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1. Introduction

We consider only finite undirected graphs withadgds or multiple edges. Notation and
terminology not defined here follow those in [2prfa graphG = (V, E), we usen, e, 6,
and A to denote its ordefV|, size |[E|, minimum degree, and maximum degree,
respectively. A cycleC in a graphG is called a Hamiltonian cycle @ if C contains all
the vertices ofG. A graphG is called Hamiltonian ifc has a Hamiltonian cycle. A path
P in a graphG is called a Hamiltonian path @f if P contains all the vertices @f. A
graph G is called traceable ift has a Hamiltonian path. A grap& is called
Hamilton-connected if for each pair of verticesdnthere is a Hamiltonian path between
them. The eigenvalues of a graph are defined asijfemvalues of its adjacency matrix.
The largest eigenvalue of a graghdenotedo(G), is called the spectral radius 6f If G
and H are two vertex-disjoint graphs, we ugse/ H to denote the join o andH. We
use C(n,r) to denote the number @fcombinations of a set with elements.

Spectral invariants have been used to study atyarfeoroperties of graphs. See,
for instance, [9] [5] [6] [7]. In this note, we Wibresent sufficient conditions which are
based on the spectral radius for some Hamiltoniapgsties of graphs. The results are as
follows.

Theorem 1. Let G be a connected graph of ordee 3. If G is notK; vV (K; + K,_3)
or K, v (3K;) and

p>Jn2—3n+2-8(n—1)+(§— 1A,
then G is Hamiltonian.

Theorem 2. Let G be a connected graph of order> 4. If G is notK; v (K,_3 +
(2Ky)), K, v ((3K1) + K3), or K, v (6K;) and
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p>Jn2—5n+8—-8n—1)+ (6§ — 1A,
then G is traceable.

Theorem 3. Let G be a connected graph of ordee 3. If

p>Jn2—3n+6—-86m—1)+(5—1A,
then G is Hamilton-connected.

Theorem 4. Let G be a connected graph of ordemwith n > 646. If
p>J(n—8)Mm—-6—-1)+252-6(n—1)+ (6 — 1A,
then G is Hamiltonian.

Theorem 5. Let G be a2-connected graph of order> 12. If G is notK, v ((2K,) +
K,_,) and

p>n2—5n+12—-86(m—1)+ (6§ — 1A,
then G is Hamiltonian.

Theorem 6. Let G be a3-connected graph of order> 18. If G is notK; Vv ((3K,) +
K,_¢) and

p>n2—7n+28—-86(n—1)+ (6§ —1)A,
then G is Hamiltonian.

Theorem 7. Let G be ak-connected graph of order> 3. If
p>ynP—-n—(k+D(n—k—-1)—-6(n—1)+ (5 — 1A,
then G is Hamiltonian.
Notice that—6(n— 1)+ —-DA<-6(n—-1D+B-1(n—1)=—-n+1.
Thus Theoremd — 7 have the following Corollarie$ - 7, respectively.

Corollary 1. Let G be a connected graph of ordee 3. If G is notK; v (K; + K,,_5)

or K, v (3K;) and
p>Vn? —4n+3,

then G is Hamiltonian.

Corollary 2. Let G be a connected graph of order= 4. If G is notK; Vv (K,_3 +
(2Ky1)), K, v ((3Ky) + K,), or K, v (6K;) and

p>n-—3,
then G is traceable.

Corollary 3. Let G be a connected graph of ordee> 3. If
p>Vn?—4n+7,

then G is Hamilton-connected.
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Corollary 4. Let G be a connected graph of orderwith n > 646. If
p>J(n—-8)(n—-86—-1)+252-n+1,

then G is Hamiltonian. \
Corollary 5. Let G be a2-connected graph of order> 12. If G is notK, Vv ((2K;) +

K,_.) and
p>Vn? —6n+ 13,

then G is Hamiltonian.

Corollary 6. Let G be a3-connected graph of order> 18. If G is notK; Vv ((3K;) +
K,_¢) and

p>+n?—8n+ 29,

then G is Hamiltonian.

Corollary 7. Let G be ak-connected graph of order> 3. If
p>J(n—1%-(k+Dn-k-1),

then G is Hamiltonian.

2. Someresults
In order to prove the theorems above, we needdlit@ning results as our lemmas. The
following lemma is Corollaryd on Page60 in [2].

Lemmal. Let G be a graph of ordet = 3. If
e 2 C(n_ 1;2) + 11
then G is Hamiltonian unles® is K; vV (K; + K,,_;) or K, vV (3K;).

