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1. Introduction 
We consider only finite undirected graphs without loops or multiple edges. Notation and 
terminology not defined here follow those in [2]. For a graph � � ��, ��, we use �, 	, 
, 
and Δ  to denote its order |�| , size |�| , minimum degree, and maximum degree, 
respectively. A cycle 
 in a graph � is called a Hamiltonian cycle of � if 
 contains all 
the vertices of �. A graph � is called Hamiltonian if � has a Hamiltonian cycle. A path 
� in a graph � is called a Hamiltonian path of � if � contains all the vertices of �. A 
graph �  is called traceable if �  has a Hamiltonian path. A graph �  is called 
Hamilton-connected if for each pair of vertices in � there is a Hamiltonian path between 
them. The eigenvalues of a graph are defined as the eigenvalues of its adjacency matrix. 
The largest eigenvalue of a graph �, denoted ����, is called the spectral radius of �. If � 
and � are two vertex-disjoint graphs, we use � � � to denote the join of � and �. We 
use 
��, �� to denote the number of �-combinations of a set with � elements. 

Spectral invariants have been used to study a variety of properties of graphs. See, 
for instance, [9] [5] [6] [7]. In this note, we will present sufficient conditions which are 
based on the spectral radius for some Hamiltonian properties of graphs. The results are as 
follows.  
 
Theorem 1. Let � be a connected graph of order � � 3. If � is not �� � ��� � ����� 
or �� � �3��� and  

 � � ��� � 3� � 2 � 
�� � 1� � �
 � 1�Δ , 
then � is Hamiltonian.  
 
Theorem 2. Let �  be a connected graph of order � � 4. If �  is not �� � ����" �
�2����, �� � ��3��� � ���, or �# � �6��� and  
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 � � ��� � 5� � 8 � 
�� � 1� � �
 � 1�Δ , 
then � is traceable.  

   
Theorem 3. Let � be a connected graph of order � � 3. If  

  

� � ��� � 3� � 6 � 
�� � 1� � �
 � 1�Δ , 
then � is Hamilton-connected.  
 
Theorem 4. Let � be a connected graph of order � with � � 6
. If  

 � � ��� � 
��� � 
 � 1� � 2
� � 
�� � 1� � �
 � 1�Δ , 
then � is Hamiltonian.  

   
Theorem 5. Let � be a 2-connected graph of order � � 12. If � is not �� � ��2��� �
���#� and  

 � � ��� � 5� � 12 � 
�� � 1� � �
 � 1�Δ , 
 
then � is Hamiltonian.  
 
Theorem 6. Let � be a 3-connected graph of order � � 18. If � is not �" � ��3��� �
���'� and  

 � � ��� � 7� � 28 � 
�� � 1� � �
 � 1�Δ , 
then � is Hamiltonian. 
 
Theorem 7. Let � be a )-connected graph of order � � 3. If  

 � � ��� � � � �) � 1��� � ) � 1� � 
�� � 1� � �
 � 1�Δ , 
then � is Hamiltonian.  

Notice that �
�� � 1� � �
 � 1�Δ * �
�� � 1� � �
 � 1��� � 1� � �� � 1 . 
Thus Theorems 1 – 7 have the following Corollaries 1 - 7, respectively.  

  
Corollary 1. Let � be a connected graph of order � � 3. If � is not �� � ��� � ����� 
or �� � �3��� and  

 � � √�� � 4� � 3 , 
then � is Hamiltonian.  
 
Corollary 2. Let �  be a connected graph of order � � 4. If �  is not �� � ����" �
�2����, �� � ��3��� � ���, or �# � �6��� and  

 � � � � 3, 
then � is traceable.  
 
Corollary 3. Let � be a connected graph of order � � 3. If  

 � � √�� � 4� � 7 , 
then � is Hamilton-connected.  
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Corollary 4. Let � be a connected graph of order � with � � 6
. If  
 � � ��� � 
��� � 
 � 1� � 2
� � � � 1 , 

then � is Hamiltonian. \ 
 
Corollary 5. Let � be a 2-connected graph of order � � 12. If � is not �� � ��2��� �
���#� and  

 � � √�� � 6� � 13, 
then � is Hamiltonian.  
 
Corollary 6. Let � be a 3-connected graph of order � � 18. If � is not �" � ��3��� �
���'� and  

  

� � ��� � 8� � 29, 
then � is Hamiltonian. 
 
Corollary 7. Let � be a )-connected graph of order � � 3. If  

 � � ��� � 1�� � �) � 1��� � ) � 1�, 
then � is Hamiltonian.  
 
2. Some results 
In order to prove the theorems above, we need the following results as our lemmas. The 
following lemma is Corollary 4 on Page 60 in [2]. 

  
Lemma 1. Let � be a graph of order � � 3. If  

 	 � 
�� � 1,2� � 1, 
then � is Hamiltonian unless � is �� � ��� � ����� or �� � �3���.  
 
