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1. Introduction             
Fractional calculus has been rediscovered by scientists and engineers due to the 
increasing use in number of fields such as electromagnetism, signal Processing, Control 
Engineering, physics, mathematical biology, visco-elasticity and other areas of science 
[5,14,18,34]. Various methods are available in literature for the solution of fractional 
order differential equation such as fractional subequation method [28], fractional wavelet 
method [13,20,29,34], fractional Laplace adomian decomposition method [8,21], 
fractional operational matrix method [1,33], fractional variational iteration method 
[22,26], fractional improved homotopy  perturbation method [35,36], fractional 
differential transform method [32] and fractional complex transform method [24] etc. 
           The iterative method was introduced in 2006 by Daftardar-Gejji and Jafari to solve 
numerically the nonlinear functional equations [9, 30]. By now, the iterative method has 
been used to solve many non-linear differential equations of integer and fractional order 
[25] and fractional boundary value problem [31]. In recent, Jafari et al. firstly applied 
Laplace transform in the iterative method to develop the iterative Laplace transform 
method [10] for searching numerical solutions of a system of fractional partial differential 
equations. The iterative Laplace transform method (ILTM) has been successfully applied 
to solve fractional Fokker-Planck equations [17]. 
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In this paper, we consider the space-time fractional telegraph equations in the following 
form: 

( ) ( ) ( ) ( ) ( ), , , , , ,p r
x t tD u x t D u x t aD u x t bu x t g x tα β β= + + +  0 1, 0,x t< < >                     (1) 

where 1 ,qβ = , , ,p q r N∈ 1 2,α< ≤ 1 2,pβ< ≤ 0 1,rβ< ≤ ...p
t t t tD D D Dβ β β β≡  ( p  

times), ...r
t t t tD D D Dβ β β β≡  ( r  times), xDα , tDβ  are Caputo fractional derivatives defined by 

equation (2), ,a b  and c  are constants and ( ),g x t  is given function. In the case 

of 2, 1, 2, 1, 0q p r gα = = = = = , space-time fractional telegraph equation reduces to 
classical telegraph equation. 
         Further, we apply the iterative Laplace transform method (ILTM) to solve fractional 
telegraph equations. It is worth mentioning that this method is an elegant coupling of the 
Iterative Method and Laplace Transform Method. The ILTM provides the solution in a 
rapid convergent series which may lead to the solution in a closed form. The advantage of 
this method is its capability of combining two powerful methods for obtaining exact 
solutions for nonlinear fractional equations.  

2. Basic definitions of fractional calculus and Laplace transform  
In this section some basic definitions and properties of fractional calculus and Laplace 
transform theory are given.  

Definition 1.  The Caputo fractional derivative [11, 16] of function ( , )u x t  is defined as  

 1 ( )

0

1
( , ) ( ) ( , ) , 1 , ,

( )

x
m m

xD u x t x u t d m m m N
m

α αξ ξ ξ α
α

− −= − − < ≤ ∈
− ∫                        (2)                                                   

                  ( ),m m
xJ D u x tα−=  

here 
m

m
m

d
D

dx
≡  and xJ α  stands for the Riemann-Liouville fractional integral operator of 

order 0α > [16] defined as     

( ) ( ) ( ) ( ) ( )1

0

1
, , , 0, 1 , .

x

xJ u x t x u t d m m m N
αα ξ ξ ξ ξ α

α
−= − > − < ≤ ∈

Γ ∫          (3) 

Definition 2.  The Laplace transform of a function ( ) , 0f x x >   is defined as [11, 16] 

 
0

[ ( )] ( ) ( ) .stL f x F s e f t dt
∞

−= = ∫                                                                                         (4) 

Definition 3.     Laplace transform of ( , )xD u x tα  is given as [11, 16] 

 

1
1[ ( , )] [ ( , )] (0, ) , 1 , ,

m
k k

t
k o

L D u x t L u x t u t s m m m Nα α α
−

− −

=

= − − < ≤ ∈∑                             (5)                                                   

where (0, )ku t  is the k-order derivative of ( , )u x t at 0.x =  
 
Definition 4. The Mittag-Leffler function which is a generalization of exponential 
function is defined as [16]: 
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( ) ( ) ( )

0

, Re( ) 0 .
1

n

n

z
E z C

nα α α
α

∞

=

= ∈ >
Γ +∑                                                  (6) 

 a further generalization of (6) is given in the form [3]: 

 ( ) ( ) ( ) ( )( ),
0

; , ,  0, 0
n

n

z
E z C R R

nα β α β α β
α β

∞

=

= ∈ > >
Γ +∑

                                             
(7) 