Lemma 2. ([8]) Let G be a connected graph of ordee 4. If
e=C(n—22)+2,
then G is traceabl unlesé is K; vV (K,,_3 + (2K;)), K, V ((3K;) + K;), or K, V (6K;).
The following lemma is Theoremh7 on Page220 in [1].

Lemma 3. Let G be a graph of ordet > 3. If
e=C(n—12)+3,
then G is Hamilton-connected.
The following lemma is Exercisé.2.8 on Page 61 in [2].

Lemma4. Let G be a graph of ordet with n > 66.1f e > C(n — §,2) + 62, thenG is
Hamiltonian.

Lemma 5. ([3]) Let G be a2-connected graph of order> 12. If e = C(n — 2,2) + 4,
then G is Hamiltonian orG = K, vV ((2K;) U K,,_4).

Lemma 6. ([3]) Let G be a3-connected graph of order> 18. If e > C(n — 3,2) + 9,

127



Rao Li
then G is Hamiltonian orG = K53 V ((3K;) U K;,,_¢)-

Lemma 7. ([3]) Let ¢ be a k-connected graph of orden. If e >C(n,2)—
A=k | 1 thenG is Hamiltonian.

Lemma 8. ([4]) Let G be a graph of ordet and sizee with minimum degreej > 1
and maximum degreA. Then

p<2e—86(n—-1)+(—-1)A
with equality if and only ifG is regular, a star plus copies i, or a complete graph plus
a regular graph with smaller degree of vertices.

3. Proofs of Theorems

Next we will prove Theoremd — 7.

Proof of Theorem 1. Let G be a graph satisfying the conditions in TheorenSuppose
that G is not Hamiltonian. Then, from Lemmb, we have that < C(n — 1,2). By
Lemmas, we have

p<e—6(n—-1)+ (@ —-DA=yn?-3n+2-6(n—-1)+(§— 1A,

which is a contradiction. This completes the prafofheorem1. ]

Proof of Theorem 2. Let G be a graph satisfying the conditions in TheorZnSuppose
that G is not traceable. Then, from Lemma we have that < C(n—2,2) + 1. By
Lemmas, we have
p<2e—6(n—-1)+(@E-DA=n?2-5n+8—-6(n—1)+(§— 1A,
which is a contradiction. This completes the prafof heorem2. [ ]

Proof of Theorem 3. Let G be a graph satisfying the conditions in Theor&nSuppose
that G is not Hamilton-connected. Then, from LemBiave have that < C(n — 1,2) +
2. By Lemmas, we have
p<e—6(n—-1)+ (@ -DA=yn?-3n+6—-6(n—1)+ (- 1A,
which is a contradiction. This completes the pfoFheorems3. ]

Proof of Theorem 4. Let G be a graph satisfying the conditions in TheorenSuppose
that G is not Hamiltonian. Then, from Lemmg we have that < C(n — §,2) + §2. By
Lemmas, we have

p<e—86(n—-1)+(—-1A

=J/n=-8)(n—-6—-1)+252-6(n—1)+ (6 — 1A,
which is a contradiction. This completes the prafof heorem3. ]

Proof of Theorem 5. Let G be a graph satisfying the conditions in TheorenSuppose

that G is not Hamiltonian. Then, from Lemnig we have that < C(n — 2,2) + 3. By
Lemmas, we have
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p<Je—-6(n—-1D+(@E-DA=yn2-5n+12-6(n—1)+ (6 — DA,
which is a contradiction. This completes the praiofheorems. [ ]

Proof of Theorem 6. Let G be a graph satisfying the conditions in TheorgnSuppose
that G is not Hamiltonian. Then, from Lemntg we have that < C(n — 3,2) + 8. By
Lemma8, we have

p<Je—6(n—-1D+ (@ -DA=yn2-7n+28—-6(n—1)+ (6 — DA,
which is a contradiction. This completes the prafof heorems. ]

Proof of Theorem 7. Let G be a graph satisfying the conditions in Theor@nSuppose
that G is not Hamiltonian. Then, from Lemmd@, we have thate < C(n,2) —

Wﬂgﬂ_ By Lemma8, we have
p<J2e—8(n—1)+(—1A

<Jyn2—-n—(k+Dn—-k—-1)—-8(n—-1)+ (- 1A,
which is a contradiction. This completes the prafofheorem?. [ ]
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