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Abstract. The numerical differentiation based on the interpolating polynomial is basically 
an unstable process and one cannot expect good accuracy even when the original data are 
known to be accurate. We analyze the stability of computation of derivatives through 
polynomial interpolation at given point numerically and prove it has poor stability when 
closer to the interpolating nodes however it has a quite good stability between 
interpolating nodes.   
  The numerical integration by use of lower order formulas such as trapezoidal rule 
and Simpson rule gives accuracy of results than use of higher order Newton-Cotes 
formulae. In this paper, we also analyze the reason for the poor stability of higher order 
Newton-Cotes formulae. Numerical examples are given to study roundfoff error analysis  
of numerical differentiation and integration. 
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1. Introduction  
Numerical approximations to derivatives are used mainly in two ways. First, we are 
interested in calculating derivatives of given data that are often obtained empirically. 
Second, numerical differentiation formulae are used in deriving numerical methods for 
solving ordinary and partial differential equations. The problem of numerical 
differentiation of noisy data is ill-posed, small changes  of the data may result in large 
changes of the derivative. There is always a conflicting relationship, as nodes become 
denser, data reflect the rapid variation better while differentiation of the data gets more 
noise.  Consider the central difference formula for approximating �����                                  

     

                                               ����� � ��	
�����	���
� � ���������

�                                        (1) 

 
In calculations, we will in fact use the numbers, ��� � �� � ∆�� and ��� � �� � ∆���   
Instead of the numbers ��� � �� and �� � �� , use of  roundoff. Therefore, we compute 
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                                      � ′���� � ��	
�����	���
� � ∆ ���∆���

� � ���′′′���
   �         

 
Hence 

                                          � ′��� � �′���� � ∆���∆���
� � ���′′′���

� (2) 

                        
The error in the computed approximation of  �′����  and � ′���  is therefore seem to 

consist of two parts, one part due to roundoff, and the other part due to discretization. If 
� ′′′��� is bounded, then the discretization error goes to zero as � � 0, but the round off 
error goes if we assume that ∆�� � ∆���  does not decrease. Hence, � ′��� gives good 
approximation only at optimum value of �. If � is small and approaches to zero i.e when  
the data is dense  then the process estimating derivatives for evenly spaced nodes  is 
unsatable. This analysis shows that we can combat the round off error by using  
“sufficiently” high precision arithmetic. But this is impossible when ����  is only 
approximately at finitely many points [1]. However, in Ref[5] shows that  the use of a 
higher-order formula, such as a 7-or even a 10-point approximation, based on the method 
of undetermined coefficients, can sometimes lead to better accuracy and enhanced 
computational efficiency rather than 2- point and three point formula. In the present study 
we give roundoff error analysis for higher order numerical differentiation formula  
through polynomials for arbitrary spaced grids. In this paper, we give the round of errors 
of calculation of derivatives through polynomial interpolation and analyze the  stability of  
numerical differentiation up to higher order. 
              The idea of numerical integration is to replace a complicated function or 
tabulated data with an approximating function that is easy to integrate. Polynomial 
function is the best choice to replace the actual function because of its simple form and 
also it can be easily found through Lagrange interpolation formula or Newton 
interpolation formula[4] for evenly or unevenly spaced grids with any degree of 
accuracy. If the nodes are spaced evenly  then the quadrature formula is called Newton-
Cotes formula. Trapezoid, Simpson’s 1/3 and 3/8 rules, Bode’s are special cases of 1st, 
2nd, 3rd and 4th order polynomials are used, respectively in Newton cotes  formulas. 
Using large number of equally spaced nodes may be inaccurate behavior associated with 
high-degree polynomial interpolation Indeed, every n-point Newton-Cotes rule with n ≥ 
11 has at least one negative weight, so Newton-Cotes rules become arbitrarily ill-
conditioned. The lower order formulas for approximating integrals such as  Trepezoidal 
and Simson rules   are special cases of  Newton-Cotes integration formulas and gives 
better accuracy then higher order formulas. In this paper we analyse poor stability of 
higher order Newton-Cotes formula through roundoff error analysis. 
 