3. Basic idea of the iterative Laplace Transform method 
To illustrate the basic idea of this method [10], we consider a general fractional nonlinear 
non-homogeneous partial differential equation with the initial conditions of the form: 

( , ) ( , ) ( , ) ( , ), 1 , ,xD u x t R u x t N u x t g x t m m m Nα α+ + = − < ≤ ∈                         (8) 

(0, ) ( ), 0,1,2.........., 1k
ku t h t k m= = −                                                        (9) 

where ( , )xD u x tα  is the Caputo fractional derivative of the function u(x, t ), R is the linear 
differential operator, N represents the general nonlinear differential operator and g(x, t) is 
the source term. Applying the Laplace transform (denoted by L throughout the present 
paper) on both sides of Eq. (8), we get 

[ ( , )] [ ( , ) ( , )] [ ( , )].tL D u x t L R u x t Nu x t L g x tα + + =                                                         (10) 
Using the property of the Laplace transform, we have, 

1
1

0

1 1 1
[ ( , )] (0, ) [ ( , )] [ ( , ) ( , )].

m
k k

k

L u x t s u t L g x t L R u x t N u x t
s s s

α
α α α

−
− −

=

= + − +∑                   (11) 

Operating with the Laplace inverse on both sides of Eq. (11) gives 
1

1 1 1

0

1 1
( , ) (0, ) [ ( , )] [ ( , ) ( , )] ,

m
k k

k

u x t L s u t L g x t L L Ru x t Nu x t
s s

α
α α

−
− − − −

=

    = + − +       
∑         (12)      

Now we apply the Iterative method,    

0

( , ) ( , )i
i

u x t u x t
∞

=

=∑                                                                                                           (13) 

Since R is a linear operator, 

0 0

( , ) ( ( , )i i
i i

R u x t R u x t
∞ ∞

= =

  = 
 
∑ ∑                                                                                          (14) 

and the nonlinear operator N is decomposed as 
1

0 0
0 1 0 0

( , ) ( ( , )) ( ( , )) ( ( , ))
i i

i k
i i k k

N u x t N u x t N u x t N u x t
∞ ∞ −

= = = =

   = + −  
  

∑ ∑ ∑ ∑                               (15)                                                            

Substituting (13), (14) and (15) in (12), we get 

( )

1
1 1

0 0

1
1

0
0 1 0 0

1
( , ) (0, ) [ ( , )]

1
( , ) ( ( , )) ( ( , )) ( ( , )) ,

m
k k

i
i k

i i

i k k
i i k k

u x t L s u t L g x t
s

L L R u x t N u x t N u x t N u x t
s

α
α

α

∞ −
− − −

= =

∞ ∞ −
−

= = = =

  = + −  
  

   + + −   
   

∑ ∑

∑ ∑ ∑ ∑
(16)    

                                                                                                                                                                                                                 
We define the recurrence relations as 
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1
1 1

0
0

1
( , ) (0, ) [ ( , )]

m
k k

k

u x t L s u t L g x t
s

α
α

−
− − −

=

  = +  
  
∑

                    

( ) ( )1
1 0 0

1
( , ) ( , ) ( , )u x t L L R u x t N u x t

sα
−  = − +                                                                (17)                                                               

                                                                                                                                                                                                                       
       
 
 

 
Therefore them -term approximate solution of (8) - (9) in series form is given by  

0 1 2( , ) ( , ) ( , ) ( , ) ........ ( , ), 1,2,...mu x t u x t u x t u x t u x t m≅ + + + + =                                   (18) 

 
4. Applications 
In this section, we use the iterative Laplace transform method (ILTM) to solve the 
homogeneous and non-homogeneous fractional telegraph equations.  
Example 1 Consider the following homogeneous space-time fractional telegraph 
equation: 

( ) ( ) ( ) ( ), , , , ,0 1, 0,p r
x t tD u x t D u x t D u x t u x t x tα β β= + + < < >                      (19) 

where 1 ,qβ = , , ,p q r N∈ 1 2,α< ≤ 1 2,pβ< ≤ 0 1,rβ< ≤ ...p
t t t tD D D Dβ β β β≡  ( p  

times), ...r
t t t tD D D Dβ β β β≡  ( r  times), xDα , tDβ  are Caputo fractional derivatives defined by 

equation (2),p r+  is odd and initial conditions are given by 

 ( ) ( )0,u t E tβ
β= −  and ( ) ( )0,xu t E tβ

β= − .                                               (20) 

Applying the Laplace transform on the both sides of Eq. (19), subject to the initial 
condition (20) we have 

( ) ( ) ( ), 1 , , 0 1 , 0,p r
x t tL D u x t L D D u x t x tα β β   = + + < < >                                           (21) 

