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Abstract. The numerical differentiation based on the intesiinfy polynomial is basically
an unstable process and one cannot expect goothagaven when the original data are
known to be accurate. We analyze the stability ahjputation of derivatives through
polynomial interpolation at given point numericalipd prove it has poor stability when
closer to the interpolating nodes however it hagjuite good stability between
interpolating nodes.

The numerical integration by use of lower ordenfulas such as trapezoidal rule
and Simpson rule gives accuracy of results than afskigher order Newton-Cotes
formulae. In this paper, we also analyze the redgothe poor stability of higher order
Newton-Cotes formulae. Numerical examples are gteestudy roundfoff error analysis
of numerical differentiation and integration.
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1. Introduction

Numerical approximations to derivatives are usednipan two ways. First, we are
interested in calculating derivatives of given dttat are often obtained empirically.
Second, numerical differentiation formulae are usederiving numerical methods for
solving ordinary and partial differential equation¥he problem of numerical
differentiation of noisy data is ill-posed, smaflanges of the data may result in large
changes of the derivative. There is always a atirflj relationship, as nodes become
denser, data reflect the rapid variation bettedevtifferentiation of the data gets more
noise. Consider the central difference formulagfmproximatingf’(a)

1oy _ flath)=fa=h) _R2f""'(§)
f'(@)= ™ - )

In calculations, we will in fact use the numbef& + h) + Af; andf(a — h) + Af_4
Instead of the numbefga + h) and(a — h) , use of roundoff. Therefore, we compute
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_ flath)~f(a=h) | Afi-Af-y  R2F(©)

fcomp - 2h + 2h 6
Hence
' , Afi-Af, K3 FT(E)
(@) = flogmp — 2522 =L 2)

The error in the computed approximation qffcomp andf '(a) is therefore seem to

consist of two parts, one part due to roundoff, sredother part due to discretization. If
f"(x) is bounded, then the discretization error goeseto ash — 0, but the round off
error goes if we assume thef, — Af_, does not decrease. Hen¢&a) gives good
approximation only at optimum value bf If h is small and approaches to zero i.e when
the data is dense then the process estimatingatiggs for evenly spaced nodes is
unsatable. This analysis shows that we can contimtround off error by using
“sufficiently” high precision arithmetic. But thiss impossible wherf(x) is only
approximately at finitely many points [1]. Howevém, Ref[5] shows thatthe use of a
higher-order formula, such as a 7-or even a 10t@mproximation, based on the method
of undetermined coefficients, can sometimes leadbetier accuracy and enhanced
computational efficiency rather than 2- point aicee point formula. In the present study
we give roundoff error analysis for higher ordermmuical differentiation formula
through polynomials for arbitrary spaced gridsthis paper, we give the round of errors
of calculation of derivatives through polynomialdrpolation and analyze the stability of
numerical differentiation up to higher order.

The idea of numerical integration tts replace a complicated function or
tabulated data with an approximating function tfgateasy to integrate. Polynomial
function is the best choice to replace the actuattion because of its simple form and
also it can be easily found through Lagrange imiatpn formula or Newton
interpolation formula[4] for evenly or unevenly spd grids with any degree of
accuracy. If the nodes are spaced evenly thenubdrature formula is called Newton-
Cotes formula. Trapezoid, Simpson’s 1/3 and 3/8suBode’s are special cases of 1st,
2nd, 3rd and 4th order polynomials are used, réspede in Newton cotes formulas.
Using large number of equally spaced nodes mayndecurate behavior associated with
high-degree polynomial interpolation Indeed, evergoint Newton-Cotes rule with a
11 has at least one negative weight, so NewtonsCates become arbitrarily ill-
conditioned. The lower order formulas for approximg integrals such as Trepezoidal
and Simson rules are special cases of NewtoasGategration formulas and gives
better accuracy then higher order formulas. In gaper we analyse poor stability of
higher order Newton-Cotes formula through roundofbr analysis.

