(s, t) exists and  Rk(s1,…, sk) in 
general  R(s, t) ≤ R(s – 1, t) + R(s, t - 1). 
 
Theorem 3.5.  For every positive integer k, R(2, k) = k for all k ≥2 
Proof: Choose some positive integer k ≥ 2. First we will show that R(2, k) > k-1 by 
constructing a 2-coloring on Kk -1 that contains neither a red K2 nor a blue Kk. The 
coloring in which every edge is blue satisfies these requirements. It will certainly not 
contain a red K2 and cannot possibly contain a blue Kk, so R(2,k) > k -1. 

Next, suppose that the edges of Kk are 2-colored in some fashion. If any of the 
edges are red, then Kk will contain a red K2. If none of the edges are red, then we are left 
with a blue Kk. So R(2, k) ≤ k. Thus, we can conclude that R(2, k) = k for all k ≥ 2. 

The difficulty of determining additional Ramsey numbers grows quickly as p and 
q increase. 
 
Theorem 3.6. For every positive integer k, R(3, 3) = 6. 
Proof: Consider any 2-coloring on K6. Choose some vertex v from the graph. Because 
there are 5 edges incident to v, by the pigeon hole principle, at least three of these edges 
must be the same color. We will call them vx, vy, and vz, and we will suppose they are 
red. If at least one of xy, xz, or yz is red, then we have a red K3. If none of these is red, 
then we have a blue K3. Thus, R(3; 3) ≤ 6. Next, consider the 2-coloring on K5 as 
depicted in Figure  2. This coloring does not contain a monochromatic K3 in either red or 
blue, so we know that    R(3, 3) > 5. Thus, R(3, 3) = 6.  
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Figure 2: A 2-coloring on K5 that contains no monochromatic K3. 
 

Theorem 3.7.  (Ramsey 1930[7]) R(s, t) is finite for all s, t ≥ 2 and for s, t > 2 we have 
R(s, t) ≤ R(s − 1, t) + R(s, t − 1). 
Proof: Consider an arbitrary vertex v of the graph KN, where N = R(s − 1, t) + R(s, t − 1). 
Let c be an arbitrary coloring of KN. Then, R(s − 1, t) + R(s, t − 1) − 1 edges arrive in v. 
Either   R(s − 1, t) of them are red or R(s, t − 1) are blue. Without loss of generality, 
assume we have R(s − 1, t) vertices incident to v by means of red edges. These vertices 
form a KR(s−1,t)  graph.  

Thus, for each coloring, including coloring c, we either have a blue Kt or a red 
Ks−1 in this KR(s−1,t) graph. This completes the proof, as in the latter case a red Ks is formed 
by adding  v to the red Ks−1.  
 
Theorem 3.8. 

For all s, t ≥ 2 we have R(s, t) ≤ 
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Theorem 3.9. Let m and n be positive integers. Then r (χ  ≥ m, χ  ≥ n) = (m - 1)(n -1) + 
1, whereχ  signifies the chromatic number of a graph. 
Proof:  The assertion is obviously true if one of m and n is one. Assume that m, n ≥ 2. Let 

G be a graph consisting of disjoint n-1 copies of Km-1. Then χ  (G) = m - 1 and )(Gχ = n 

- 1, yielding that r ( χ  ≥ m, χ  ≥ n) = (m - 1)(n -1) + 1. 
On the other hand, if G is a graph of order N = (m - 1)(n - 1) + 1, then by the fact 

that      χ   (G)α  (G) ≥ N we haveα  (G) ≥
)(G

N

χ
= n≥

1-m

1 + 1) -1)(n  - (m
 

 Therefore )(Gχ  ≥ )(Gω  = α  (G) ≥ n, proving r ( � ≥ m, � ≥ n) = (m - 1)(n -1) + 1. 
 
Theorem 3.10. (Erdös,1947, Lower bounds on Ramsey numbers) For all  k ≥ 3,  R(k)  >  
2k-2. 
 