Using the property of the Laplace transform, we have                                                 

( ) ( ) ( ) ( )2

1
[ ( , )] 1 ,p r

t t

E t E t
L u x t L D D u x t

s s s

β β
β β β β

α

− −
 = + + + +                                   (22)                                                                                      

Operating with the Laplace inverse on both sides of Eq. (22) gives 

( ) ( ) ( ) ( )1 1
( , ) 1 1 ,p r

t tu x t x E t L L D D u x t
s

β β β
β α

−   = + − + + +   
                                      (23)                                                              

Now, applying the Iterative method,  
Substituting (13) - (15) into (23) and applying (17), we obtain the components of the 
solution as follows: 

( ) ( )0( , ) 1u x t x E t β
β= + −                                                                                                (24)

 
( ) ( )1

1 0

1
( , ) 1 ,p r

t tu x t L L D D u x t
s

β β
α

−   = + +   
 

( )
1

1
1

0 0

1
( , ) ( , ) ( ( , )) ( ( , )) , 1

m m

m m k k
k k

u x t L L R u x t N u x t N u x t m
sα

−
−

+
= =

   = − − − ≥   
   
∑ ∑
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          ( ) ( ) ( )
1

1 2

x x
E t

α α
β

βα α

+ 
= + − Γ + Γ +                                                            (25) 

( )( ) ( )1 1
2 1 0 0

1 1
( , ) 1 ( , ) ( , ) 1 ( , )p r p r

t t t tu x t L L D D u x t u x t L L D D u x t
s s

β β β β
α α

− −      = + + + − + +                   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 1 1 1

1 2 1 2 2 2 1 2

x x x x x x
E t E t

α α α α α α
β β

β βα α α α α α

+ + +   
= + + + − − + −   Γ + Γ + Γ + Γ + Γ + Γ +     

          ( ) ( ) ( )
2 2 1

1 2 2 2

x x
E t

α α
β

βα α

+ 
= + − Γ + Γ + 

                                                                  (26) 

The solution in series form is then given by    
 

0 1 2( , ) ( , ) ( , ) ( , ) ..............u x t u x t u x t u x t= + + +  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 2 1

,2

( , ) 1 .....
1 2 1 2 2 2

.

x x x x
u x t E t x

E x xE x E t

α α α α
β

β

α α β
α α β

α α α α

+ + 
= − + + + + + + Γ + Γ + Γ + Γ + 

 = + − 
           (27) 

The same result was obtained by Garg and Sharma [19] using ADM. 

Remark 1. Setting 2, 1p q r= = = , the space-time fractional telegraph Eq. (19) reduces to 
space fractional telegraph equation and the solution is same as obtained by Momani [27] 
using ADM, Odibat and Momani [37] using GDTM, Yildirim [4] using HPM and 
Alawad [7] using LVIM. 

Remark  2. Setting 2,α =  Eq. (19) reduces to time fractional telegraph equation, with 
the meaning of various symbols and parameters as given with Eq. (19), as follows 

( ) ( ) ( ) ( )2 , , , , ,0 1, 0,p r
x t tD u x t D u x t D u x t u x t x tβ β= + + < < >          (28) 

with solution 

( ) ( ), .xu x t e E tβ
β= −                                       (29) 

Remark  3. Setting 2, 2, 1p q rα = = = = , Eq. (19) reduces to classical telegraph equation 
and the same solution has been obtained by Kaya [6] using ADM. 

Example 2 Consider the following non-homogeneous space-time fractional telegraph 
equation 

( ) ( ) ( ) ( ) ( ) ( ), , , , 2 ,0 1, 0,p r
x t tD u x t D u x t D u x t u x t E x E t x tα β β α β

α β= + + − − < < >        (30) 

where 1 ,qβ = , , ,p q r N∈ 1 2,α< ≤ 1 2,pβ< ≤ 0 1,rβ< ≤ ...p
t t t tD D D Dβ β β β≡  ( p  

times), ...r
t t t tD D D Dβ β β β≡  ( r  times), xDα , tDβ  are Caputo fractional derivatives defined by 

Eq. (2), p  and r  are even and initial conditions are given by 

( ) ( ) ( )0, , 0, 0xu t E t u tβ
β= − = .            (31) 

Applying the Laplace transform on the both sides of Eq. (30), subject to the initial 
condition (31) we have 
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( ) ( ) ( ) ( ) ( ), 1 , 2 , 0 1, 0,p r
x t tL D u x t L D D u x t L E x E t x tα β β α β

α β     = + + − − < < >        (32) 

