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Abstract. Uncertainties in a problem are represented as fumayrices using fuzzy
principles. Recent days fuzzy matrices have becmngfamous. In this paper unlike the
usual matrix representation of a fuzzy graph wispect to vertices, a new matrix
representation with edge membership values as ewiscolumns is introduced. The
relationship between the double layered fuzzy grapt the given fuzzy graph whose
crisp graph is a cycle are analyzed.
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1. Introduction

The concept of fuzzy set was introduced by Zadeli965. Fuzzy graph theory was
introduced by Rosenfeld in 1975 [5]. It is well kmo that matrices play a major role in
various areas such as mathematics, physics, &mtisingineering etc. Matrices with
entries from [0, 1] and matrix operation defined fayzy logical operations are fuzzy
matrices. Fuzzy matrices play a fundamental roléuizy set theory. They provide us
with a logical framework within which many problero$ practical applications can be
formulated.

Fuzzy matrices can be successfully used when furmertainty occurs in a
problem. Fuzzy matrix has been proposed to reprdaeny relation in a system based
on fuzzy set theory [1]. Fuzzy matrices were intreet first time by Thomson [2], who
discussed the convergence of powers of fuzzy nestritwo new operations in fuzzy
graphs were introduced by Shayamal and Pal [4].dEtterminant and adjoint of a square
fuzzy matrix are introduced by Ragab and Emam [P3thinathan and Jesintha Rosline
had defined the double layered fuzzy graph [12].this Paper the edge matrix
representation is defined, using it the matrix espntation of the double layered fuzzy
graph is given. The relationship between the DLIR@ #he given fuzzy graph are given
as propositions and simple examples are preserited/evification.
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2. Preliminaries
Definition 2.1. [5] A fuzzy graph G is a pair of functions ;1) wherec is a fuzzy
subset of a non empty set S and p is a symmetziryfrelation ons . The underlying

crisp graph of G, ) is denoted bz : (0,4 )

Definition 2.2. [8] Let G(o,u) be a fuzzy graph, the order of G is defined as
O(G) =) o(v

Deffinitiour?V 2.3. [8] Let G(o,u) be a fuzzy graph, the size of G is defined as
S(O=2 uuy

u MV
Definition 2.4. [10] Let G be a fuzzy graph, the degree of a vertax @ is defined as

d(u)= Z,u(u, V)and is denoted adl; (U).

VZ#U
viv

Definition 2.5. [12] Let G: (o, u)be a fuzzy graph with the underlying crisp graph
G :(0,4). The pairDL(G): (0, iy ) is defined as follows. The node set of

DL(G)be o U 4/ . The fuzzy subsew,, is defined aw,, = {J(u) If_ ute .
H(uv) if uvdpy
The fuzzy relationi,, on VUE is defined as
puy) if yvdo
u(e)Uu(e) if the edge e and ehave a node in coombetween then
Uy, =+ 1) Ou(e) if yOo &e O and each e incident withngjle u only
either clockwise antaclockwise.
0 otherwise.

By definition, £, (U,V)< 0, (U 0o, (MO uving Wi . Here i, is a fuzzy
relation on the fuzzy subser, . Hence the paiDL(G) (OpL, Uy, ) is a fuzzy graph
and is termed as Double Layered Fuzzy Graph.

Definition 2.6. A fuzzy graphG:(o,u) with the fuzzy relation p to be reflexive and
symmetric is completely determined by the fuzzy nrat Mg, where

pv,v,) i i #]
(MG)ij = e
a(v,) if i=j
If o has n elements thend\has n x n elements.
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Remark 2.1. In this paper, we are hamed the above matrix asiM@presentation of a
fuzzy graph with respect to vertices and is denatelll G, -

3. Matrix representation of DLFG
Consider a fuzzy graph G with n = 3 vertices.
V1(0.6)

e3(0.4) e1(0.5)

V5(0.5) €(0.3) V(0.8)
Figure l: G:(o,M)

The matrix representation with respect to vertfoeshe fuzzy graph G is given by
Vl V2 V3
v, 0.6 0.5 O.
Mg =
° v, [05 0.8 0.
v, (04 03 0.

The double layered fuzzy graph for G is given by

V4(0.6)

Vo(05 03 V,08
’ N 9%

e3(0.4) 0.3 €,(0.3)
Figure 2: Double layered fuzzy graphL(G): (op., UpL)

The matrix representation of DLFG is

Vi V2 V3 & & 8§

v, [06 05 04 05 0 O
v, |05 08 03 0 03 0
Mye,=Vs |04 03 05 0 0 04
e |05 0 0 05 03 04
e, |0 03 0 03 03 0.3
e |0 0 04 04 03 04
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3.1. Edge matrix representation of fuzzy graphs
For a fuzzy graptG : (o, ) with the fuzzy relation p to be reflexive and syntirice, the

edge matrixMG” is defined as follows,

min {/(e,), (e )} if v, is the common vertelxetween g and; ¢
(M), = {ue) ifi=]

0 otherwise

If 4 contains ‘n’ elements theMGM is a square matrix of order n.
Example 3.1 For Figure 1, the edge matrix representation isryivy

& & §
_ e [05 03 0.

