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Abstract. Let G = (V,E) be a simple (p,q)-graph.  An (a,d) - vertex antimagic total 
labeling (VATL) of G is a bijection f : V(G) ∪ E(G) → { 1,2,… p +q } so that the set of 
vertex weights in G is given by W = {w(v): v∈ V } = { a,a+d,a+2d,…a+(q-1)d } where a, 
d are two fixed positive integers. In this paper, we examine the existence of  the vertex 
antimagic total labeling of the Harary graph ���   and hence prove that r ���   admits 
antimagic total labeling as well as (a,d)-vertex antimagic total labeling where r > 0 and t 
> 0 are finite integers.  
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1. Introduction 
Graph theory is one of the famous branches in Mathematics which has attracted many 
research Scholars, by its rapid growth and wide range of applications. It is the study of 
discrete structures called graphs. A graph G = (V(G) , E(G)) consists of a non-empty set 
of vertices called the vertex set V(G) and a set of edges which are ordered or unordered 
pair of elements of V(G) called the edge set E(G) where each edge e in E(G) is assigned 
with a pair of vertices. Graphs can be used to represent almost every physical problem 
involving discrete objects and a relationship among them. For introduction of Graph 
theory and its basic concepts, there are various textbooks, among which Harary [3] and 
West [2] gives the fundamental concepts in a detailed manner. 

Graph Labeling 
The concept of labeling of graphs was introduced in the late 1960’s by A.Rosa which is 
now a famous research topic in Graph theory. Graph Labelings are widely used in Coding 
theory, Wireless networks, Circuit designs, Communication technology, Radar, X-Ray 
Crystallography etc. Gallian [5] has made a complete dynamic survey of graph labelings. 
 
Definition 1. Graph labeling is an assignment of integers to the vertices or edges or both 
under certain conditions. The three major classes of labelings are vertex labeling, edge 
labeling and total labeling. The vertex labeling of a graph G assigns labels to the vertices 
which induces a label for each edge. Similarly, edge labeling of a graph assigns labels to 
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the edges which induces a label for each vertex while the total labeling assigns labels to 
both vertices and edges.  

Definition 2. Let G be a connected graph with q edges. If the edges of G are labeled with 
distinct positive integers, such that for each vertex v , the sum of the labels of all edges 
incident with v is the same for all v, then such a labeling is called magic labeling and the 
graph G is called a magic graph. A general study of magic graphs has been given in [8]. 
 
Definition 3. Let G = (V,E) be a simple (p,q)-graph.  An (a,d) - vertex antimagic total 
labeling (VATL) of G is a bijection f : V(G) ∪ E(G) → { 1,2,… p +q } so that the set of 
vertex weights in G is given by W = {w(v): v∈ V } = { a,a+d,a+2d,…a+(q-1)d } where 
a, d are two fixed positive integers . 
If w(v) is distinct for all v∈ V , then the labeling is called anti magic total labeling. 
Some significant antimagic labelings can be seen in [6] and [7]. 

Definition 4. For t ≥ 2 and p ≥ 4, a Harary graph  ��� is a graph constructed from a cycle �� by joining any two vertices at distance t in ��. 
 
2. Main results 
In this section we examine the existence of  the vertex antimagic total labeling of the 
Harary graph ���   and show that  r ���    admits antimagic total labeling as well as (a,d) - 
vertex antimagic total labeling where r > 0 and t > 0 are finite integers.  
Vertex antimagic total labeling on Harary graghs was studied by C.Balbuena [1]. 

Theorem 1. [4] For any odd p ≥ 5 and t ≥ 2, ���  admits a �����	
  , 3
 - vertex antimagic 

total labeling .  

Theorem 2. For any odd p ≥ 5 ,t ≥ 2 and r > 0, r ���  is anti magic. 

