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Abstract. In this paper a reliable algorithm for the iteratikzaplace transform method

(ILTM) is presented. ILTM is a combination of Laptatransform method and Iterative
method to solve space- and time- fractional telglgraquations. The fractional

derivatives are considered in Caputo sense. Cldsed analytical expressions are

derived in terms of the Mittag-Leffler functionsnAllustrative numerical case study is
presented for the proposed method to show the gameess and effectiveness of the
method.
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1. Introduction

Fractional calculus has been rediscovered by ssisnand engineers due to the
increasing use in number of fields such as eledgratism, signal Processing, Control
Engineering, physics, mathematical biology, vistasticity and other areas of science
[5,14,18,34]. Various methods are available inrditere for the solution of fractional
order differential equation such as fractional spladion method [28], fractional wavelet
method [13,20,29,34], fractional Laplace adomiancodeposition method [8,21],
fractional operational matrix method [1,33], fractal variational iteration method
[22,26], fractional improved homotopy  perturbatianethod [35,36], fractional
differential transform method [32] and fractionahaplex transform method [24] etc.

The iterative method was introduced0@ by Daftardar-Gejji and Jafari to solve
numerically the nonlinear functional equations30]. By now, the iterative method has
been used to solve many non-linear differentialatigns of integer and fractional order
[25] and fractional boundary value problem [31].retent, Jafaret al. firstly applied
Laplace transform in the iterative method to depelbe iterative Laplace transform
method [10] for searching numerical solutions sfyatem of fractional partial differential
equations. The iterative Laplace transform methbdNl) has been successfully applied
to solve fractional Fokker-Planck equations [17].
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In this paper, we consider the space-time fractitglagraph equations in the following
form:

Dfu(x,t) = Du(x,t)+aD"u(x,t) +bu(x,t)+g(xt), 0<x<1,t>0, (1)
where ,6:}(/1, p.qrON,1<a<2,1<pB<2,0<rB<1 D”=D’DF..DF (p

times) D/” =D’DF..Df (r times), DY, D’ are Caputo fractional derivatives defined by
equation (2),a,b and c are constants anay(x,t) is given function. In the case
ofa=2,g=1,p= 2y = 1g= (, space-time fractional telegraph equation reduies
classical telegraph equation.

Further, we apply the iterative Lapla@gform method (ILTM) to solve fractional
telegraph equations. It is worth mentioning tha thethod is an elegant coupling of the
Iterative Method and Laplace Transform Method. TIHEM provides the solution in a
rapid convergent series which may lead to the wwlubh a closed form. The advantage of

this method is its capability of combining two paofud methods for obtaining exact
solutions for nonlinear fractional equations.

2. Basic definitions of fractional calculus and Laplace transform
In this section some basic definitions and propertf fractional calculus and Laplace
transform theory are given.

Definition 1. The Caputo fractional derivative [11, 16] of ftina u(x,t) is defined as

Diu(x,t) = ﬁj:(x—f)m'ﬁu(m)(f,t)df, m-1<a<mmiN, @)
=JD"u(x,t)
hereD™ = dn:n and J; stands for the Riemann-Liouville fractional intalgoperator of
order a >0[16] defined as
Jdu(x,t) =ﬁi(x—£)”_lu(f,t)d5, >0, (m-1<a<m) mON (3)
Definition 2. The Laplace transform of a functioin(x), x>0 is defined as [11, 16]
L[ f(x)] =F(9 =]:e'5tf(t)dt. (@)

Definition 3. Laplace transform obZu(x,t) is given as [11, 16]
m-1

LID{u(x,t)] = Lu x 9] =D uk(0,t) s"**, m-1<a<m, mON, 5

where u*(0,t) is the k-order derivative afi(x,t) at x=0.

Definition 4. The Mittag-Leffler function which is a generalizaii of exponential
function is defined as [16]:
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Ea(z):ir(az—;l)(amc, Re@)> 0. )(6
a further generalization of (6) is given in thenfig[3]:
Eaﬂ(z):im;(a,ﬁﬂc, R(a)>O0R(8)> 0 7)

3. Basic idea of theiterative Laplace Transform method

To illustrate the basic idea of this method [10§ @onsider a general fractional nonlinear

non-homogeneous partial differential equation ik initial conditions of the form:

D u(x,t) + Ru(x,t)+ Nu(x,t) = g(x,t), m-1<ag<m, mON, (8)
u(O,t)=h (), k=0,1,2......... m- )(9

where D{u(x,t) is the Caputo fractional derivative of the funotia(x, t ),Ris the linear

differential operator, N represents the generalinear differential operator and g(x, t) is

the source term. Applying the Laplace transforrméded by L throughout the present
paper) on both sides of Eq. (8), we get

