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Abstract. In this paper we discuss a graph-theoretic defimitof flow networks and
define the maximum-flow problem. A flow network G4E) is a bi-directional
connected graph in which edge (W) has a non-negative capacity c(u, ¥) 0.We
consider the problem of identifying positive flow & complete weighted bi-directional
network where the flow nodes would result in vaoiatof quantity in a given interval of

time.
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1. Introduction

To illustrate this with an example, let us consitler problem of exchanging currency in
a cylic path. Let s start the flow of cycle wittetquantity A at a node X after completing
one cycle with the quantity B. Depending upon tl¢ure of the cycle, there are two
possibilities that is either & B or B> A. Of all the possible cycles our intension is to
find the cycle in which the quantity B - A is maxaim. We have to find the list of
possible products (quantity x capacity) by the wéyorming the cycle considering 2
nodes, 3 nodes and so on for n nodes using Apkigarithm we can able to find the
maximum positive flow.

First of all we have to form a conversion factortrrixa

Consider an example conversion factor matrix foodntries on a particular day.

Currency name India United Canad Dutct Eurc
Kingdom

India (Rupee: 1 77 38.2¢ 24 52

United Kingdom| 0.01297¢ | 1 0.457 0.678: 0.678:

(Pound)

Canada (Dolla 0.02¢ 2.186¢ 1 1.483¢ 1.483¢

Dutch (Guilder 0.041613 | 1.473. 1.48¢ 1 2.2037:

Eurc 0.0189: 1.473: 0.673¢ 0.453¢ 1
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LEVEL 1
Consider for two nodes 1. India 2. U.K.
0.012978

India (100 Rupees) U.K.(1.2978 Pound)
99.9. Rupees
1-2and 2— 1
{(1,2)(2,1)} No. of Products 2

0.012978 77
A 100 (India) > 1.2978 (U.K)--------=-m-m-m--- > 99.9. (India) B

Here B - A is minimum

Like this for level n, (i.e) 1,2,3..... n+1 countireg can find the positive flow and find
the maximum by using Apriori Algorithm

The Apriori Algorithm determines the support ofnitgets in a levelwise BFS (Breadth
First Search) fashion. First it finds the suppafd-itemset (the itemset with only one
element) then of 2-itemsets etc:

C1 is the set of all one-item sets, k=1

While Ck#£ 0 ;
Scan data base to determine suppoff) for all A€ Ck
Extract frequent itemsets from Ck into Lk
Geneerate Ck+1

k:=k+1

The algorithm does not determine the supports lgfadsible itemsets, instead it uses a
clever strategy to determine candidates for fregitemsets i.e it finds sets Ck of k-
itemsets which contain all the frequent itemsetsiioti much else.
Mining for association among items in a large das&bof sales transaction is an
important database mining function. For Example, ittformation that a customer who
purchases keyboard also tends to buy a mouse asame time is represented in
association rule below: keyboard Mouse [ Suppdts, confidence = 70%]
ltemset

o A setof items is referred to as itemset

» Anitem set containing k items is called k — itegh s

Apriori Algorithm (1)
Apriori Algorithm is an influential algorithm for ming frequent itemsets for Boolean
associates rules.

Apriori Algorithm (2)

Uses a Level - wise search, where k-itemsets (Amset that contains k items is a k-
itemset) are used to explore (k+1)- itemsets, toenfiequent itemsets from transactional
database for Boolean association rules. Firsts¢hef frequent 1-itemsets is found. This
set is denoted L1. L1 is used to find L2, the deftequent 2-itemsets, which is used to
fine L3, and so on, until no more frequent k-itetasean be found.

Using this Algorithm we can able to determine theximum positive flow.
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Leve 1

Consider 2 countries, for example : 1 India & 2 U.K

Starting Rs.100

After completing 1 cyle, the Profit & Loss perceaggas found below:

Tid Net Amount Profit% Loss%
121 99.¢ -- 0.¢
Result :

There is no profit among two countries

Level 2:

Let us consider 3 countries, for example 1. InRlb,K. & 3. Canada
Step 1

Tid Net Amount Profit% LossY
121 99.¢ -- 0.€
131 99.t -- 0.€

By joining of 2 countries, there is no profit. Peed Step 2

Step 2:

Tid Net Amount Profit% LossY
1231 108.658 1.08 --
132: 91.4¢ -- 0.8t
Result:

So, there is a positive flow from India U.K. — Canada— India
This cycle of conversion process makes profit.

Level 3:

Consider for countries, for example : 1. India @rde3. Dutch 4. U.K
Step 1:

Tid Net Amount Profit% Loss¥%
(By joining of 2

countries)

121 99.¢ - 0.€
131 99.¢ - 0.9¢
141 99.1 - 0.9¢
There is no profit among two countries. Proceeg 3te

Step 2.

Tid Net Amount Profit% Loss¥%
(By joining of 3

countries from a cycle

123 99.¢ - 0.€
1341 215t 2.1F -
1431 45.¢ - 0.4f
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142 98.€ - 0.9¢
1241 93.2 - 0.9¢
1321 98.1¢ - 0.9¢
Proceed Step 3:

Step 3.

Tid Net Amount Profit% Loss%
(By joining of 3

countries from a cycle

12341 217.76 2.17 --
12 431 45.% - 0.4f
13421 317.9 3.17 -
1324: 98.t - 0.9¢
14321 44.¢ - 0.44
14231 100.12 1.0012 --
step 4.

Among this the profit are given below:

TID Profit %

134: 2.1F

12341 2.17

1342: 3.17

14231 1.001:

Result :

India— Dutch— U.K — Euro— India.

2. Conclusion

The Apriori Algorithm and the Game of Life Process have been used #is fmx
predictive analysis to build a tool. In this difect, research work is processing. Oliver
Magnity has contributed some valuable ideas toesehour goal.
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