M
% e |03 03 0.

e, (04 03 0.
Thus for Figure 2, the matrix representation becmme

" _ MGO DGu
DL(G,) DG MG

H H

4. Theoretical concepts
Theorem 4.1. My, ¢ ,is a symmetric matrix.

Proof: By the definition of My, the relation p is a symmetric relation.
Hence,

(Mowe,y), = MV, v)
2 (V V) M is symmat
{ M),

— T
U Moie,) =Moo,

Thus My, ¢ ) is @ symmetric matrix

Theorem 4.2. Trace (M, , )= Order(G) + Size(C
Proof: Trace My, ¢ ,) = Sum of the diagonal entries M, ¢, ;.

:i'uDL(G)(Vi’Vi): z UDL(G)(Vi)

:
v;Oop,
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= > 05(V)+Hs(8) by the definition of node set in DLFG.

vo,
ey

= > 05(v)+ Y. Us(g)= Order (G) + Size (G).
oo’ ey

Theorem 4.3. The sum of all the entries iN ., except the diagonal element in the
row or column is degree of DLFG, i.e.,

(i) If vOo', thendy g, (V) =D (Mg, ); +( Mg, )ik
j=1

B3]

(i) if v, 04, thendy, ) (v)) =Y (Mg, ); +(Ms, ) where
i
i+1 ifi+1< n

e
Rem(]—) ifi+1 >n
n
Proof: The sum of all the entries ikl ., except the diagonal element in the row or

COIUmn iS Z(M DL(G))ij = Z/'[DL(G)(Vi ’Vj) = dDL(G) (VI)
5 5
Casei: If v 00 inG,thend, V) =D tp ey VY,)
=1
i%]

= Z/'[G(Vi’vj)-'-/'[G (V%) :Z(Mea)ij-'- (MGa)ik '
ij:jl ij:J'1
i+1 ifi+l< n
wherek =

Rem(ﬂ) ifi+1>n
n
Caseii:

If vOuinG, thend,, 6, (V) = Z,UDL(G) Vi) = Z,UG (Viv) + s (V%)
j=1 j=1
i %

=3 Mgy + (M),

i%]
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i+1 ifi+1< n

wherek = i
Rem(ﬂ) ifi+1>n
n

Theorem 4.4. The sum of all entries iM ., except the diagonal element is

4size(G)+ D fr& Py € ).
i=1
Proof: The sum of all entries iM ) except the diagonal element is

= 3 uv.v) =Z b (V)

i=1 j=1
i#]

Casei:
it v 00 thend > 4(v,v) =Yt (V) =2 O (M), +(Mg, ),)
i=1 j=1 i=1 j=1 j=1
i#] i#] 07

=20 (W)* (Mg, ), )= D da(w)+ X (Mg, ),
= 2 size(G) + Size(G)= 3 size(G).

Caseii:
If v Oy, theniiy(\/i,\/j) = Zn: by ey (V) = Zj“(i (MG,,)ij +(MGa)ik)
= 373 (u(e) Du(8) +(Mq, ), )= 2 3 w(e) D)+ X (M),

= 2)" (u(e) Ip(8)) + size(G)

Thus, ifv, Doy, thenii#(\/i V) = 2i W @©)Ou(e))+ 4size(G

Example 4.1. Consider the fuzzy graph with n = 4 vertices.

V4(0.7) e41(0.4) V(0.8)

€4(0.6) 2(0.3)

Vi(0.9)  ex0.2) V3(0.5)

Figure 3: G:(o,H)
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Here, Size (G) = 1.5 ani (u(g)du(e))=1.1.
7

F|gure4 DL(G). (O-DL' #DL)

Vl V2 V3 v 4 el e2 e3 e4

v, [07 04 0 06 04 0 0 0
v, |04 08 03 0 0 03 0 Q@
v, |0 03 0502 0 0 02 0
Moo = Ve |06 0 02 09 0 0 O O
e |04 0 0O 0 04 03 0 04
e, [0 03 0 0 03 03 02 0@
e, |0 0 02 0 0 02 02 0
e, |O 0 0 06 04 0 02 O

Sum of all entries except the diagonal element2= 8
n
4size(G)+ D fr& Py € )=2(1.1)+4(15) =2.2+6=8.2.
i=1
Thus, Sum of all entries except the diagonal elésen

= 4size(G)+ D fé VK )

5. Conclusion

In this paper, we have defined a new matrix reprasi®n using edge membership
values. The relationship between the matrix repiteé®n of double layered fuzzy graph
using vertices and given fuzzy graph whose crisgplgris found to be a cycle is
examined. Numerical example is given to verify thsults. Further analysis will lead to
application of DLFG in different networks.
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