Using the property of the Laplace transform, we have                                                 

( ) ( ) ( ) ( ) ( )1 2
[ ( , )] 1 ,p r

t t

E t
L u x t L D D u x t L E x E t

s s s

β
β β β α β

α βα α

−
   = + + + − −            (33) 

Operating with the Laplace inverse on both sides of Eq. (33) gives 

 
( ) ( ) ( ) ( ) ( )1 12 1

( , ) 1 ,p r
t tu x t E t L L E x E t L L D D u x t

s s
β α β β β

β α βα α
− −      = − − − + + +                     

(34)                              
 

Now, applying the Iterative method,  
Substituting (13) - (15) into (34) and applying (17), we obtain the components of the 
solution as follows: 

( ) ( ) ( )

( ) ( ) ( )
( )

( )( )

1
0

1

0

2
( , )

3
1 1

k

k

u x t E t L L E x E t
s

x
E x E t E t

k

β α β
β α βα

α
α β β

α β β α

−

+∞

=

  = − − −   

= − − −
Γ + +∑

                                           (35)       

( ) ( )1
1 0

1
( , ) 1 ,p r

t tu x t L L D D u x t
s

β β
α

−   = + +             

             ( )
( )

( )( ) ( )
( )

( )( )
1 2

0 0

3 3
1 1 2 1

k k

k k

x x
E t E t

k k

α α
β β

β βα α

+ +∞ ∞

= =

 
= − − − 

Γ + + Γ + +  
∑ ∑                    (36)  

( )( ) ( )1 1
2 1 0 0

1 1
( , ) 1 ( , ) ( , ) 1 ( , )p r p r

t t t tu x t L L D D u x t u x t L L D D u x t
s s

β β β β
α α

− −      = + + + − + +            

            ( )
( )

( )( ) ( )
( )

( )( )
2 3

2

0 0

3 3
2 1 3 1

k k

k k

x x
E t E t

k k

α α
β β

β βα α

+ +∞ ∞

= =

  
= − − −   Γ + + Γ + +   

∑ ∑                (37) 

 

                           

 
The solution in series form is then given by    
 

0 1 2( , ) ( , ) ( , ) ( , ) ..............u x t u x t u x t u x t= + + +  

  

( ) ( ) ( )
( )

( )( )

( )
( )

( )( ) ( )
( )

( )( )

( )
( )

( )( ) ( )
( )

( )( )

1

0

1 2

0 0

2 3
2

0 0

3
1 1

3 3
1 1 2 1

3 3 ..............
2 1 3 1

k

k

k k

k k

k k

k k

x
E x E t E t

k

x x
E t E t

k k

x x
E t E t

k k

α
α β β

α β β

α α
β β

β β

α α
β β

β β

α

α α

α α

+∞

=

+ +∞ ∞

= =

+ +∞ ∞

= =

 
= − − − 

Γ + +  

 
+ − − − 

Γ + + Γ + +  

  
+ − − − +   Γ + + Γ + +   

∑

∑ ∑

∑ ∑

 

( ) ( )E x E tα β
α β= −                                                                                                        (38) 
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The same result was obtained by Garg and Sharma [19] using ADM. 

Remark 1. Setting 2, 4, 2q p r= = = , Eq. (30) reduces to non-homogeneous space 
fractional telegraph equation, with the meaning of various symbols and parameters as 
given with Eq. (30), as follows 

( ) ( ) ( ) ( ) ( )2, , , , 2 ,0 1, 0,t
x t tD u x t D u x t D u x t u x t E x e x tα α

α
−= + + − < < >                    (39) 

with solution 

( ) ( ), .tu x t E x eα
α

−=                           (40) 

Remark  2. Setting 2,α =  Eq. (30) reduces to non-homogeneous time fractional 
telegraph equation, with the meaning of various symbols and parameters as given with 
Eq. (30), as follows 

( ) ( ) ( ) ( ) ( )2 , , , , 2 ,0 1, 0,p r x
x t tD u x t D u x t D u x t u x t e E t x tβ β β

β= + + − − < < >                   (41) 

with solution 

( ) ( ), .xu x t e E tβ
β= −               (42) 

Remark  3. Setting 2, 2, 4, 2q p rα = = = = , Eq. (30) reduces to non-homogeneous 
telegraph equation, with the meaning of various symbols and parameters as given with 
Eq. (30), as follows 

( ) ( ) ( ) ( ) ( )2 2 1/2
1/2, , , , 2 ,0 1, 0,x

x t tD u x t D u x t D u x t u x t e E t x t= + + − − < < >                (43) 

with solution 

( ) ( )1/2
1/2, .xu x t e E t= −                                      (44) 
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