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1. Introduction

The theory of sets introduced by George Cantor dbame the notion of element
membership to sets has proved itself to be onde@fntost powerful tools of modern
mathematics. In classical set theory, a set islakdgéned collection of distinct objects.

If repeated occurrences of any object are allowesi set, then the mathematical structure
is called as multiset. Thus, a multiset differara set in the sense that each element has
a multiplicity. A complete account of the developthef multiset theory can be seen in
[1, 2, 3, 4].

Most of the real life situations are complex and fwodeling them we need a
simplification of the complex system. The simplfion must be in such a way that the
information lost should be minimum. One way to déstis to allow some degree of
uncertainty into it. To handle situations like thimany tools were suggested. They
include Fuzzy sets, Rough sets, Soft sets etc.

Considering the uncertainty factor, Lofti Zadeh [Biroduced Fuzzy sets in
1965, in which a membership function assigns tohealement of the universe of
discourse, a number from the unit interval [0, lindicate the degree of belongingness to
the set under consideration. Fuzzy sets were inted with a view to reconcile
mathematical modeling and human knowledge in thignerering sciences. Since then, a
considerable body of literature has blossomed atdhe concept of fuzzy sets in an
incredibly wide range of areas, from mathematias lagics to traditional and advanced
engineering methodologies. Owing to the fact thett theory is the corner stone of
modern mathematics, a new and more general frankewodr mathematics was
established.
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In 1983, Atanassov [6,7] introduced the concepntfitionistic Fuzzy sets. The
same time a theory called "Intuitionistic Fuzzy thetory' was independently introduced
by Takeuti and Titani [8] as a theory developedankind of) Intuitionistic logic. An
Intuitionistic Fuzzy set is characterized by twondtions expressing the degree of
membership and the degree of nonmembership of elsmaf the universe to the
Intuitionistic Fuzzy set. Among the various notiow$ higher-order Fuzzy sets,
Intuitionistic Fuzzy sets proposed by Atanassowiai® a flexible framework to explain
uncertainty and vagueness. It is well-known thathe beginning of the last century
L.Brouwer introduced the concept of Intuitionismhel'name Intuitionistic Fuzzy set is
due to George Gargove, with the motivation thairthszzification denies the law of
excluded middle-one of the main ideas of Intuitioni

As a generalization of multiset, Yager [9] intuogd fuzzy multisets and
suggested possible applications to relational deedh An element of a Fuzzy Multiset
can occur more than once with possibly the santiffl@rent membership values.

The concept of Intuitionistic Fuzzy Multiset is riotluced in [10] which have
applications in medical diagnosis and robotics.

In mathematics, Abstract algebra is the study gélataic structures and more
specifically the term algebraic structure generaéifers to a set (called carrier set or
underlying set) with one or more finitely operasotefined on it. Examples of algebraic
structures include groups, rings, fields, anddea#ti We introduced algebraic structures
on Fuzzy multisets in [11]. In this work we areending these algebraic structures on
Intuitionistic Fuzzy Multisets by introducing a ne@ncept namethtuitionistic Fuzzy
Multigroups.

2. Preliminaries

Definition 2.1. Let X be a set. Anultiset(mset)M drawn fromX is represented by a
function CountM or Cy, defined a€Cy: X- {0,1, 2, 3,...}.

For each XIX, Cy(x) is the characteristic value »in M. HereCy(x) denotes the number
of occurrences of in M.

Definition 2.2. ([12]) Let X be a group. A multi seb over X is amulti groupover X if
the count ofG satisfies the following two conditions.

1. GCe(xy) =2 G () ACely) OX YEX;

2. Co(xh) > Cy(x) OxeX

Definition 2.3. If X is a collection of objects, thenfazzy sef in X is a set of ordered
pairs: A ={(x, A(X)) : XE X, Ha : X - [0,1]} whereua, is called the membership
function ofA, and is defined fronX into [0, 1].

Definition 2.4. ([13]) Let G be a group and g FP(G) (fuzzy power set @), thenpu is
calledfuzzy subgroupf G if

1. p(xy) > p(X)A ) Ox,yeG and
2. u(x™ = px) OxeG.