2. Preliminaries

LetII,, denote the vector space of all polynomials ofrdegat most and letx;,i =
0,...,n, be n + 1 distinct nodes and suppose tfiat = 0,...,n,, are corresponding
numbers. Then, there exists a unique polyno®jialll, such that Pr(x) = f;, i =
0,...,n. LetX = {x¢x1, x5, ..., Xn} and denote the Lagrangian polynomials as follows
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L () = [Tf=o(x = x) and lix () = [Ti=0, ;= (3)
i*k

The Lagrange’s interpolation formula[1, 3] for apgmatingf on theX is given by
Pf,x(x) =Y Ly, () ;- 4)
Differentiatingm times with respect te,

P(m) () = I8, 1P s (5)

where P(m) (x) andll.(;';)(x) arem®" derivatives of Py x(x) and Ix;(x) respectively.
Let | = {jo,jl,jz, ..,jn} and denote the Lagrangian polynomials as follows

(s) = TTi=o(s — jx) and Ly (x) = [Tz, 2% ®)
i*k

The Lagrange’s interpolation for approximatifign serJ is given by
Pri(s) =Xt lisfi- (7)

Definition 2.1. Define the condition number ofh" order derivative ofPs x (x) atx for
n € NU{0} over the seX as follows[3]

Py c0-PI )]

)

)

condy, (X, x, f) = supyex lim_,

Similarly, condition number ofmt" order derivative ofPr;(x) at's over the setl as

follows

[P =P s )|
|77 )

condy(J, s, f) = supse; lim o

3. Round of error analysis of numerical differentiation

Define h = mini{|x; — x|} #0 for i = 0,...,n and arrange each node;, i =
0,...,n by spacing at distanggh from x,, (i.e) x; = xy + j;h, wherej, =0,j, =
(xn — x0)/h and satisfies0 < j; < (x, — xo)/h. Let x be any point ofixy, x,] and
X =x9+sh, where 0 < s < (x, — x9)/h. Then, the following relationship holds
between Lagrange’s polynomials (3)

Iy (x) = k™11 (s) (10)
and

29



M. Ramesh Kumar and G. Uthra

lix(x) = li,](x) (11)
Using (3), (6) and (8) gives

Pf,X(x)= ?=Oli,X(x)fi= ?=Oli,](5)fi

Thus, we find that
Pf,X(x) = Pf,](S) (12)

Equation (12) shows th& x(x) does not depend dn Differentiating (11) with respect
to x and usingls = dx/h, gives

=[x ()] = 2 [11)(9)]

= [l ()] x =

=221 (s)]

a d
=— [l;,(s)] x d—j
700 =215
Differentiating again with respect 19 gives
2 1
11200 == 15(s)
Proceeding this times, yields
1% @) = =17 (s) (13)
Substituting (13) in (5), gives
1
PR @ = T (O (14)
Let Af is the small change ifi. Then

P x (@) = 2 o 1P () (fs + A7) (15)
(14)-5)=

1
P2 () = Py 1 () = = So L ()4,
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1
By = B, ()] < 5 T [ ()|
Choose|Af| = €, gives
P90 = PR (0| < 520 [ (91| (16)

Equality is attained fon\f; = sign(ef; l-(rjn) W)

L
1
[5G = B 00| = 5 ZLo B S, ar)
Similarly, we easily find that
[P () = BT, ()] = Sio L), (18)
Using (17) and (18) , gives

[Py ©=PTary @] _ [PrR e0—Prlx(0)
P77 ) [Py GO

Hence,
condy, (X, x, f) = cond,(J, s, f) (19)

Hence the condition number datx is same as condition numbkat s

Using (16) and (19), yields the bound for roufidnfor of A% (x)

PER () = Py 4 (0] < 5 cond U5, )[R0 (s)] (20)

Suppose thaf be a real-valued function and continuously diffriable
function on the closed interval|[a,b], where a = min{x,,...x,} and
b = max{x,...x,} . Shadrin [8] has shown that Rf x(x) denotes the polynomial of
degreen interpolatingf at the points, x4, ... x,, thenform = 0,1, ...,n

f(m+1)

(m+1)!

