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Abstract. Viscous dissipation and Joule heating effects ataady MHD combined heat
and mass transfer flow through hall and ion-sliprents along a semi-infinite vertical
plate in a rotating system has been studied nuaibticThe boundary layer equations
have been transformed into dimensionless couplediinear ordinary differential
equations by using appropriate transformations. Hmailarity solutions of the
transformed dimensionless equations for the flogldfiand heat and mass transfer
characteristics are obtained by explicit finitefelitnce method. Numerical results are
presented in the form of primary and secondaryoitdés, and temperature for different
parameters entering into the analysis. Finally,dffects of the pertinent parameters on
the Skin-friction coefficients and Nusselt number also examined.
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1. Introduction

Coriolis force is very significant in a rotatingstgm, the as compared to viscous and
inertia forces occurring in the basic fluid equatio Considering this aspect of the
rotational flows, model studies were carried out MRID free convection and mass
transfer flows in a rotating system by many ingeiors of whom the names Debnath
(1975), Debnath et al. [1], Raptis and Perdikisgd worth mentioningrhe influence of

a transverse uniform magnetic field on the flowaofconducting fluid between two
infinite parallel, stationary, and insulated platess been studied by Hartmann and
Lazarus [3]. A lot of research works concerning ltetmann flow have been obtained
under different physical effects. In most casesh and lon-slip terms were ignored in
applying Ohm’s law as they have no mentionablecefir small and moderate values of
the magnetic field. Sattar and Alam [4] presentedteady free convection and mass
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transfer flow of a viscous, incompressible and teleally conduction fluid past a moving
infinite vertical porous plate with thermal diffosi effect. Saidul Islam et. al. [5]
investigate the MHD Free Convection and Mass TenBfow with Heat Generation
through an Inclined Plate. Abdur Rahman et al.sf@flied the thermophoresis Effect on
MHD Forced Convection on a Fluid over a Continuduisear Stretching Sheet in
Presence of Heat Generation and Power-Law Wall Eeatpre. Hasanuzzaman et al.
studied the ofsimilarity solution of unsteady conda free and force convective laminar
boundary layer flow about a vertical porous surfagth suction and blowing. Abo-
Eldahab and El Aziz [7] have studied viscous ditsgm and joule heating effects on
MHD-free convection from a vertical plate with pawaw variation in surface
temperature in the presence of Hall and ion-sligenis. Present study investigate the
work of El Aziz [5] for rotation case.

2. Governing equation

Consider a unsteady, laminar, fre
convection flow along a vertical semit
infinite rotating plate with the origin
at the leading edge. Introducing
Cartesian coordinate system, the
axis is chosen along the plate in the
direction of the flow and the -axis

is normal to it and theZ axis be
coincident with the leading edge. An
external strong magnetic is applied i
the y-direction and has a constant flyx /

density B, (see Figure 1). Theffect | Figure™1: Sketch of the physical model of the flow
of Hall and lon-slip current gives risq
to a force in the z-direction, which
induces across flow in that direction, and henceltdve becomes three-dimensional. To
simplify the analysis, we assume that there is apation of flow and heat transfer
quantities in the z-direction. Initially we considbat the plate as well as the fluid is at
the same temperature. Also it is assumed thatufteend the plate is at rest after that the
plate is to be moving with a constant velodity. in its own plane and instantaneously at
time t >0, the temperature of the plate raised@ o T.,) which is there after maintained
constant, wherg, is temperature at the wall angis the temperature of the species far
away from the plate . Under the usual boundaryrlaypel Boussinesq approximation, the
governing equation irﬁx, Y, z)-coordinate for the problem under consideration ban
written as follows:

Within the framework of the above stated assumptiwith reference to the

generalized equations, the equations relevantadrtinsient two dimensional problems
are governed by the following system of coupled-tvogar partial differential equations.
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Momentum equation irK-direction;

ou oAdu adu 0%u B0,

—+u—+ V——U T- +2VQ‘—a " 5
ot ox (ay?] 95(T-T) P(Ue )[ B @
Momentum equatlon irz -direction;

ow_  ow_  OwW_ 0w B2g

—+y—+vVv 2@ +__— "e u-a 3
ot 16)4 ay (ayzj (a82+ﬂez)[18e eV\] ( )