Definition 2.5. ([10]) Let X be a nonempty set. Amtuitionistic Fuzzy MultisetA
denoted by IFMS drawn fromK is characterized by two functions : ‘count membgr's
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of A (CM,) and ‘count non membership’ of A (GNgiven respectively by CM X - Q

and CN:: X— Q whereQ is the set of all crisp multisets drawn from thmt interval [O,
1] such that for eack € X, the membership sequence is defined as a decgbasidered
sequence of elements @MA(X) which is denoted by (u(x), P2a(X),...,.fa(X)) where
(UA(X) > P2A(X) >,... >p°A(X) and the corresponding non membership sequeilceav
denoted by ({a(X), VZa(X),...,a(x)) such that 0 €'a(X) + Va(X) <1 for everyx e X and
i=1,2,..,p.

An IFMS A is denoted by
A= {< X (WAG), KA®),-Ea09), (Va(Q), VA, . Va(X)) > xe X}

Remark: We arrange the membership sequence in decreasidgr dsut the
corresponding non membership sequence may notdecieasing or increasing order.

Definition 2.6. ([10]) Length of an element x in an IFMS A is definedtzes €Cardinality
of CM, (X) or CNy(X) for which 0 <plA(X) +VA(X) <1 and it is denoted by L(x: A). That
is

L(x: A) = [CMa(X)| = [CN(X)]
Definition 2.7. ([10]) If A and B are IFMSs drawn from X thdr{x : A,B) = Max{L(x :
A), L(x : B)}. Alternatively we use L(x) for L(x :AB).

Definition 2.8. ([10]) For any two IFMSs A and Blrawn from a set X, the following
operations and relations will hold. Lét = {< x : (U'a(X), H2A(X),....k0a(%)), (V'a(X),
VAR, Va(¥)) > 0 x € X} and B = {< x : (Ws(X), Wa(X),-HB(X), (Vis(X),
VZg(X),....\Vs(X)) > : x€ X} then
1. Inclusion
AOB = HaAX<HAX) and Ya(x)=V's(x);
j=1.2,..., LX), xe X
A=B <« AOBandBOA
2. Complement
AA = {< X (VA VA), (WA, e Ma(X) > xe X}
3. Union (A B)
In A O B the membership and non membership values asgnelt as follows.
Haos(X) = Ha(x) O Ws(x)
Vaaoe(X) = Va(x)DVs(x)
i=1,2,...,LKx),xdX.
4. Intersection (An B)
In AnB the membership and non membership values areetitas follows.
Wans(X) = Ha(¥) 0 Wa(X)
Vane(X) = Va(x) OVs(X)
j=1,2,..,L(X), K X.

Definition 2.9. ([11]) Let X be a group. A fuzzy multis€ overX is afuzzy multi group
(FMG) over X if the count (count membership) @& satisfies the following two
conditions.
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1. CMg(Xy) > CMg(X) A CMg(y) VXyE X.
2. CMg(xh) = CMg(x) VX EX.

Theorem 2.10. ([11]) LetA € FM(X).Then A € FMG(X) iff CM (Xy") = CMa(X) A
CMa(y) OX, YE X.

Definition 2.11. ([11]) Let A € FM(X). Then

Ala,n] = {x € X: Wy (x) = o;L(x) =j>nandjn € N}. This is calledn-a level set of
A

Definition 2.12. ([11]) Let A € FM(X). Then define A*= { x € X: CM,(x) = CM4(e)}.

3. Intuitionistic fuzzy multigroups

Throughout this section, |&t be a group with a binary operation and the idgm=iément
is e. Also we assume that the intuitionistic fuzzy mutssare taken from IFMS(X) and
IFMG(X) denotes the set of all intuitionistic fuzzy mgtoups (IFMG) over the grouf.

Definition 3.1. LetA € IFMS(X). ThenA' is defined as CM"(x) = CMa(x") and CN
(X) = CNa(X).

Definition 3.2. Let A, B € IFMS(X). Then define Ao B as
CMpop(X) = V {CMua(y) A CMp(Z) ; v,z € Xand yz = x}.
CNpog(x) = A {CN(y) VCN(2z) ; y,z € Xand yz = x}

Proposition 3.3. Let A, B, A € IFMS(X), then the following results hold
a) A9t =A
b) AIB= A'0 B

c) [L_JA It U[A'll-

d (AT = [iAY
e) (AoB)! = BloA*
) CMpop(®) = vyex {CMu(y) ACMp(y~'x) } Ox €X
= yyex{ CMa(xy ™) A CMg(y) } Ox€X
CNpog(X) = pyex {CNA(y) VCNp(y~'x) } Ox €X
= Ayex{ CNa(xy™1) v CNp(y) } Ox EX.