Proof: Let |����| = p and |����| = q, then the vertex and edge sets of  ��� are denoted by  
V = { vi : 1 ≤ i ≤ p }, E = { vi vi+1 : 1 ≤ i ≤ p }∪ { vi vi+t : 1 ≤ i ≤ p }  where all indices are 
taken mod p. 
Define the labeling f : V ∪ E → { 1,2,… p +q } as follows: 
f (vi)        = 2i – 1 ,        1 ≤ i ≤ p 
f (vi vi+t) = 2p – 2(i-1) , 1 ≤ i ≤ p 

f (vi vi+1) = � �
 �5� � � � � � 1�,   ���  � � �, � � 2, � � 4, … , � � 1
3� � �
 �� � � � 1�,    ���  � � � � 1, � � 3, � � 5, … , �# 

For i = 1,2,3,…,t-1,  f (vi vi+1) is defined in two cases: 
Case 1. If t is even 

f (vi vi+1) = �2� � �
 �� � � � 1�,   ���  � � 1,3,5, … , � � 1�
 �5� � � � � � 1�,    ���  � � 2,4,6, … , � � 2# 
Case 2. If t is odd 
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f (vi vi+1) = �2� � �
 �� � � � 1�,   ���  � � 2,4,6, … , � � 1�
 �5� � � � � � 1�,    ���  � � 1,3,5, … , � � 2# 
With this labeling f , we get that the vertex weights are given by  

W = {w(v): v∈ V } = %����	
  , �����&
 , … , �	���
  ' with a = 
����	
   and d = 3.  

Thus f is a �����	
  , 3
 - vertex antimagic total labeling. 

Now define the labeling g1 as follows: 
g1

k : V(r ��� ) ∪ E(r ��� )  → { 1,2,… r(p +q) } for the k th graph (copy) of r ��� is given by 
g1

k (vi) = f (vi) + 3p(r-k) 
g1

k (vi vi+1) = f (vi vi+1) + 3p(k-1) 
g1

k (vi vi+t) = f (vi vi+t) + 3p(k-1) 
Then we get that the vertex weights for the k th graph are given by 

Wk � %�()��*+,�����	
  , �()��*+,�����	
 � 3, �()��*+,�����	
 � 6, … �()��*+,�����	
 �3�� � 1� ' 

i.e, when this k th graph is considered separately as an individual graph, it has an ��()��*+,�����	
 , 3
 vertex antimagic total labeling for k = 1,2,3,…,r.  

Hence for any two distinct vertices vi and vj of r ���, w(vi) ≠ w(vj). 
Thus r ���  is anti magic. 
 
Example 1. Antimagic total labeling of 3 -./ 

Theorem 3. For any odd p ≥ 5, t ≥ 2 and r > 0, r ���   admits a ���
)�����	
  , 3
 - vertex 

antimagic total labeling . 

 
Figure 1: 3 C1� 

 

 
W1 = { 92,95,98,…,110 } 

= �234�52  , /
 VATL 

 
W2 = { 155,158,161,…,173 } 

= �6/4�52  , /
 VATL 

 
W3 = { 218,221,221,…,236 } 

= �784�52  , /
 VATL 
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Proof: Consider the labeling f on ��� given in theorem 2.  
Now define the labeling g2 as follows: 
g2

k : V(r ��� ) ∪ E(r ��� )  → { 1,2,… r(p +q) } for the k th graph (copy) of r ��� is given by 
g2

k (vi) = f (vi) + 3p(k-1), g2
k (vi vi+t) = f (vi vi+t) + 3p(k-1), g2

k (vi vi+1) = f (vi vi+1) + 3p(r-k) 
Then we get that the vertex weights for r ���  are given by 

W = %���
)�����	�
  , ���
)�����	�
 � 3, ���
)�����	�
 � 6, … ���
)�����	�
 � 3�� � 1� '. 

Thus r ���   admits a ���
)�����	
  , 3
 - vertex antimagic total labeling . 

Example 2.   �784�52  , /
 - vertex antimagic total labeling of  5 C&
 

W1={ 157,160,…,169 } 
 
W2={ 172,175,…,184 } 
 

W3={ 187,190,…,199 } 

                
                        W4={ 202,205,…,214 }                                    W5={ 217,220,…,229 } 
 

Figure 2: 5 C&
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Here W = W1 ∪W2 ∪W3∪  W4  ∪W5 = {157,160,…,229} = �(���	
  , 3
 -VATL 

Theorem 4. [4] For p ≥ 5 and t ≥ 2, ���  admits a (7p+3,1) - vertex antimagic total 
labeling provided that p ≠ 2t. 

Theorem 5. For p ≥ 5, t ≥ 2 and r > 0,  ����  is anti magic provided that p ≠ 2t with vertex 
weights given by  Wk = { (9k+3r-5)p+3, (9k+3r-5)p+4 , …,  (9k+3r-5)p+p+2 } for each 
kth copy where k = 1,2,3,…,r. 