Energy equation;

S el e e

With the corresponding initial and boundary corudis are

t<0, u-0w- 0T T atx=0, y» ( (5)
t>0 u=0,v=0,w=0, T=T, aty= 0, » (
U—»O,W—»O,T—»I0 at Y- (6)

where(u,v, W) are the velocity components along (hey, z) axes, respectivelyl be
the fluid temperatureg, is the electrical conductivityg is the electron chargeo,v and
C, are the density, kinematic viscosity and spetigat at constant pressure of the fluid,

respectively.3,Q, g andk are the coefficient of thermal expansion, voluicetate of
heat generation, acceleration due to gravity aretnial conductivity, respectively,
a, =1+ B B,, B.andB are Hall and lon-slip currents.

3. Mathematical formulation
Introducing the following dimensionless variableghe governing equations (1)-(4) and
initial (5) and boundary (6) conditions;

oy Wo U v L OZ’T_: T-T,
v v U, U, v T, - T,
From the above dimensionless variable we have

u=UU, v=UV, T=T, +(T,-T.)T

Using these relations we have the following denest

du_USdU du_UZau u_U,S U 0%u_U, 0

X =

dt v or ox wox' 9y u aY’ oy uv? ay?’
ow_US2ow ow_USow ow_U)aw 9d’w_U,’ o°w

v or v e ayz_u aY?’
9T _US(T,-T.) 0T 0T _U,(T,-T.)dT 9T _Uo(T,-T.) T
ot U ar’ ox U ax oy U oY
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0°T _UA(T, -T.)o’T
dy” v? ay?
Now we substitute the values of the above derieatinto the equations (1)-(4) and after

simplification we obtain the following nonlineargaed partial differential equations in
terms of dimensionless variables

ou ov _
—+—=0
oX aYy 7)
2 J—
Uy ,yoU 9 U2 +G,T +2Ekw—%(aeu + BW)
or oX oy oYy a, + .. ()
2
W Ly W W 0 V\Z/ -2EU +%(ﬂeu -a W)
or oX oy odY a, +p., )
= = = o= 2 2
£+U6—T+Vﬂ :ia—T+yT+ E [a_uj +(6—WJ +£( V3 +V\/2) (10)
or aX 9Y PRay? 0X) \0Y) | a?+pB2
U 2
where, Prandtl numbeR = 'OCP , Eckert numbert:, :U—O, Grash of
Co(T,~T.)
number,G, = w Heat Absorption coefficient)/=ii2 , Magnetic
0 p 0
2
parameterM = By 0'e2U Rotational parametelff;, :Q—g.
0 0
Also the associated initial and boundary conditibasome
r<0, U=0W=0,T=0, everywhere (11)

r>0,U=0,V=0W=0,T=1atY=0(12) U=0,V=0T=0at Y - o

4. Numerical technique

A system of non-linear coupled partial differentiajuations with the boundary
conditions is very difficult to solve numericalliany physical phenomena in applied
science and engineering when formulated into madiieai models fail into a category
of systems known as non-linear coupled partialeddfitial equations. Most of these
problems can be formulated as second order pdiffatences equations. For obtaining
the solution of such problems advanced numericghoas has been performed. The
governing equations of our problem contain a systénpartial differential equations

which is transformed by usual transformation intman-dimensional system of non-
linear coupled partial differential equations witiitial and boundary conditions. Hence
the solution of our problem would be based on adednnumerical methods. The
Explicit Finite Difference Method will be used for solving our obtained non-similar
coupled partial differential equations.
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5. Resultsand discussion
For the purpose of discussing the results of tliblpm, the approximate solutions are
obtained for various parameters. In order to amalyre physical significance of the

model, the steady state numerical values of thedmmensional primary velocity ,
secondary velocityV and temperatur@ within the boundary layer for different values

of Magnetic paramete(rM), Prandlt numbe(R), Ekman number(Ek), Heat
absorption coefficient(y), Hall parameter(,[?e) lon-slip parametel(,[?i), Grashof
number(G, ) and Eckert numbdiE,) respectively has been computed.For the steady

state solutions of the problem, the computation® een carried out up 1o=80. It is
observed that the values of this computation, heweshow little changes afte~ 30.