Proof:
a) CMwh(x) = CMa%(x”)
= CMX7)Y)
= GIfK) 0O x€ X. Since X is a group (3™ = x
CNahy'(¥) = CNa*h (1X ;l)
= CN(X)Y)
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= GIK) O x€X. Since X is a group (3" = x
=A = (AHh

b) Given A'B

= CMa(x") o CMg(x") OX€EX
CMH (%) < CMgh (%)
And CN(xY) > CNg(xh) oOxeX
CAH () > CNgh(x)
= A' [ B*
C) CM(Ultl:lAi)—l(X) = CM(U?=1Ai)(x_1)

V{CM,,(x™"); i =1,..,n} by definition of union

= {CMAi—1(x); i=1,..,n}

€MU?=1Ai-1(x). by definition of union
CN(U?:lAi)_l(x) - CN(U?=1Ai)(x_1)

A {CNAi(x‘l) ;i =1,..,n} by definition of union

A {CNAi—1(x); i=1,..,n}

ﬁNU{;lA;l(")' by definition of union.

= iJar = Jam.
i=1 i=1

d) CM(“?:M:’)_l(x) - CM(”?:Mi)(x_l)
= MCMy,(x™Y); i=1,..,n}
=A{CMAi—1(x); i=1,..,n}
=CMn?=1Ai—1(x). by definition of intersection.

= [Art = &y
i=1 i=1
CNer, ap—1(x) = CN(r, a4y

=V{CN,,(x™1);i=1,..,n}
=v {CNAi—1(x); i=1,..,n}
=CNpn 4-1(x). by definition of intersection.

= [arr = ey
i=1 i=1
&) CMuon'® = CMaog(x") = V{CMa(y) CMp(2) ; y,z€Xandyz =
x 1

v {CMg(z) ACM4x(Y) ; v,z € Xand (yz)~" = x}
v {CMp(z™)™P ACMa(y ™)™ ; v,z € Xand (yz) ! = x}
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V{CMpg-1(z D) ACMp-1(y ™) ;y7%, z7t eXand 271y 1 =

x}
= CMoa™(X) OXEX ey
And CNAO B)-l(X) = CNAO B)(X-l)
= A {CNa(y) V CNg(z) ; y,z€ Xandyz = x 1}

A {CNg(z) V CNL(Y) ; v,z € Xand (yz)~! = x}

A {CNg(z™)™1Vv CNA(y™ D)™ ; y,z€ Xand (yz)! = x}

K{CNB 1(z7) V CNp-1(y D) ;5

1, z7leXand z7ly ! =x}
- CdﬂoA (X)DXEX (2)
From (1) and (2) (A 0 B) = B'o A*

f) Since X is a group, it follows that for eachyxe X, L a unique z(=yx) € X, such that
yz = X. ThenCMp,p (%) =V yex{CMa(y) A CMp(y~'x) }Ox € Xand
CNpop(%) =A yex{CNA(Y) VCNp(y'x)}0x € X
Also CMpog(x) = V{CMg(z) ACM4(y); y, z€ Xand yz = x}and
CNaop(x) = A{CNg(z) VCN4A(Y); v,z € Xand yz = x}.
Since X is a group, it follows that for each > X, C a unique z(=xy) € X, such
that zy= x. ThertMp,p(x) =V yex{ CMp(xy ™) ACM,(y)}Ox € X and

CNaop(X) =Ayex{CNp(xy™1) VCNA()}0x € X.

Definition 3.4. Let X be a group. An Intuitionistic fuzzy multis& over X is an
Intuitionistic fuzzy multi groulFMG) overX if the counts (count membership and non
membership) o6 satisfies the following two conditions.