Proof: Let |����| = p and |����| = q, then the vertex and edge sets of  ��� are denoted by  
V = { vi : 1 ≤ i ≤ p }, E = { vi vi+1 : 1 ≤ i ≤ p }∪ { vi vi+t : 1 ≤ i ≤ p }  where all indices are 
taken mod p. 
Define the labeling h : V ∪ E → { 1,2,… p +q } as follows: 

h (vi)        =  p+i ,        1 ≤ i ≤ p 
h (vi vi+t) =  p +1-i ,    1 ≤ i ≤ p 

h (vi vi+1) = 93� � � � �,              ���  1 ≤  � ≤ �2� � � � �,       ���  � � 1 ≤  � ≤ �# 
With this labeling h , we can observe that the vertex weights are given by  
W = {w(v): v∈ V } = { 7 p+3, 7p+4,7p+5,…, 8p+2}with a = 7p+3 and d = 1. 
Thus h is a (7p+3,1) - vertex antimagic total labeling . 
Now define the labeling g3 as follows: 
g3

k : V(r ��� ) ∪ E(r ��� )  → { 1,2,… r(p +q) } for the k th graph (copy) of r ��� is given by 
g3

k (vi) = h (vi) + 3p(r-k) 
g3

k (vi vi+1) = h (vi vi+1) + 3p(k-1) 
g3

k (vi vi+t) = h (vi vi+t) + 3p(k-1) 
Then we get that the vertex weights for the k th graph are given by 
Wk = { (9k+3r-5)p+3, (9k+3r-5)p+4 , (9k+3r-5)p+5,… (9k+3r-5)p+p+2} 
i.e, when this k th graph is considered separately as an individual graph, it has an  
( (9k+3r-5)p+3 , 1 ) - vertex antimagic total labeling for k = 1,2,3,…,r.  
Hence for any two distinct vertices vi and vj of r ���, w(vi) ≠ w(vj). 
Thus r ���  is anti magic. 
 
Theorem 6. For p ≥ 5, t ≥ 2 and r > 0, ����  is anti magic provided that p ≠ 2t with vertex 
weights given by Wk = {(3k+6r-2)p+3, (3k+6r-2)p+4 ,…,(3k+6r-2)p+p+2} for each k th 
copy where k = 1,2,3,…,r. 

Proof: Consider the labeling h on ��� given in theorem 5.  
Now define the labeling g4 as follows: 
g4

k : V(r ��� ) ∪ E(r ��� )  → { 1,2,… r(p +q) } for the k th graph (copy) of r ��� is given by 
g4

k (vi) = h (vi) + 3p(k-1) 
g4

k (vi vi+t) = h (vi vi+t) + 3p(k-1) 
g4

k (vi vi+1) = h (vi vi+1) + 3p(r-k) 
Then we get that the vertex weights for the k th graph are given by 
Wk = { (3k+6r-2)p+3, (3k+6r-2)p+4 , (3k+6r-2)p+5,… (3k+6r-2)p+p+2 }  
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i.e. when this k th graph is considered separately as an individual graph, it has an  
( (3k+6r-2)p+3 , 1 ) - vertex antimagic total labeling for k = 1,2,3,…,r.  
Hence for any two distinct vertices vi and vj of r ���, w(vi) ≠ w(vj). 
Thus r ���  is anti magic. 
 
 
Example 3. Antimagic total labeling of 4 C1� 

  
 
W1 = { 115,116,…,121 }- 16p+3,1) VATL 
 

 
W2 = { 178,179,…,184 }-(25p+3,1) VATL 
 

  
 
W3 = { 241,242,…,247 }-(34p+3,1) VATL 
 

 
W4 = { 304,305,…,310 }-(43p+3,1) VATL 
 

Figure 3: 4 C1� 

 

Example 4.  Antimagic total labeling of 2 C(
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W1={81,82,…,86}–(13p+3,1) VATL 

 
W2={99,100,…,104}–(16p+3,1) VATL 

Figure 4: 2 C(
 

 3. Conclusion 
We have studied some anti magic labelings of r copies of Harary graphs. There are many 
other open problems in this area which we are working with. 
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