Thus the solution at =30 are essentially steady-state solutions. Since rtiwest
important fluids are atmospheric air, salt wated avater, so the results are limited to

P =0.72(PrandIlt number for air &20°C), P =1.0 (Prandlt number for salt water at
20°C ) and P =5.0(Prandlt number for water &0°C ). However the values of
another parametévl, R, y, B,, B, E; are chosen arbitrarily d¢l =0.3,0.5,0.7,
R=0.03,0.05,0.0, y¥=0.0,0.01,0.0:, S,,= 006,007,009, B = 004,006,008

and E, =0.01,0.02,0.0..Along with the obtained steady states solutiohs flow

behavior in case of cooling problems has been g graphically. The profiles of
primary velocity, secondary velocity and tempemtdistributions versus co-ordinate

variable Y has been illustrated in Figs. 2-19.Far ¢thange of magnetic parameém),

the primary, secondary velocity and temperaturéridigions have been illustrated in
Figs 2-4. From these figures it has been observed that iheapy velocity decreases as
the increasing values of the magnetic parametertb@dSecondary velocity increases
with the increase of magnetic parameter and thezen@nor effects in temperature

distribution.For the change of Eckert num@ég), the primary, secondary velocity and

temperature distributions have been illustrateBigs 5-7. From these figures it has been
observed that there are minor effects but incrgasinthe primary, secondary velocity
and the temperature distribution with the increasfeEckert number.For the change of

Ekman numbe(rEk) , the primary, secondary velocity and temperatistidutions have

been illustrated irFigs 8-10. From these figures it has been observed that tineapy

velocity and secondary velocity decreases as theedsing values of the magnetic
parameter and the Secondary velocity increasesthdtlincrease of Ekman number and
there are also increasing effects in temperatustrilgition.For the change of Heat

absorption parametéy), the primary, secondary velocity and temperatus&idutions

have been illustrated iRigs 11-13. From this figures it has been seen that the primary
velocity and temperature distribution increases tlas increasing values of Heat
absorption parameter. There is a minor effect gosdary velocity with the increasing

values of Heat absorption parameter.For the charfg&rashof numbe(Gr), the
primary, secondary velocity and temperature distiiims have been illustrated Kigs
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14-16. From this figures it has been seen that the primvapcity and temperature
distribution decreases as the increasing valuesrashof number while secondary
velocity is increasing with the increasing valué$eat Grashof number.For the change

of Prandlt numbe(rR), the primary, secondary velocity and temperatusgridutions

have been illustrated ifigs 17-19from these figures it has been observed that the
primary velocity and temperature are decreased@sntreasing values of the Prandlt
number and the Secondary velocity increases wihintbrease of Prandlt number.Now
we discuss the behavior of the quantities of thiefchhysical interest as local Shear

Stress(rxL) in X —direction, local Shear StreﬁszL) in z—direction and local Nusselt
number(NuL)and sequentially average shear stt(e§§) in X —direction, average shear
stress(rzA) in z—direction and average Nusselt nunﬁéEA) for different values of
Magnetic paramet¢M ), Prandlt numbe(P ), Ekman numbe(E,), Heat absorption
coefficient (), Hall paramete{/3,),lon-slip paramete(s3, ), Grashof numbdgG, ) and

Eckert numbefEc) respectively. For this purpose the numerical smhst of the above

mentioned parameter have been computed and disicgsaphically inFigure 20-37.
The steady state local Shear Stl’é&é) in X —direction, local Shear Stre:{sZL) in

z — direction and local Nusselt NumbeéNuL) verses Co-ordinate VariablX are
illustrated inFigure 20-37. In Figure 20-22, Steady-state local Shear Streésgt) in

X —direction, local Shear StreﬁszL) in z—direction and local Nusselt numbéh\luL)
are plotted for different values of Magnetic par&me(M) where P. = 072,

G =20, E . =001 E =003 B =004 pB,=006andy = 001.It has found
that Steady-state local Shear Stré%) in X —direction and local Shear Stre(SSZL) in

Z — direction decrease for increasing of Magnetic pa!tan(M) but there is minor
effect on local Nusselt numbeéNuL) for increasing of Magnetic paramet@k/l) In
Figure 23-25, Steady-state local Shear Strésg) in X —direction, local Shear Stress
(TzL) in z —direction and local Nusselt numbéNuL)are plotted for different values of
Eckert numbe(E,) whereP. = 072, G, =20, M = 005, E, = 003 £ = 004,