1. CMg(xy) = CMg(X) A CMg(y) Vx,y € X.

2. CMg(x") > CMg(x) Vx€X.

3. CNo(xy) < CNg(x) A CNg(y) Vx,y € X.

4. CNg(x") < CNg(X) Vx€X.

Example 3.5. (Z4, +4)is a group. Then
A ={<0: (0.9, 0.8, 0.7, 0.5, 0.1, 0.1), (0.1, 023, 0.5, 0.9, 0.9)>, <1: (0.6, 0.4 0.3, 0.1),
(0.4, 0.6, 0.7, 0.9)>, <2:(0.8, 0.7, 0.7, 0.5, 0.1), (0.2, 0.3, 0.3, 0.5, 0.9, 0.9)>, <3: (0.6,
0.4,0.3,0.1), (0.4, 0.6, 0.7, 0.9)>} is an Itiuistic fuzzy multi group.
But B = {<0: (0.9, 0.8, 0.7, 0.5, 0.1, 0.1), (012, 0.3, 0.5, 0.9, 0.9)>, <1: (0.9, 0.7, 0.7,
0.5,0.1,0.1), (0.1, 0.3, 0.3, 0.5, 0.9, 0.9)>(&B, 0.4, 0.3, 0.1), (0.4, 0.6, 0.7, 0.9)>, <3:
(0.8, 0.7, 0.7, 0.5, 0.1, 0.1 ), (0.2, 0.3, 0.3, @.9, 0.9)>} is not an IFMG. Because
CMg(1™) is not greater than or equal@/s(1).

From the definition and above example itlear that IFMG is a generalized case of
FMG.

Proposition 3.6. Let A€ IFMS(X) and CM(x™) > CMa(x) and CN,(x™") < CNa(X).
Then L(x: A) = L(x': A)

Proof:
CMA(Xh) > CMa(X) (given)
Now CMa(X) = CMa((x")™) = CMa(x") Then
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CMa(¥) = CM(xY).
CNa(x?) < CNia(¥) (given)
Now CNa(X) = CMNi((xXH™) < CNa(x?) Then
CNa(x) = CN(xY.
Now L(x;A) = |CMa(X)| = [CNA(X)| (By definition)
Hence L(x;A) = [CM(X™)] = [CNy(X )

=L A)

Proposition 3.7. Let A€ IFMG (X). Then
a) CMa(e) > CMa(X) OX€eEX
b) CNa(e) < CNi(x) OX€EX
c) CMa(X") > CMu(X) OXEX
d) CNa(X") < CNa(X) OX€EX
e) AToA
Proof: Letx, y € X.
a)  CMa(e) = CM(xx")
> CMa(X) A CMa(X")
> CMa(X) A CMA(X)
= CMA(X)
= CN(xX")
< CNA(X) \% CNA(X-l)
< CNA(X) \% CNA(X)
= CNA(X)
c) CMA(X) > CMAKX™) A CMa(X)
>  CMa(X) ACMA(X) A . . .ACMa(X)
= CM(X).
d)  CNAX) < CNa(X™)V CNa(x)
< CNa(X) VCNA(X) V. . .V CNaA(X)

b) CNa(e)

= CNX.
e)  CMa'(x) = CM(X)
> CMa(x)
CNA'(¥) = CM(X)
< CNa(¥)
=At2 A

by recursion

by recursion

Theorem 3.8. LetA € IFMS(X). Then A € IFMG(X) iff CM o(Xy™") = CMa(X) A CMa(y)

and CN(Y™) < CNa(X) V CNa(y) OX, y € X.
Proof: Let A € IFMG(X)

Then CMy(xy™") > CMu(X) A CMa(Y?)

CMa(x) A CMa(y) 0%, Y €X
CNA(x) V CNa(y™)

CNa(X) V CNa(y) DX YEX
Conversely, let the given condition be satisfied.
Also CMa(x') = CM(exh)

Then CN(xy™)

IA Ay
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> CMA(e) AC MA(X)
= CMX)

Now  CM(Xy) > CMa(X) ACMa(Y™)
= CGi{k) ACMa(y)

= CN(ex")

S CNuy(e)V CNa(x)
= CNX)

Now CMN(xy) £  CN(X)V CNa(y)

G) VCNAa(y)

And CNy(x™)

Hence the proof.

Definition 3.9. Let A € IFMS(X). ThenA[a, B, n] = {x € X: () = «, v, (x) <
B;L(x) =j=nandj,n € N}. This is calledn,a,f) level sebf A.