S/ t 1 2 3 4 5 6 7 8 9 10 

1 1 1 1 1 1 1 1 1 1 1 
2 1 2 3 4 5 6 7 8 9 10 

3 1 3 6 9 14 18 23 28 36 40-43 
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4 1 4  9  18  25 35-41  49-61 56-84 73-115 92-149 
5 1 5    14 25 43-49 58-87 80-143 101-

216 
125-
316 

143-
442 

6 1 6   18 35-41 58-87 102-
165 

113-
298 

127-
495 

169-
780 

179-
1171 

7 1 7    
 

23 49-61 80-
143 

113-
298 

205-
540 

216-
1031 

233-
1713 

298-
2826 

8 1 8    
 

28 56-84 101-
216 

127-
495 

216-
1031 

282-
1870 

317-
3583 

317-
6090 

9 1 9    36 73-
115 

125-
316 

169-
780 

233-
1713 

317-
3583 

565-
6588 

580-
12677 

10 1 10 40-
43 

92-
149 

143-
442 

179-
1171 

289-
2826 

317-
6090 

580-
12677 

798-
23556 

Table 3.1: Known Ramsey numbers R(s ,t) and bounds. 
 
Cycles. The initial general result for cycles, R (C3,Cn ) = 2n − 1 for n ≥ 4 , was obtained 
by Chartrand and Schuster in 1971. The complete solution of the case R (Cn ,Cm ) was 
obtained soon afterwards, independently by Faudree and Schelp and Rosta [13]. 
 
Theorem 3.11. (Triple odd cycles - Kohayakawa, Simonovits, Skokan, 2005, 2009) 
R (Cn ,Cn ,Cn ) = 4n − 3 for all sufficiently large odd n. 
 
Theorem 3.12. (Faudree, Schelp ,1974; Rosta , 1973  [20]) 
   R (Cn ,Cm ) =  2n − 1                               for 3 ≤m ≤ n , m odd , (n ,m) =/ (3,3) 
                      n − 1 +m/ 2                           for 4 ≤m ≤ n , m and n even , (n ,m) =/ (4,4) 
                    max { n- 1 +m/ 2, 2m − 1 } for 4 ≤m < n , m even and n odd 
 
Conjecture 3.12. The cycle-complete graph Ramsey number r(Cm, Kn) is the smallest 
integer N such that for every graph G of order N contains Cm or )(Gα ≥ n. The graph (n-
1)Km-1 shows that r(Cm, Kn) ≥ (m - 1)(n -1) + 1.The above result was improved by 
Nikiforov [19]  when he proved the equality for m ≥ 4n + 2.  

Erd’os gave the following conjecture:   r(Cm,Kn) = (m - 1)(n - 1) + 1, for all       m 
≥ n ≥ 3 except r(C3,K3) = 6. 
 
Theorem 3.14. The Ramsey number of cycle Cn versus W4 is R(Cn,W4) = 2n −1, for n ≥ 5. 
 
Theorem 3.15.The Ramsey number cycle Cn versus W4 is R (Cn, W 5) = 3n −1, for n ≥  5. 
 
Theorem 3.16. (Surahmat, etb 2001) For all n≥ 3,  R(Pn,W4) = 2n −1 and  R( P n, W 5) = 
3n −2. 

Theorem 3.17. If n ≥ 
2

)2( −mm
 and m ≥ 4 even then R(Pn,Wm) = 2n −1. 
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Theorem 3.18. (etb, Surahmat 2001) If n ≥ 
2

)3( −mm
 and m ≥ 5 odd then    R(Pn,Wm) = 

3n −2. 
 
 Theorem 3.19. For any complete graph    Kn, χh [B(Kn,Kn)]=2n-1, n ≥2.  
 
Theorem 3.20. [18] For   any complete   graph    Kn,  χh [B(Kn,Kn, Kn)]=3n-2, n≥ 2. 
 
   From the  theorems we  observed that , the values  for the harmonious coloring  
of barbell graphs for 2 copies  and the Ramsey number  of paths and wheels for n,m  
(theorem 3.17 and  3.19)  the values are same with different conditions. 

 Similarly we  observed that , the values  for the harmonious coloring  of  barbell 
graphs for 3 copies  and the Ramsey number  of paths and wheels for n, m  (theorem 3.18 
and  3.20)  the values are same with different conditions. 
 
4. Applications 
In real life Ramsey numbers  are used .As noted by Slany, combinatorial games  “serve as 
models that simplify the analysis of competitive situations as models that simplify the 
analysis of competitive situations with opposing parties that pursue different interests" 
and finding a winning strategy to a combinatorial game can be translated into finding a 
strategy to cope with many kinds of real world problems such as found in 
telecommunications, circuit design, scheduling, as well as a large number of other 
problems of industrial relevance." 