B. = 006and y = 001.t has found that Steady-state local Shear S{&gd in x -
direction and local Shear Stre@gL) in z—direction and local Nusselt numb(:.NuL)
increase for increasing of Eckert num(JEg). In Figure 26-28, Steady-state local Shear
Stress(rxL) in X —direction, local Shear StreﬁszL) in z —direction and local Nusselt
number (NuL) are plotted for different values of Ekman numbdg,), where
P =072 G =20, E,=001 M =005 g =004 g, =006andy = 001.It
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has found that Steady-state local Shear Sn{agﬁ in X —direction and local Shear
Stress(TZL) in z—direction decrease for increasing of Ekman nun{iigp), but there is
minor effect on local Nusselt numb(ah\luL) for increasing of Ekman numbg€E,) .In
Figure 29-31, Steady-state average Shear Stl(€§}§) in X —direction, average Shear
Stress(rAL) in z—direction and average Nusselt numﬁb&uA)are plotted for different
values of Heat absorption coefficie(ly) where P = 072 G, =20, E,=00]

M =005 fB, =006 E, =003 and 5, =004. It has found that Steady-state
average Shear Streésm) in X —direction, average Shear Stre(s’gL) in z - direction
and average Nusselt numt(éduA)increase for increasing of Heat absorption coeffiti
(y).ln Figure 32-34, Steady-state average Shear St(@§§) in X —direction, average
Shear StresérAL) in z—direction and average Nusselt numlﬁNuA) are plotted for
different values of Grashof numbB, ) where P. =072 y =001 E, =001

M =005 pB, =006 E, =003 and S, =004. It has found that Steady-state
average Shear StreésxA) in X —direction, average Shear Stre($§L) in z—direction
and average Nusselt numt(éduA)increase for increasing of Grashof nun(kférr).ln
Figure 35-37, Steady-state average Shear Stl(ef§,§) in X —direction, average Shear
Stress(rAL) in z —direction and average Nusselt num()hkuA)are plotted for different
values of Prandlt numbe(rR) where R =0.72, y = 001, E, =001, M = 005

B, = 006, E, = 003 and S, = 004.

It has found that Steady-state average Shear S(re,&% in X — direction,
average Shear StreéBAL) in z —direction and average Nusselt numlﬁb&uA) decrease
for increasing of Prandlt numb@?’r).The steady state Average Shear St(e§§) in
X —direction, Average Shear StreésAL) in z—direction and Average Nusselt Number
(NuA) verses Co-ordinate Variabl, are illustrated irFigure 38-49.1n Figure 38-40,
Steady-state average Shear Stl(ef§§) in X —direction, average Shear Stre(s’gL) in
z — direction and average Nusselt numl{NuA) are plotted for different values of
Magnetic paramete{M) where P. =072 G, =20, E =001 E, =003
B, =004, B, =006andy = 001.

It has found that the average Shear St(e§§) in X —direction, average Shear
Stress(rAL) in z —direction and average Nusselt numlébkuA)decrease for increasing

of Magnetic paramete(rM ) In Figure 41-43, Steady-state average Shear St(e§§)
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Figure 35: Effect ofP on local shear
stress inX —direction.
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in X —direction, average Shear Stre(sz) in z —direction and average Nusselt
number (NuA) are plotted for different values of Ekman numb@¥ ) where
P =072 G =20, E,.=001 M =005 g =004 pB,=006andy= 001.It
has found that Steady-state average Shear S{trg@sin X —direction, average Shear
Stress(rAL) in z —direction and average Nusselt numﬁNuA) decrease for increasing
of Ekman numbe(E,) .

6. Conclusion
The important findings of the investigation fromapghical representation are listed
below:

1. The primary velocity decreases with the increaddsl oE, , G, and P, while the
secondary velocity increases with the increasblofG, , P, , E, andg,.

2. The secondary velocity decreases with the increakgs and ywhile the primary
velocity increases with the increaseyaindE, .

3. The temperature profiles increases with the ineresfsM , E_, E. and ywhile it
decreases with the increasé?andG, .
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