Proposition 3.10. LetA € IFMG(X). Then Afo,B, n] are subgroups of X.
Proof:
Let x, y€ A[a, 3,1],

It implies that fod =N K, (x) >a and W, () 2 a; vi(x) < Bandvh(y) <B
Thenu]A(xy_l) > aand Vk(xy_l) <B

This= if x, y € A[a,B, n] then xy* € A[a,B, n].
Hence Ap,(, n] is a subgroup of.

Definition 3.11. LetA € IFMS(X). Then define
A* = {X e X: CMA(X) = CMA(e) and CNA(X) = CNA(e) }

Proposition 3.12. Let A € IFMG(X). Then A*is a subgroup of X.
Proof:

Let x, ye A*

Then CMy(X) = CMa(y) = CMa(e)

and CN(x) = CNa(y) = CNa(e)

Then CM, (xy™") > CMa(x) A CMa(y)

CMe)A CMa(e) by (1)

ChNe)
But CMi(xy") < CMa(e)
i.e. CM(xy') = CMf(e)
Then CN, (xy™) = CNa(x) V CNa(y)
= Gie)V CNa(e) by (2)
= Gie)

But CNy(xy”) < CNa(e)
i.e. CN(xyh) = CNi(e)
= Xy € A*. Hence A* is a subgroup of X.

Definition 3.13. Let A € IFMS(X). Letj € N. Then define
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={xeXx: |J.A(X) >0, u]+1(x)= 0 andvk(x) = 0}.

Proposition 3.14. Let A € IFMG(X). Then Aisa subgroup of X iff
Hl(xy Y=0and v]+1(xy_1) =0Vxy€EA

Proof:

Let x, ye Al. It implies that

uA(X) >0, uA(y) >0 anduA '®=0,Ky ®=0

VA = 0,vA ) = 0 andVy () =0,V () =0
Assumeu]+1(xy Y=0and vgl(xy_l) =0Vxy€EA
Then by the above theorem,

MaGy ™) >0 andvy (xy ) = 0

— xyt € Al. Then Ais a subgroup of X. Hence the proof.
Conversely, . .

Al is a subgroup of X. Theyy € A) = xy~1 € Al.

= u’;l(xy—l) =0 anq\)i,:l(xy_l) =0 Hence the proof.

j+1

Theorem 3.15. Let A € IFMS(X). Then A€ IFMG(X) iff Ao A 0 Aand Ac A™,
Proof: Let A € IFMG(X) and X, y, z€ X.
= CMa(xy) = CMa(x) ACMa(y)
= CMa(2) = V{CMa(X) ACMa(y) ; Xy =2}
= CMA (Z)
And CNa(xy) < CNa(x) V CNa(y)
= CNa(z) < MCNA(X)VCNa(Y) ;xy =12}
= C/INA (Z)
= A0A U A. Now by (3.7) (e) we get thé®condition.

Conversely,
Assume Ao AO A D
and Ac A*
= CMa*(X) > CM(X)
But CMyi(x) = CM(x?
= CMa(x™) = CMx(x) 2

Also CNRi(x) < CNa(X)
But CN\'(x) = CMN(X?)
= CNa(x™") < CNa(X) ®3)
Since Ae IFMS(X), then to prove A& IFMG(X) it is enough to prove that
CMa (xy?) = CMa(X) ACMa(y) andCN, (xy™®) < CNa(x) V CNa(y) 0%, yLX
Now CMA(Xy-l) =z CMAO A(Xy-l) by (1)
¥, [0x{CMa(2) T CMa (Z'xy™)} by (3.3(f))
{CMA(X) A CMA(Y™")}; Z = X
CMa(X) A CMa(y) by (2)
CNaoa(xyD) by (1)

IN TV IV

And CN,(xy™)
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A.L1{CNa(2) VCNa (Z'xy™)} by (3.3()
< {CNa(X) VCNA(Y )} 2 = x
< CNa(x) VCNa(y) by (3)
Hence the proof.

Corollory 3.16. Let A€ IFMS(X). Then A€ IFMG(X) iff Ao A=A and ABA™
Proof: LetA € IFMG(X). Then

CMppa(x) = V{CMy(y) ACMy(2); y,z € Xand yz = x }
> {CM,(e) ACMy(e™1x)}
= CMy(x)

CNyoa(x) = AN{CN4(y) VCNy(2); v,z €EXandyz =x}
< {CNy(e) ACNy(e™1x)}
= CNy(x)

SoAc AoA

Hence by the above theorem the proof is complete.