LD u(x, )] + LIRU X ) + Nu(x )] = L[ o x 9]. (10)
Using the property of the Laplace transform, weehav
L[u(x 1)] :S—];mz_:s"'l'kuk(o,t) +S—];L[g(x,t)] —S—iL[ RUX 1) + N x 1)]. (11)

Operating with the Laplace inverse on both sidesgpf(11) gives
m-1
u(x,t) = L‘{%(Zs‘“‘kuk(o,tﬁ L [g(x,t)]ﬂ - L‘l[—%’ L[Ru(x,t) + Nu(x,t)]}, (12)
SN S

Now we apply the Iterative method,

u(x,t) = iui (x,t) (13)
Since Riis:; linear operator,

R[iui (x,t)j =3 R (x.) (14)
andl':;e nonlineellzrooperator N is decomposed as

N (2‘“ (x,t)J =N (uo(x,t))+i§1:{N (;uo(x,t))— N (;Z:Zuk (x,t))} (35

Substituting (13), (14) and (15) in (12), we get
iui (x,t) = L'{S—%v{fs"'l‘kuk (0,t)+L [g(x,t)]ﬂ -

0 i

L_{s_l"l-{ iR(ui(x,t)) + N(uo(x,t))”Z{N 2 ube)=N (iiuk (X’t))}ﬂ '

(16)

We define the recurrence relations as
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k=i

U(x,t)=L" [S—la[m_ls"‘l‘kuk(O,t)+ L [g(x,t)]ﬂ

u(x,t) = —L‘l[;ﬁL[R(uo(x,t>) +N (uo<x,t>)ﬂ

173
U, (X, 1) = —L—l{sia L{R(um(x,t)) —{N (Zm:uk (x,t))-N &fuk (x,t))}ﬂ , m=1
Therefore then-term approximate solution of (8) - (9) in series is given by
u(x,t) duy(x,t)+u, (x,t)+u,(x,t)+......+u, &t ), m=1,2,. (18)

4. Applications

In this section, we use the iterative Laplace fiamns method (ILTM) to solve the
homogeneous and non-homogeneous fractional teleg@pations.

Example 1 Consider the following homogeneous space-time tibmal telegraph
equation:

DJu(x,t) = DPu(x,t) + DPu(x,t) +u(x,t),0<x< 1t> 0 (19)
where ,8:%, p.qrON,1<a<2,1<pB<2,0<rB<1 D”=D’DF.D? (p
times) D/” =D’D/..D? (r times), D?,D/ are Caputo fractional derivatives defined by
equation (2)p +r is odd and initial conditions are given by

u(0t) = E,(~t”) andu, (0,t) = E,(~t*). 120

Applying the Laplace transform on the both sideskEgf (19), subject to the initial
condition (20) we have

L[ Dfu(xt)]=L| (D + D +Lu(xt)], 0<x<1 >0 (21)
Using the property of the Laplace transform, weehav
Eﬂ (_tﬁ) Eﬂ (_tﬁ) 1 r
L[u(xt)] = . + - +S—0L[(Dfﬂ +D/” +1)u(x,t)] (22)
Operating with the Laplace inverse on both sidespf(22) gives
4 1 ;
u(x.t) = (1+ x) E, (—t°) + L l[g L[(Dtpﬁ +D/” + 1)u(x,t)ﬂ (23)

Now, applying the Iterative method,
Substituting (13) - (15) into (23) and applying J,1We obtain the components of the
solution as follows:

Up(x,t) = (1+x) E, (—t”) (24)

wx0 =0 L0 07 +1)u (x|
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- [ r(f: a)" I'();tla)j E(-t")

(25)
uz(x,t)=L‘l[§ L[(Df’”+D:ﬂ+1)(La(x,t)+uo(x,t))ﬂ—L‘l[é L[(Dt"”+D:ﬂ+1)uo<xx)ﬂ
B X2a Xa X2a+l Xa+l A Xa Xa+ B
_{r(1+2a)+r(1+a)+r(2+ 27)+r(2+a)JE”( t ) (r( Jm)+r( zm)jE”( t )
B XZU X20+1 _
_[r(1+2a)+r(2+ zr)]Eﬁ( tﬁ) (20)

The solution in series form is then given by

u(x,t) =u, (X, 1) +u (X, 1) +u, (X )+
NG ! N 2+
r(+a) r(2+a) T(+x) r(zrz) }
=[Ea(x")+an'2(x”)}Eﬁ(—tﬂ). (27)
The same result was obtained by Garg and Sharnhai$irsy ADM.

u(x,t) = E, (—tﬁ){1+ X+

Remark 1. Settingp =2,q=r =1, the space-time fractional telegraph Eq. (19) ceduo

space fractional telegraph equation and the solu§iGame as obtained by Momani [27]
using ADM, Odibat and Momani [37] using GDTM, Yitdn [4] using HPM and
Alawad [7] using LVIM.