PG - F 0| < [P0 |

. 1)

This bound was earlier conjectured by Howell [3]londlso proved it for the highest
derivativek = n. Let Pcf;")(x) is computede(’;”)(x). Then

PGP @) - ™ )| <

PR - B @)+ PP @ - fMw| (22
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Using (21) and (22)

PR @) - f )| < 15 condu(s, 1) [5G + |50 @ [ o
Using (13), we find the bound for total error
PG~ F ()| < oo — cond(/,5, 1) [P0 (5)]
s el gl e

3.1. Numerical experiment

We report an experiment whose purpose is to védyconclusions of the roundoff error
analysis. There are plenty of numerical differdmdiaformulas in literature. Here, we use
following formula from [6] to computent™ order derivative on various distribution.

fFm
) = N fiWix D e + Xam () + E(). (24)
m 1 X = 1
Where a, =1, Zk=0ak6m_k=0,)( 0, xth 51”_ l OW and E(x) =

m— (n+1-k+m
lX(X)Zk=OXf(n+1_—k+TEf)I!{)
u ~ 107, In first example, we take 11 equally spaced tsoinon [—1,1] thusn = 10
and setf(x) = e*. We evaluate the derivatives approximately up tdeo 3 at 100
equally spaced points. Figure 1 and Figure 2 ghat<errors for derivatives up to order 3
for 11 points on evenly spaced points and Chebygtwats of first kind.

. The computations were performed in MATLAB, fohich

Roundoff errors of first three derivatives of flxj=expix) for 11 evenly spaced points

10 i i i i i i i i i
A 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

Figure 1:
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Roundeff errors of first three derivatives of fix)=expix) for 11 Chebyshev points of first kind

10-“ T T T T T T T T I
m=0
—+— m=1
= 4 —H— m=2 |4
10° P —%— m=3]

B

-”]"Z 1 1
-1 0.5 -0.6 -04 0.2 i

Figure2:

0.6 0.3 1

In the second example, we take 11 equally spacedspg on[—1,1] thusn = 10 and

setf(x) = sin (gx) We evaluate the derivatives approximately up tdeo 3 at 100

equally spaced points. Figure 3 and Figure 4 platserrors for derivatives up to order 3
for 11 points on evenly spaced points and Chebygtwints of first kind.

. Roundoff errors of first three derivatives of fix)=sin{pi/2*x) for 11 evenly spaced points
10 - T T T T T T T T I

Figure3:
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- Roundoff errors of first three dervatives of f{x)=sin(pi/2%x) for 11 Chebyshev points of first kind
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Figure4:

The equation (23) clears that computation of d¢isiea through finite difference
formula depends upon condition number of orderesfvéitives andh. These are the two
factors determines stability of the computatiorttef numerical derivatives. Usually, if
the order of derivative increases then the poviidr decreses in (20). This proves that
the round off error increases when the order difféation also increases. In the first
example the condition number of first three datikes ofe* on evenly spaced points
are 2982.4, 79925, 1.2861 x 10°. Hence the roundoff errors of higher order
derivatives increases when condition number isgealn the second example the
condition number of first three derivatives on dyespaced nodes are 3.8:4408,
4955.4, 2.818 10%. But power ofh decreases when the order of differentiation
increases. Ifh is too small the roundoff error becomes very higance, the calculation
of derivatives near the nodes gives very poor aur For larger values df, the
discretization error in (23) becomes high. Themfdor very few points between the
nodes gives quite good accuracy.

4. Roundoff error analysis of numerical integration

Let xgxq,%y,...,x, are distinct numbers on the closed intergl + H] and f €
C™D[x,x + H]. The problem of numerical integration is to apfmmate the definite
integralfxx+Hf(t)dt. Since polynomials are easy to integrate by usigor series, we

find that

fx+H PfX(t)dt HYR- 0(k+1)' (k)(x) (25)

Let Af is the small change ifi. Then

+H +H H*
fx Pr x(t)dt — fx Prinpx(©)dt = H ¥y kD)1 [Prx® () = Praapx @)
Thus, the roundoff error of numerical integrati@am e found as follows
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+H +H
|fx Pr x(t)dt — fx Pf+Af,X(t)dt| < HYy- o(k+1). |PfX( )(x) — Pf+AfX( )(x)|

H\K
=030 () G P © = Praar, )]

Using (20), yields that
K(s)|

k ¢
2 Pyt = [ Proapx(©dt] < et oy (2) condyx, x, £ 22

(k+1)! (26)