2. Preliminaries 
Let !"  denote the vector space of all polynomials of degree at most # and let �$ , & �
 0, . . . , #, be  # �  1 distinct nodes and suppose that �$ , & �  0, . . . , #,, are corresponding 
numbers. Then, there exists a unique polynomial )�* Π+  such that  )���� � �$ , & �
 0, . . . , #. Let , � -�.��, �, … , �"0  and denote the Lagrangian polynomials as follows 
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                   12��� � ∏ �� � �4�"45.   and  1$,2��� � ∏ 6�67
68�67

"45.,
$94

.                        (3) 

 
The Lagrange’s interpolation formula[1, 3] for approximating � on the X  is given by  
 
                                                     )�,2��� � ∑ 12,$����$"$5. .                                              (4) 
 
Differentiating ; times with respect to �,  
 

                                                   )�,2
�<���� � ∑ 1$,2

�<�����$"$5. ,                                             (5) 
 

where  )�,2
�<���� and 1$,2

�<����  are ;=� derivatives of  )�,2���  and  12,$���  respectively. 
Let  > � -?., ?�, ?, … , ?"0  and denote the Lagrangian polynomials as follows 
  

                               1@�A� � ∏ �A � ?4�"45.  and  1$,@��� � ∏ B�C7
C8�C7

"45.,
$94

.                              (6)                       

                                                     
The Lagrange’s interpolation for approximating � on ser J  is given by  
 
                                                     )�,@�A� � ∑ 1$,@�$"$5. .                                                     (7) 
 
Definition 2.1.   Define the condition number of  ;=� order derivative of  )�,2��� at x for 
# D EF-00  over the set X as follows[3] 
                    

                                cond��,, �, �� � supNDO lim��.
STU,V

�W��6��TUX∆U,V
�W� �6�S

STU,V
�W��6�S                        (8) 

 
Similarly, condition number of  ;=� order derivative of  )�,@��� at s over the set J  as 
follows 

                                  cond��>, A, �� � supBD@ lim��.
STU,Y

�W��B��TUX∆U,Y
�W� �B�S

STU,Y
�W��B�S                         (9) 

     
3. Round of error analysis of numerical differentiation 
Define  � � minZ-|�$ � �|0 \ 0   for  & �  0, . . . , #  and arrange  each node  �$ , & �
 0, . . . , #   by spacing at distance ?$�  from �. , (i.e)  �$ � �. � ?$� , where ?. � 0, ?" �
��" � �.�/� and satisfies  0 ^  ?$ ^  ��" � �.�/�. Let  �  be any point on _�., �"` and 
� � �. � A�, where  0 ^  A ^  ��"  �  �.�/�.  Then, the following relationship holds 
between  Lagrange’s polynomials (3) 
 
                                                           12��� � �"
�1@�A�                                               (10) 
and    
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                                                          1$,2��� � 1$,@���                                                     (11) 
Using  (3), (6) and (8) gives 
  
                                                   )�,2��� � ∑ 1$,2����$"$5.  � ∑ 1$,@�A��$"$5.               
  
Thus, we find that 
                                                       )�,2��� � )�,@�A�                                                     (12) 
 
Equation (12) shows that )�,2���  does not depend on �.  Differentiating (11) with respect 
to � and using aA � a�/�, gives 
 

                                              
b

b6 c1$,2���d � b
b6 c1$,@�A�d 

 

                                                                 � b
bB c1$,@�A�d e bB

b6 

 

                                                                 � �
�

b
bB c1$,@�A�d 

 

                                                                 � b
bB c1$,@�A�d e bB

bB 
 

                                                    1$,2
������ � �

� 1$,@
����A� 

 
Differentiating again with respect to �, gives 
 

                                                      1$,2
����� � �

�� 1$,@
���A� 

 
Proceeding this ; times, yields 
   

                                                   1$,2
�<���� � �

�W 1$,@
�<��A�                                                   (13) 

                    
Substituting  (13) in (5), gives 
 

                                                )�,2
�<���� � �

�W ∑ 1$,@
�<��A��$"$5

′  .
                                           (14)       

 
Let ∆� is the small change in  �. Then 
 

                                    )�
∆�,2
�<� ��� � �

�W ∑ 1$,@
�<��A���$ � ∆�$�"$5.                                      (15) 

(14)-(5) f 
 

                                  )�,2
�<���� � )�
∆�,2

�<� ��� � �
�W ∑ 1$,@

�<��A�∆�$"$5.     
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                                 S)�,2
�<���� � )�
∆�,2

�<� ���S ^ �
�W ∑ S1$,@

�<��A�∆�$S"$5.   

 
Choose  |∆�| g *, gives 
 

                                     S)�,2
�<���� � )�
∆�,2

�<� ���S ^ h
�W ∑ S1$,@

�<��A��$S"$5.                           (16) 

 

Equality is attained for  ∆�$ � sign�*�$  1$,@
�<��?��$� 

 

                                        S)�,2
�<���� � )�
∆�,2

�<� ���S � �
�W ∑ 1$,@

�<��A��$"$5.                          (17) 

 
Similarly, we easily find that 
 

                                             S)�,@
�<��A� � )�
∆�,@

�<� �A�S � ∑ 1$,@
�<��A��$"$5.                           (18)                                  

 
Using (17) and (18) , gives 
 

                                                 
STU,Y

�W��B��TUX∆U,Y
�W� �B�S

STU,Y
�W��B�S � STU,V

�W��6��TUX∆U,V
�W� �6�S

STU,V
�W��6�S   

Hence,  
                                                     cond��,, �, �� � cond��>, A, ��                               (19) 
 