If we consider this problem in terms of people at a party, Ramsey's Theorem 
guarantees that there is some smallest number of people at the party required to ensure 
that there is either a set of p mutual acquaintances or q mutual strangers. Thus, the old 
puzzle that asks us to prove that with any six people at a party, among them there must be 
a set of three mutual acquaintances or a set of three mutual strangers actually requires us 
to show that      R(3,3) = 6. 

We should also note that Ramsey's Theorem can be generalized to account for 
colorings in any finite number of colors, not just 2-colorings. 

Ramsey's Theorem guarantees that this smallest integer R(p, q) exists but does 
little to help us determine what its value is, given some positive integers, p and q. In 
general, this is actually an exceedingly difficult problem.  

Ramsey graph games start with a complete graph Kn and the players color an 
edge on their turn, each player uses a unique color. In an avoidance game each player is 
given a graph which if she colors a sub graph isomorphic to this graph 
monochromatically in her color, she losses. 

In an achievement game she would win by coloring such a sub graph 
monochromatically. The avoidance version is called Sim after Simmons who introduced 
it in 1969. Sim has been studied extensively, notably by Frank Harary who is known for 
his work in graph theory. 

Starting with the achievement game, which resembles the popular Tic-Tac-Toe, 
suppose as in the case of R(3; 3) = 6 that there are 2 players and they are trying to form 
monochromatic K3s. If the graph they are coloring is K6, then there will be a winner 
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because It has already proved that  R(3; 3) = 6 which means that any way the two players 
color their graph, someone will eventually color a K3.  

However, if they are playing on a K5 then the unique R(3; 3) critical graph shows 
that they may tie, meaning neither achieves their goal. If they play on K3 they must tie as 
there is only a single k3 to color and each will color at least one of the edges. 
 
Theorem 4.1. In the achievement Ramsey games, if all players are trying to achieve the 
same graph, and there is a winning strategy, then it belongs to the first player. 
Proof: This is a standard strategy stealing argument. If someone other than the first 
player, say the kth-player, had a winning strategy then the first player imagines she is this 
player. On each turn she imagines k-1 additional edges have been colored one each in the 
colors of the k-1 players preceding her, and then selects an edge to color dictated by the 
kth-player's wining strategy. But in following this strategy, the  first player does not lose 
because each of her moves were part of a winning strategy which means that she could 
not have lost before her next turn.  

If there are not k edges left on player one's turn, this means player one did not 
follow player K's strategy as player K wins at latest on the turn before. If the first player 
does not lose, then the kth  -player does not win. So only player one may have a winning 
strategy, continuing the example above. 

 If the players are attempting to form monochromatic K3s on K4, then as K4 has 
only 6 edges, if the first player wins, she must do so on her third turn. However, after two 
turns she threatens to complete at most one K3 on her next turn, and if player 2 after 
seeing player one's second move, is sure to color the missing edge in the K3 that player 
one threatens to complete, player 2 achieves at least a draw. So again, with best play on a 
K4 the result is a tie because the above theorem indicates player one should not lose.  

If they play on a K5 player one wins. Player one need only stop player 2 and 
avoid forming a 5-cycle as this is the unique R(3; 3) critical graph. It turns out that this is 
always possible; the observation that achieving 3 edges of the same color incident to a 
vertex disallows 5-cycles will help in executing this strategy. Finally, for n ≥6 if they 
play on Kn, 

Ramsey theory promises that one of the player wins, when the theorem indicates 
that the first player has a winning strategy. So Ramsey theory is intimately linked to the 
outcome of this combinatorial game. 
 
5. Open problems 
Clearly this field still offers a huge number of open problems. The most obvious of which 
are finding more Ramsey numbers and improving the bounds we currently know. 
However, there are many related open problems.  
 

Proposition  5.1.  The limit n ∞→ ,  R(n, n) 
n

1

 exists. 

Problem 5.2. Determine the value of c = limit n ∞→ ,  R(n, n) 
n

1
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Problem 5.3. Prove or disprove that R(4, n) > 
n

n

clog

3

 for some c, provided n is 

sufficiently large.  
 
Problem 5.4. We have the bounds 2k ≤ Rk(3,3,…, 3) ≤ (k + 1)!,do these Ramsey numbers              
grow faster than exponential in k? 
 
6. Conclusion 
In this paper, we were discussed about the examples of Ramsey numbers and their 
bounds. Here we gave the comparison between the Ramsey numbers for paths and wheels 
with harmonious chromatic number barbell graph .Also we discussed about the open 
problems in Ramsey theory.  
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