Lemma 2. ([8]) Let � be a connected graph of order � � 4. If  

 	 � 
�� � 2,2� � 2, 
then � is traceabl unless � is �� � ����" � �2����, �� � ��3��� � ���, or �# � �6���.  

The following lemma is Theorem 17 on Page 220 in [1].  
   

Lemma 3. Let � be a graph of order � � 3. If  
 	 � 
�� � 1,2� � 3, 

then � is Hamilton-connected.  
The following lemma is Exercise 4.2.8 on Page 61 in [2].  
 

Lemma 4. Let � be a graph of order � with � � 6
. If 	 � 
�� � 
, 2� � 
�, then � is 
Hamiltonian.  
 
Lemma 5. ([3]) Let � be a 2-connected graph of order � � 12. If 	 � 
�� � 2,2� � 4, 
then � is Hamiltonian or � � �� � ��2��� / ���#�.  
 
Lemma 6. ([3]) Let � be a 3-connected graph of order � � 18. If 	 � 
�� � 3,2� � 9, 
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then � is Hamiltonian or � � �" � ��3��� / ���'�.  
 
Lemma 7. ([3]) Let �  be a ) -connected graph of order � . If 	 � 
��, 2� �
�01�����0���

�
� 1, then � is Hamiltonian.  

 
Lemma 8. ([4]) Let � be a graph of order � and size 	 with minimum degree 
 � 1 
and maximum degree Δ. Then  

 � * �2	 � 
�� � 1� � �
 � 1�Δ 
with equality if and only if � is regular, a star plus copies of ��, or a complete graph plus 
a regular graph with smaller degree of vertices.  
 
3. Proofs of Theorems 
Next we will prove Theorems 1 � 7. 
Proof of Theorem 2. Let � be a graph satisfying the conditions in Theorem 1. Suppose 
that �  is not Hamiltonian. Then, from Lemma 1, we have that 	 * 
�� � 1,2�. By 
Lemma 8, we have  

 � * �2	 � 
�� � 1� � �
 � 1�Δ � ��� � 3� � 2 � 
�� � 1� � �
 � 1�Δ , 
 
which is a contradiction. This completes the proof of Theorem 1.                       3 

 
Proof of Theorem 4. Let � be a graph satisfying the conditions in Theorem 2. Suppose 
that �  is not traceable. Then, from Lemma 2, we have that 	 * 
�� � 2,2� � 1. By 
Lemma 8, we have  

 � * �2	 � 
�� � 1� � �
 � 1�Δ � ��� � 5� � 8 � 
�� � 1� � �
 � 1�Δ , 
which is a contradiction. This completes the proof of Theorem 2.                       3 

   
Proof of Theorem 5. Let � be a graph satisfying the conditions in Theorem 3. Suppose 
that � is not Hamilton-connected. Then, from Lemma 3, we have that 	 * 
�� � 1,2� �
2. By Lemma 8, we have  

 � * �2	 � 
�� � 1� � �
 � 1�Δ � ��� � 3� � 6 � 
�� � 1� � �
 � 1�Δ , 
which is a contradiction. This completes the proof of Theorem 3.                       3  

   
Proof of Theorem 6. Let � be a graph satisfying the conditions in Theorem 4. Suppose 
that � is not Hamiltonian. Then, from Lemma 4, we have that 	 * 
�� � 
, 2� � 
�. By 
Lemma 8, we have  

 � * �2	 � 
�� � 1� � �
 � 1�Δ 
 

 � ��� � 
��� � 
 � 1� � 2
� � 
�� � 1� � �
 � 1�Δ , 
which is a contradiction. This completes the proof of Theorem 3.                       3 
 
Proof of Theorem 7. Let � be a graph satisfying the conditions in Theorem 4. Suppose 
that � is not Hamiltonian. Then, from Lemma 5, we have that 	 * 
�� � 2,2� � 3. By 
Lemma 8, we have  
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 � * �2	 � 
�� � 1� � �
 � 1�Δ � ��� � 5� � 12 � 
�� � 1� � �
 � 1�Δ , 
which is a contradiction. This completes the proof of Theorem 5.                      3 
 
Proof of Theorem 8. Let � be a graph satisfying the conditions in Theorem 5. Suppose 
that � is not Hamiltonian. Then, from Lemma 6, we have that 	 * 
�� � 3,2� � 8. By 
Lemma 8, we have  

 
 � * �2	 � 
�� � 1� � �
 � 1�Δ � ��� � 7� � 28 � 
�� � 1� � �
 � 1�Δ , 

which is a contradiction. This completes the proof of Theorem 6.                       3 
 
Proof of Theorem 9. Let � be a graph satisfying the conditions in Theorem 6. Suppose 
that �  is not Hamiltonian. Then, from Lemma 7 , we have that 	 * 
��, 2� �
�01�����0���

�
. By Lemma 8, we have  

� * �2	 � 
�� � 1� � �
 � 1�Δ 
 * ��� � � � �) � 1��� � ) � 1� � 
�� � 1� � �
 � 1�Δ , 

which is a contradiction. This completes the proof of Theorem 7.                       3 
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