Hence the condition number on X at x is same as condition number J at  s 
 

Using (16) and  (19), yields the bound for  roundoff error of )�,2
�<����  

 

                            S)�,2
�<���� � )�
∆�,2

�<� ���S ^ h
�W  cond��>, A, �� S)�,@

�<��A�S                    (20) 

 
Suppose that �  be a real-valued function and continuously differentiable 

function on the closed interval _�, j`,  k�lml � � min-�., . . . �"0  and  
j � max-�., . . . �"0 . Shadrin [8] has shown that if )�,2��� denotes the polynomial of 
degree n   interpolating  f  at the points �., ��, … �"  then for ; �  0, 1, … , # 
 

                                         S)�,2
�<���� � ��<����S ^ p12

�<����p p��WX��
�<
��!p.                       (21) 

 
This bound was earlier conjectured by Howell [3] who also proved it for the highest 

derivative r �  #. Let  )s,2
�<���� is computed  )�,2

�<����. Then 
 

                S)s,2
�<���� � ��<����S ^ S)s,2

�<���� � )�,2
�<����S � S)�,2

�<���� � ��<����S.       (22) 
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   Using (21) and (22) 
 

              S)s,2
�<���� � ��<����S ^ h

�W  cond��>, A, �� S)�,@
�<��A�S � p12

�<����p p��WX��
�<
��!p.            

 
Using (13),  we find the bound for total error 
 

S)s,2
�<���� � ��<����S ^ *

�<  cond��>, A, �� S)�,@
�<��A�S 

                                                                             ��"
��< p1@
�<��A�p p��WX��

�<
��!p.          (23) 

 
3.1. Numerical experiment  
We report an experiment whose purpose is to verify the conclusions of the roundoff error 
analysis. There are plenty of numerical differentiation formulas in literature. Here, we use 
following formula from [6] to compute ;=� order derivative on various distribution.  
 

                   
��W��6�

<! � �
tu

∑ �$k$,2 ∑ 	7
�68�6�WX��7 � v�<����<�w

45."$5. � x���.                 (24)         

 

Where  �. � 1,  ∑ �4<45. y<�4 � 0, v � z1, � � �$0, � \ �$
{ , y| � ∑ �

�68�6�}X�
"$5.    and   x��� �

12��� ∑ ��~X��7XW��7�
�"
��4
<�!

<�w
45.  . The computations  were performed in  MATLAB, for which 

� � 10���.  In first example, we take 11 equally spaced points �C on _�1,1` thus # � 10 
and set ���� � eN . We evaluate the derivatives approximately up to order 3 at 100 
equally spaced points. Figure 1 and Figure 2 plots the errors for derivatives up to order 3 
for 11 points on evenly spaced points and Chebyshev  points of first kind. 
 

 
Figure 1:  
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Figure 2:  

 
In the second example, we take 11 equally spaced points �C on _�1,1` thus # � 10 and 

set ���� � sin �π ��. We evaluate the derivatives approximately up to order 3 at 100 

equally spaced points. Figure 3 and Figure 4  plots the errors for derivatives up to order 3 
for 11 points on evenly spaced points and Chebyshev  points of first kind. 
 

 
Figure 3:  
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Figure 4:  
  

The equation (23) clears that computation of derivatives through finite difference 
formula depends upon condition number of order of derivatives and h. These are the two 
factors determines stability of the computation of the numerical derivatives. Usually, if 
the order of derivative increases then the  power of h decreses in (20). This proves that 
the round off error increases when the order differentiation also increases.  In the first 
example the condition number of  first  three derivatives of l6  on evenly spaced points 
are   2982.4, 79925, 1.2861 e 10�.  Hence the roundoff errors of higher order 
derivatives increases when condition  number increases. In the second  example the 
condition number of first three derivatives on evenly spaced nodes are  3.8144e 10�,  
4955.4,   2.816e 10�. But   power of h decreases when the order of differentiation  
increases. If  h is too small the roundoff error becomes very high. Hence, the calculation 
of derivatives near the nodes gives very poor accuracy.  For larger values of h, the 
discretization error in (23) becomes high. Therefore, for very few points between the 
nodes gives quite good accuracy. 
 
4.  Roundoff error analysis of numerical integration 
Let  �.��, �, … , �"  are distinct numbers on the closed interval _�, � � �`  and � D
��"
��_�, � � �`. The problem of numerical integration is to approximate the definite 

integral � ����a�6
�
6 . Since polynomials are easy to integrate by using Taylor series,  we 

find that 

                                         � )�,2���a�6
�
6 � � ∑ �7

�4
��! )�,2�4����"45. .                          (25) 

 
Let ∆� is the small change in  �. Then 

     � )�,2���a�6
�
6 � � )�
∆�,2���a�6
�

6 � � ∑ �7
�4
��! c)�,2�4���� � )�
∆�,2�4����d."45.  

