Annals of Pure and Applied Mathematics Vol. 8, No. 2, 2014, 245-249 ISSN: 2279-087X (P), 2279-0888(online) Published on 17 December 2014 www.researchmathsci.org

Annals of **Pure and Applied Mathematics** 

# A Maximum Positive Flow in a Complete Weighted Bidirectional Graphs

R. Ganapathyraman

Department of Mathematics, Pachyappa's College, Chennai – 30, India Email:sirgana1@yahoo.co.in

Received 3November 2014; accepted 21 November 2014

Abstract. In this paper we discuss a graph-theoretic definition of flow networks and define the maximum-flow problem. A flow network G=(V,E) is a bi-directional connected graph in which edge  $(u,v)\in E$  has a non-negative capacity  $c(u, v) \ge 0$ .We consider the problem of identifying positive flow in a complete weighted bi-directional network where the flow nodes would result in variation of quantity in a given interval of time.

Keywords: Flow networks, Complete weighted bi-directional network

### AMS Mathematics Subject Classification (2010): 05C21

#### 1. Introduction

To illustrate this with an example, let us consider the problem of exchanging currency in a cylic path. Let s start the flow of cycle with the quantity A at a node X after completing one cycle with the quantity B. Depending upon the nature of the cycle, there are two possibilities that is either  $A \ge B$  or  $B \ge A$ . Of all the possible cycles our intension is to find the cycle in which the quantity B - A is maximum. We have to find the list of possible products (quantity x capacity) by the way of forming the cycle considering 2 nodes, 3 nodes and so on for n nodes using Apriori Algorithm we can able to find the maximum positive flow.

First of all we have to form a conversion factor matrix

Consider an example conversion factor matrix for 4 countries on a particular day.

| Currency names  | India     | United<br>Kingdom | Canada | Dutch  | Euro    |
|-----------------|-----------|-------------------|--------|--------|---------|
| India (Rupees)  | 1         | 77                | 38.29  | 24     | 52      |
| United Kingdom  | 0.012978  | 1                 | 0.457  | 0.6783 | 0.6783  |
| (Pound)         |           |                   |        |        |         |
| Canada (Dollar) | 0.026     | 2.1866            | 1      | 1.4838 | 1.4838  |
| Dutch (Guilder) | 0.0416138 | 1.4732            | 1.484  | 1      | 2.20371 |
| Euro            | 0.01892   | 1.4732            | 0.6734 | 0.4538 | 1       |

### R. Ganapathyraman



Like this for level n, (i.e) 1,2,3.... n+1 countires we can find the positive flow and find the maximum by using Apriori Algorithm

The Apriori Algorithm determines the support of itemsets in a levelwise BFS (Breadth First Search) fashion. First it finds the supports of 1-itemset (the itemset with only one element) then of 2-itemsets etc:

C1 is the set of all one-item sets, k=1While Ck  $\neq 0$ ;

Scan data base to determine support  $\Box$  (A) for all AC Ck Extract frequent itemsets from Ck into Lk Geneerate Ck+1

k : =k +1

The algorithm does not determine the supports of all possible itemsets, instead it uses a clever strategy to determine candidates for frequent itemsets i.e it finds sets Ck of k-itemsets which contain all the frequent itemsets but not much else.

Mining for association among items in a large database of sales transaction is an important database mining function. For Example, the information that a customer who purchases keyboard also tends to buy a mouse at the same time is represented in association rule below: keyboard Mouse [Support = 6%, confidence = 70%] Itemset

- A set of items is referred to as itemset
- An item set containing k items is called k item set.

### Apriori Algorithm (1)

Apriori Algorithm is an influential algorithm for mining frequent itemsets for Boolean associates rules.

### **Apriori Algorithm (2)**

Uses a Level - wise search, where k-itemsets (An itemset that contains k items is a kitemset) are used to explore (k+1)- itemsets, to mine frequent itemsets from transactional database for Boolean association rules. First, the set of frequent 1-itemsets is found. This set is denoted L1. L1 is used to find L2, the set of frequent 2-itemsets, which is used to fine L3, and so on, until no more frequent k-itemsets can be found.

Using this Algorithm we can able to determine the maximum positive flow.

# A Maximum Positive Flow in a Complete Weighted Bidirectional Graphs

### Level 1

Consider 2 countries, for example : 1 India & 2 U.K Starting Rs.100 After completing 1 cyle, the Profit & Loss percentage is found below:

| After completing 1 cyle, the Front & Loss percentage is found below. |            |         |       |
|----------------------------------------------------------------------|------------|---------|-------|
| Tid                                                                  | Net Amount | Profit% | Loss% |
| 121                                                                  | 99.9       |         | 0.9   |

Result :

There is no profit among two countriesLevel 2:Let us consider 3 countries, for example 1. Inida, 2 U.K. & 3. CanadaStep 1TidNet AmountProfit%Lo

| Tid   | Net Amount | Profit% | Loss% |
|-------|------------|---------|-------|
| 1 2 1 | 99.9       |         | 0.9   |
| 131   | 99.5       |         | 0.9   |

By joining of 2 countries, there is no profit. Proceed Step 2

Step 2:

| Tid     | Net Amount | Profit% | Loss% |
|---------|------------|---------|-------|
| 1231    | 108.658    | 1.08    |       |
| 1 3 2 1 | 91.49      |         | 0.85  |

Result:

So, there is a positive flow from India  $\rightarrow$  U.K.  $\rightarrow$  Canada  $\rightarrow$  India

This cycle of conversion process makes profit.