Remark 2. Setting a =2, Eq. (19) reduces to time fractional telegraph &qoawith
the meaning of various symbols and parametersvas giith Eq. (19), as follows

DZu(x,t) = DPu(x,t)+ DPu(x,t) +u(x,t) ,0< x< 1t > 0 (28)
with solution
u(x,t) = eXEﬁ(—tﬁ). (29)

Remark 3. Settingag =2,p=2,q=r =1, Eq. (19) reduces to classical telegraph equation
and the same solution has been obtained by Kayas[6y ADM.

Example 2 Consider the following non-homogeneous space-tiraetional telegraph
equation

Dyu(x,t) = DPu(x,t)+ D u(x,t) +u(xt) - 2Ea(x")Eﬂ(—tﬂ) ,0<x<1>0 (30)
whereﬁ=}(/], p,q,rON,1<a<2,1<pB<2,0<rB<1, D =D/D’..Df (p

times) D/’ =DFD?..Df (r times),D?, D/ are Caputo fractional derivatives defined by
Eqg. (2), p andr are even and initial conditions are given by
u(0t)=E4(-t*) u (01) = . (31)

Applying the Laplace transform on the both sideskEgf (30), subject to the initial
condition (31) we have
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L[ Dfu(xt)]=L[ (DX + D +1)u(xt) |- 2L[ E, (x) E,(~t°) ], 0<x< 1> 0 (32)
Using the property of the Laplace transform, weehav

A
Lu(x )] = #Jrsi” L[(Dtpﬂ +D/* +1)u(x,t)] —S%L[Ea (x") E, (—tﬁ)] (33)
Operating with the Laplace inverse on both sideSmf(33) gives

u(x,t)=EB(—tﬁ)—L’l[s—%L[Ea(X”)EE(—tﬁ)ﬂ+L’l[sl L[(D"“D'“l) u(x, )ﬂ

(34)
Now, applying the Iterative method,
Substituting (13) - (15) into (34) and applying \1We obtain the components of the
solution as follows:

Uy(x,t) = E, (-t7) - L‘{S%L[Ea (x")E, (‘tﬂ)ﬂ

) o alk) (35)
:E”(X )Eﬁ(_t ) ( )kzr( k+l +l)
—_1-1 i pB rB8
u(xt)=L [SGL[(D +D +1)u, }
6 ()5 e E S
1Y &g (a(krn)+) &r(ak+2+) (36)
L(xt) =" é L[ (D +Di +1)(u () + Uy (x.t ))ﬂ - L‘{é L[ (D +D/" +Ju, )ﬂ

a(k+2)

s X o x(k+3)
:Sz_Eﬁ(_tﬂ);(WJ 5 (-t )kzl'( (k73 ])] (37)

The solution in series form is then given by

u(x,t) = u, (X, 1) +u (X, 1)+ u, (X, E)+ e

:{Ea(xa)Eﬁ(—tﬂ)—sEﬁ(—tﬂ):ZO%}
a(k+1)

o X p o Xa(k+2)
+3{Eﬂ(_tﬁ)k§; r(a(k+1)+1) ~ (- )§ r(a(k+2)+ 1)}

=E,(x")E,(-t") (38)
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The same result was obtained by Garg and Sharnasirty ADM.

Remark 1. Setting q=2,p=4,r= 2, Eq. (30) reduces to non-homogeneous space

fractional telegraph equation, with the meaningvafious symbols and parameters as
given with Eqg. (30), as follows

Dfu(x,t) = DZu(x,t) + D,u(x,t) +u(x,t) - 2Ea(x")e‘t 0<x<1>0 (39)
with solution
u(x,t) = Ea(x”)e't. (40)

Remark 2. Setting a =2, Eqg. (30) reduces to non-homogeneous time fradtiona

telegraph equation, with the meaning of varioustsyis1and parameters as given with
Eqg. (30), as follows

DZu(x,t) = DPu(x,t) + D u(x.t) +u(xt) - 2E, (~t*) ,0< x< 14> 0 (41)
with solution
u(xt) =e'Ey(-t"). (42)

Remark 3. Setting a=2,q=2,p=4r = 2, Eq. (30) reduces to non-homogeneous
telegraph equation, with the meaning of various lsyis1 and parameters as given with
Eq. (30), as follows

DZu(x,t) = D7u(x,t) + D,u(x,t) +u(x.t) - 2exE1,2(—t1’2) ,0<x<1, t>0 (43)
with solution
u(x,t) = eXEuz(_tl/z)- (44)
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