Newton-Cotes formulae. Letx; = a +ih,i =0,1,23,...,n, h # 0 are equally spaced
grids. Now replacing bya andH by nh in and after simplification, we obtain

®) ¢
S5 P ()t — Prearx(6)dt| < eh Ti_gn**1condi (X, a, f)% (27)
The equation gives roundoff error @f + 1) —point formula for Newton-Cotes closed
integration formula. Since the open quadrature formula do not requinetfonal value at
the limit points of integration, assume that= a + ih,i = 1,2, ...,n-1, h # 0. Then

Pr 0
Py x(t)dt — Pf+Af,x(t)dt| < eh¥Pzzn**1condy (X, a, f)l L] |

(k+1)!

fa+nh

fa+nh fa+nh

(28)

Linear multistep methods. Let x,, x,_1,Xp_3, ..., Xp—p arep + 1 distinct numbers on
the interval[x,,x,,1], Wherex,,; =x, +h'. If we approximate the differential
equationy’ = f(x,y) by integrating fromx, t0x,,,, Qives
n+h n k P (])
[ Byt = [ By (@dt] < e B (£) cond(x,x, ) P20
The equation gives roundoﬁ error @b + 1) — point predictor formula. If we
approximate the differential equatign= f(x,y) by integrating fromx,,; to xn, gives
Xn K |P (J)|
|fxn+h,Pf_X(t)dt fx R Pf+Afx(t)dt| <eh'Yji- o( ) condy (X, x, f)ﬁ
This kind of multistep formula is known &® + 1) —point corrector formula.

4.1. Numerical example
We give numerical example for roundoff errors ofleration of integralg‘o1 e*dx and

f_llli% usingn-point Newton-Cotes formula. The roundoff errofshamber of noes

n =2,3,..,17 are given in table 1. Trepzoidal, Simpson’s 1/8 8mson’s 3/8 rule are
special cases of Newton-Cotes formulas fio=2,3 and 4. The table 1 shows numerical

instability of higher order Newton-Cotes formulas ftomputation Offolexdx and
1 dx
it
The equation (27) shows that the roundoff errorNefwton-Cotes formula
depends on all the condition number up to higldesivativen (derivative ofn degree
polynomial isn!) and the highest power af in the last terrm™*1., Thus, n™*! grows
exponentially as n increases. Since all the sunomati (17) are positive terms, the upper

bound in (27) is very high. There is no eviden€etoong stability of higher Newton-
Cotes formula.
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No. of nodes | Roundoff errors ofol e*dx | Roundoff errors off_llld—x2
+x
2 1.4086e-001 5.7080e-001
3 5.7932e-004 9.5870e-002
4 2.5832e-004 2.9204e-002
5 8.5947e-007 1.0796e-002
6 4.8452e-007 5.1855e-003
7 1.1065e-009 2.2440e-003
8 1.7479e-009 1.1900e-003
9 4.3057e-007 5.6582e-004
1l 4.8493e-007 3.0523e-004
11 4.8434e-004 6.0862e-005
12 7.2006e-003 3.6071e-003
13 5.4590e-001 2.2450e-001
14 2.9756e+001 1.9330e+001
15 2.9826e+003 3.0918e+003
16 1.2429e+006 7.8947e+004
17 1.9051e+006 2.8648e+005

Table 1: Roundoff errors foﬂo1 e*dx andf_lll‘j% using Newton-Cotes formulas for
n=2,3,...,17

5. Conclusion
In conclusion, we note that roundoff error analysismerical differentiation and
integration through polynomial interpolation haweeh studied in this article. It is shown
that the round off errors are depend on conditiamimer of the derivative and=
mini{|x; —x|}#0 for i = 0,...,n. Hence, it is clear that the computation of
derivatives very close to the given nodes, posses pumerical stability than the near
the center of nodes. Similarly, we study the rafhdrrors of numerical differentiation

n
depends upon condition of umber of derivativesaipitjher order and the rat(%) t
is shown that the use of higher order Newtore€dbrmulae for interation is unstable

) nn+1 ) .
process since the numb% grows exponentially as increases. Therefore the use of

lower order formulae such as composite trapezaidlal and simson rule good choice
then the use of higher order Newton-Cotes formula.
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