Proposition 3.17. Let ALIIFMS(X). ThenA € IFMG(X) if Ao A™[J A.
Proof:
Assume Ao A [J A (1)
Since A€ IFMS (X), then to prove A& IFMG (X) it is enough to prove that
CMa (xy?) = CMa(x) ACMa(y) OX, yUIX
CNa (xyh) = CNa(x) VCN(y) Ox, yLIX
CMa(xyy) = CMpoa-1(xy™) by (2)
=V;[x {CMa(2) A CMp-1(2"xy ™)}
> {CMa(X) A CMp-1(YH}; z=x
= CMX) A CMa(y).
CNa(xy?) = CNpoa-1(xy™) by (1)
= A;[Ix {CNa(2) V CNp-1(Z"'xy™)}
< {CNa(X) VCNp-1(y D)}, z = x
= CNX) V CNa(y).
Hence the proof.

Theorem 3.18. Let A, Be IFMG(X). Then AB € IFMG(X).
Proof: Let x, ye ANB € IFMS(X)
=X, YEAand x, ye B
= CMA(Xy-l) > CMA(X) A CMA(y-l), CMB(Xy-l) > CMB(X) /\CMB(y-l) and
CNy(xy™) < CNa(x) VCNa(Y™), CNs(xy™) < CNg(X) v CNa(y™)
Now CMang(xyl) = CMi(xy") ACMg(xy™) by definition of intersection
> [CMa(X) A CMa(y )] A [CMg(x) ACMg(y™)]
= [CM(X) ACMg(X)] A [CMa(y™) ACMs(y™)]
(by commutative property of minimum)
> [CMa(X) ACMg(X)] A [CMa(y) ACMg(y)] Since A, BLIIFMG(X)
= Clhs(X) ACMans(Y) by definition of intersection
CMang(X) ACMans(y) 1)
CM(xy™") VCNg(xy) by definition of intersection

= CMans(xy™)
And CNapg(xy™)

I v
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< [CNa(X) VCNA(Y™)] V [CNg(X) VCMg(y™)]
= [CNX) VCNg(x)] V [CNa(y™) VCNa(y™)]
(by commutative property of maximum)
< [CNa(x) VCNg(x)] V [CNa(y) VCNg(y)] Since A, BIIFMG(X)
= CRhhs(X) VCNans(Y) by definition of intersection
=  CNana(xy™") < CNang(X) A CNana(y) 2)
From (1) and (2) AB € IFMG(X). Hence the proof.

Remark 3.19. If {A; ; i € I} is a family of IFMG overX, then their intersectiof;¢; 4;
is also a IFMG oveK.

Proposition 3.20. Let A, B € IFMG(X). ThenCM, g (x) < CMy g(x™1), CNyp(x) =

CNAUB(X_l)-

Proof:

CMaup(x™") =V {CMua(x™), CMp(x~1)}
> V{CM,u(x), CMg(x)} Since A, B1 IFMG(X)
= CMaus ().

CNaug(x™1) = A {CNAG™Y), CNp(x™ 1)}

<A{CNj(x), CNg(x)} Since A, B] IFMG(X)

= CNpyp(®).
Hence the proof.
From this it is clear that, if A, B IFMG(X) thenA U B € IFMG(X) iff CMy g(xy) =

CMaup(x) A CMpyg(y) and CNpyg(xy) < CNuyp(x) V CNpup(y)

Corollary 3.21. Let A, B€ IFMG(X). Then AUB need not be an element of IFMG(X)
Proof:

X ={a, b, c, e} is Klein’s 4 group. Then A = {<#0.6, 0.4, 0.3, 0.1),(0.3, 0.4, 0.7, 0.5)>,
<e: (0.9, 0.8, 0.7, 0.5, 0.1, 0.1), (0.0, 0.1, 02, 0.5, 0.7)} and B = {<b: (0.8, 0.8, 0.5,
0.5, 0.1, 0.1), (0.1, 0.0, 0.4, 0.3, 0.7, 0.3), €e9, 0.8, 0.7, 0.5, 0.1, 0.1),(0.1, 0.1, 0.2,
0.5, 0.5, 0.6)>} are intuitionistic fuzzy multi grps.AUB = {<a: (0.6, 0.4, 0.3, 0.1), (0.0,
0.0, 0.0, 0.0)>, <b: (0.8, 0.8, 0.5, 0.5, 0.1, (D)0, 0.0, 0.0, 0.0, 0.0, 0.0) >, <e: (0.9,
0.8, 0.7, 0.5, 0.1, 0.1), (0.0, 0.1, 0.2, 0.4, @B)>}. ButCM,,5(c) < CMyyg(a) A
CM,,5(b) as ab = cin Klein's 4 group. TheruB ¢ IFMG(X).

Proposition 3.22. Let A € IFMS(X) and A o A'[J A. Then A€ IFMG(X). Also
CMa(xy™) = CMpoa(xy) andCNA(xy™) < CNpoa(xy).
Proof: First part follows by 3.17.
Now CMp(xy™1) = CMpoa-1(xy™ 1) (given)
= Vaex{ CMa(2) A CMp-1(z"'xy™1) } by (3.3(f))
> {CMa(X) A CMp-1(y 1)} (when z =X)
= {CMA(x) ACMa(y) }
= CMpoa (xy).
AndCNp(xy™1) < CNpga-1(xy™1) (given)
= A;[x {CNa(2) V CNp-1(Z'xy ™M)} by 3.3(f)
< {CNA(X) VCNji(y~ D)} (whenz=x)
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= {CNA(®) V CNa(y) }
= CNpoa(xy).

Definition 3.23. Let A, B € IFMG(X). Then A is said to be sub-intuitionistic fuzzy
multi groupof B if A< B.

Example 3.24. (Z,, +,) is a group. Then A = {<2: (0.6, 0.4, 0.3, 0.(0,4, 0.6, 0.7,
0.9)>, <1: (0.8, 0.7, 0.7, 0.5, 0.1, 0.1),(0.2,@.3, 0.5, 0.9, 0.9)>, <3: (0.8, 0.7, 0.7, 0.5,
0.1, 0.1), (0.2, 0.3, 0.3, 0.5, 0.9, 0.9)>, <09(@.8, 0.7, 0.5, 0.1, 0.1), (0.1, 0.8, 0.3, 0.5,
0.9, 0.9)>} is a fuzzy multi group. And B = {<20.6, 0.4, 0.3, 0.1), (0.4, 0.6, 0.7, 0.9)>,
<1: (0.7, 0.6, 0.5, 0.5, 0.1, 0.1), (0.3, 0.4, @5, 0.9,0.9)>, <3: (0.7, 0.6, 0.5, 0.5, 0.1,
0.1), (0.3, 0.4, 0.5, 0.5, 0.9, 0.9)>, <0: (0.8,®.7, 0.5, 0.1, 0.1), (0.1, 0.2, 0.3, 0.5,0.9,
0.9)>} is a sub-fuzzy multi group .

Definition 3.25. Let A € IFMS(X). Then <A> = {1 A; : A € Aie IFMG(X) }is called the
intuitionistic fuzzy muli subgrougf X generated by A.

Remark 3.26. <A> is the smallest intuitionistic fuzzy multilsgroup of X that contains
A.

Proposition 3.27. If A € IFMG(X), and H is a subgroup of X, thenjAfi.e. A restricted
to H) € IFMG(H) and is an intuitionistic fuzzy multi subgroup of A

Proof:

Letx,y € H. Thenxy' € H. Now

CMy,, (xy™) = CMu(xy™) = CMy(x) A CMy(y) = CMy;,, (x) A CMy;, ()

CNy, (xy™) = CNy(xy™) < CN(x) A CNy(y) = CNyy,, (x) A CNyy,, (v)

The second part is trivial.

4. Conclusion

In this paper, the algebraic structure of intuitsbic fuzzy multiset is introduced as
intuitionistic fuzzy multigroup. Intuitionistic fuzy multigroup is a generalized case of
fuzzy multigroup. The various basic operations,indébns and theorems related to
intuitionistic fuzzy multigroup have been discussétie foundations which we made
through this paper can be used to get an insigbttive higher order structures of group
theory.
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