Level 3:

Consider for countries, for example : 1. India 2. Euro 3. Dutch 4. U.K Step 1 :

| Tid<br>(By joining of 2<br>countries) | Net Amount | Profit% | Loss% |
|---------------------------------------|------------|---------|-------|
| countries)                            |            |         |       |
| 1 2 1                                 | 99.9       |         | 0.9   |
| 131                                   | 99.8       |         | 0.99  |
| 141                                   | 99.1       |         | 0.99  |

There is no profit among two countries. Proceed Step 2. Step 2

| 5tep 2.                 |            |         |       |
|-------------------------|------------|---------|-------|
| Tid                     | Net Amount | Profit% | Loss% |
| (By joining of 3        |            |         |       |
| countries from a cycle) |            |         |       |
| 1231                    | 99.8       |         | 0.9   |
| 1341                    | 215.5      | 2.15    |       |
| 1 4 3 1                 | 45.8       |         | 0.45  |

# R. Ganapathyraman

| 1 4 2 1 | 98.6  | <br>0.98 |
|---------|-------|----------|
| 1241    | 93.2  | <br>0.93 |
| 1 3 2 1 | 98.16 | <br>0.98 |

Proceed Step 3:

Step 3.

| Tid                     | Net Amount | Profit% | Loss% |
|-------------------------|------------|---------|-------|
| (By joining of 3        |            |         |       |
| countries from a cycle) |            |         |       |
| 12341                   | 217.76     | 2.17    |       |
| 1 2 4 3 1               | 45.3       |         | 0.45  |
| 13421                   | 317.9      | 3.17    |       |
| 1 3 2 4 1               | 98.5       |         | 0.98  |
| 1 4 3 2 1               | 44.6       |         | 0.44  |
| 14231                   | 100.12     | 1.0012  |       |

step 4.

Among this the profit are given below:

| TID       | Profit % |
|-----------|----------|
| 1341      | 2.15     |
| 12341     | 2.17     |
| 13421     | 3.17     |
| 1 4 2 3 1 | 1.0012   |

Result :

India  $\rightarrow$  Dutch  $\rightarrow$  U.K  $\rightarrow$  Euro  $\rightarrow$  India.

### 2. Conclusion

**The Apriori Algorithm** and the Game of Life Process have been used the basis for predictive analysis to build a tool. In this direction, research work is processing. Oliver Magnity has contributed some valuable ideas to achieve our goal.

#### REFERENCES

- 1. R.Agarwal and R.Srikant, Fast algorithms for mining association rules, In Bocca J.B.Jarke, M. Zaniolo, C. eds, *Proc.* 20<sup>th</sup> Int. Conf. Very Large Data Bases VLDB, Morgan Kaufmann (1944) 487-499.
- A.Savasree, E.Omiecinksi and S.B.Navetha, An efficient algorithm for mining association rules in large databases, In. *Proc. of the 21<sup>st</sup> Int. Conf. on VLDB* (1995) 432 433.

A Maximum Positive Flow in a Complete Weighted Bidirectional Graphs

- 3. R.T.Ng, L.V.S.Lakshmanan, J.Han and A.Pang, Exploratory mining and pruning optimization of constrained association rules *In: Proc. ACM SIGMOD Int. Conf. Management of Data* (1998) 13 -24.
- 4. R.Srikant and R.Agarwal, Mining generalized association rules In: *Proc. of the 21<sup>st</sup> Int. Conf. on VLDB* (1995) 407-419.
- 5. R.J.Hilderman and H.J.Hamilton, Evaluation of intestingness measures for ranking discovered knowledge, *Lecture Notes in Computer Science*, 2035 (2001) 247.
- 6. R.J.Bayardo, Efficiently mining long patterns from databases In: ACM SIGMOD Int'l Conf. on Management of Data, ACM (1998) 85 -93.
- 7. B.Ganter and R.Wille, Formal concept analysis: Springer-Verlag, Berlin (1999) mathematical foundations, Translated from the 1996 German original by Conelia Franzke.
- M.J.Zaki and C.Hsiao, CHARM: An efficient algorithm for closed itemset mining In Grossman, R. Han, J.Kumar, V. Mannila H. Motwani, R. Eds.: *Proceedings of the second SIAM International Conference on Data Mining, SIAM* (2002) http://www. siam.org/meetings/sdm02/proceedings/
- 9. N.Pasque, Y.Bastide, R.Taouil and L.Lakhal, Discovering frequent closed item sets for association rules, *Lecture Notes in Computer Science*, 1540 (1999) 398-416.
- J.Han, J.Pei and Y.Yin, Mining frequent patterns without candidate generation, In Chen, W.Naughton, J.Bernstein, P.A. eds: 2000 ACM SIGMOD Intl. Conference on Management of Data, ACM Press (2000) 1-12.