Thus, the roundoff error of numerical integration can be found as follows 
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  S� )�,2���a�6
�
6 � � )�
∆�,2���a�6
�

6 S ^ � ∑ �7
�4
��! �)�,2�4���� � )�
∆�,2�4�����"45.           

                                                 � � ∑ ��
��4 �

�4
��! �)�,@�4��A� � )�
∆�,@�4��A��."45.   

Using (20), yields that 

S� )�,2���a�6
�
6 � � )�
∆�,2���a�6
�

6 S ^ *� ∑ ��
��4 cond��,, �, �� �TU,Y�7��B��

�4
��!
"45.        (26)         

 
Newton-Cotes formulae.  Let �$ � � � &�,& � 0,1,23, … , #, � \ 0 are equally spaced 
grids. Now replacing � by � and �  by #� in and after simplification, we obtain 

S� )�,2���a�	
"�
	 � � )�
∆�,2���a�	
"�

	 S ^ *� ∑ #4
�cond��,, �, �� �TU,Y�7��C��
�4
��!

"45.      (27) 

The equation gives  roundoff error of �# � 1� �point  formula for Newton-Cotes closed 
integration formula. Since the open quadrature formula do not require functional value at 
the  limit points of integration, assume that �$ � � � &�,& � 1,2, … , #-1, � \ 0. Then 

 S� )�,2���a�	
"�
	 � � )�
∆�,2���a�	
"�

	 S ^ *� ∑ #4
�cond��,, �, �� �TU,Y�7��C��
�4
��!

"�45.     (28) 

 
Linear multistep methods. Let �", �"��, �"�, … , �"��  are � � 1 distinct numbers on 
the interval _�", �"
�` , where �"
� � �" � �′ . If we  approximate the differential 
equation �′ � ���, �� by integrating from  �" to �"
�,  gives 

    S� )�,2���a�6~
�′
6~ � � )�
∆�,2���a�6~
�′

6~ S ^ *�′∑ ��′
��4  cond��,, �, �� �TU,Y�7��C��

�4
��!
"45.    

The equation gives  roundoff error of �� � 1� � point predictor  formula. If we  
approximate the differential equation � ′ � ���, �� by integrating from  �"
� to �",  gives 

     S� )�,2���a�6~
6~
�′ � � )�
∆�,2���a�6~

6~
�′ S ^ *�′∑ ��′
��4  cond��,, �, �� �TU,Y�7��C��

�4
��!
"45.   

This  kind of multistep formula is known as �� � 1� �point corrector  formula. 
 
4.1. Numerical example  
We give numerical example for roundoff errors of evaluation of integrals � l6a��

.  and 

� b6
�
6�

�
��    using n-point Newton-Cotes formula. The roundoff  errors of number of noes 

# � 2,3, … ,17 are given in table 1. Trepzoidal, Simpson’s 1/3 and Simson’s  3/8 rule are 
special cases of Newton-Cotes formulas for  # �2,3 and 4. The table 1 shows numerical  

instability of higher order Newton-Cotes formulas for computation of  � l6a��
.    and 

� b6
�
6�

�
��  .   

The equation  (27) shows that the roundoff error of Newton-Cotes formula 
depends on all the condition number up to  highest derivative # (derivative of # degree 
polynomial is #!) and the highest power of  n in the last term #"
�.   Thus,  #"
� grows 
exponentially as n increases. Since all the summation in (17) are positive terms, the upper 
bound in (27)  is very high. There is no evidence of strong stability of higher Newton-
Cotes formula.  
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Table 1:  Roundoff errors for � l6a��
.  and � b6

�
6�
�

��   using Newton-Cotes formulas for 

n=2,3,…,17 
5. Conclusion  
In conclusion, we note that roundoff error analysis numerical differentiation and 
integration through polynomial interpolation have been studied in this article. It is shown 
that the round off errors are depend on condition number of the derivative and � �
minZ-|�$ � �|0 \ 0   for  & �  0, . . . , # .  Hence, it is clear that the computation of 
derivatives very close to the given nodes, posses poor numerical stability than the near 
the center of nodes.  Similarly, we study the roundoff errors of numerical differentiation 

depends upon condition of umber of derivatives up to higher order and the ratio ��
��"

. It 

is shown that  the use of  higher  order Newton-Cotes formulae for interation is unstable 

process since  the number  
"~X�
"
�   grows exponentially as n increases. Therefore the use of 

lower order formulae such as composite trapezoidal rule and simson rule good choice 
then the use  of higher order Newton-Cotes formula.  
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