Annals of Pure and Applied Mathematics Vol. 9, No. 1, 2015, 9-12 ISSN: 2279-087X (P), 2279-0888(online) Published on 1 January 2015 www.researchmathsci.org

Relation Between Convexity Number and Independence Number of a Graph

S.V.Padmavathi

Ramanujan Research Centre in Mathematics Saraswathi Narayanan College, Perungudi Madurai-625 022, Tamilnadu, India. email: svpadhma@yahoo.co.in

Received 12 November 2014; accepted 4 December 2014

Abstract. The convexity number denoted by k in a connected graph G is the maximum cardinality of a proper convex set in G. Here in this paper graphs for which the independence number $\beta_0(G)$ of a graph G where $\beta_0(G) = k$, $\beta_0(G) < k$ and $\beta_0(G) > k$ are completely characterised. Also graphs for which $\omega(G) = k$ are characterised. Construction of graphs with prescribed $\beta_0(G)$ and k are presented.

Keywords: Convex set, Convexity number, Independence number

AMS Mathematics Subject Classification (2010): 05C12

1. Introduction

By a graph we mean undirected graph without loops or multiple edges. For terminology and notation not given here, the reader may refer to **Error! Reference source not found.**.

For a connected graph *G* a subset *S* of vertices of *G* is said to be a convex set if for any two vertices u, v of *S*, *S* contains all the vertices of every u - v shortest path in *G*. The convexity number of *G* is the maximum cardinality of a proper convex set of *G*. For a graph G = (V, E), a subset *T* of *V* is independent if no two vertices in *T* are adjacent. The independence number $\beta_0(G)$ is the maximum cardinality of an independent set in *G*. Convexity number of a graph have been studied in [2,3,4,6]. Clique number of a graph is the maximum cardinality of a clique in *G* denoted by $\omega(G)$.

Example 1.1. $\beta_0(C_6) = con(C_6)$, $\beta_0(C_5) < con(C_5)$, $\beta_0(K_{2,3}) > con(K_{2,3})$. Thus there are graphs for which $\beta_0(G) = con(G)$, $\beta_0(G) < con(G)$, $\beta_0(G) > con(G)$. For prescribed values of β_0 and con(G) = k graphs can be constructed.

2. Realization theorems

Theorem 2.1. For every pair β_0 , k of integers there exists a non-complete connected graph G with $\beta_0 =$ Independence number and con(G) = k. **Proof:** For a non-complete connected graph G either $2 \le \beta_0 \le k \le n-1$ or $2 \le k < \beta_0 \le n-1$ holds.

S.V.Padmavathi

(a) Consider $2 \le \beta_0 \le k \le n-1$. Case (i) $\beta_0 = k$.

When $\beta_0 = k = 2$, C_4 is the required graph. When $\beta_0 = k = n - 1$, $K_{1,n-1}$ is the required graph. Therefore $3 \le \beta_0 = k \le n - 2$, and C_{2k} has $\beta_0 = k$.

Case (ii) $\beta_0 < k$.

When k = 2, K_3 has $\beta_0 = 1$. For $\beta_0 = 1$ and any k > 1, K_{k+1} is the required graph. When k = n - 1, K_n has $\beta_0 = 1$. For $\beta_0 = 2$ and any k > 2, $K_{1,1,\dots,1,2}$ (a k - partite graph) is the required graph. Therefore for $3 \le \beta_0 < k \le n - 2$, consider $F = K_{k-\beta_0+1} + \overline{K_{\beta_0-1}}$. Now order of the graph F is k. Let $\overline{K_{\beta_0-1}} = \{v_1, v_2, \dots, v_{\beta_0-1}\}$. Let $K_{k-\beta_0+1} = \{u_1, u_2, \dots, u_{k-\beta_0+1}\}$. For n = k + 1, construct F_1 from F by joining a pendant u to one of the vertices u_1 of F.

Clearly $\beta_0(F_1) = \{v_1, v_2, \dots, v_{\beta_0-1}, u\}$ and $con(F_1)$ is the whole graph F_1 with k vertices.

For n = k + 2, construct F_2 from F such that u_1u, uv and vv_1 are edges.

 $\beta_0(F_2) = \{v_1, v_2, \dots, v_{\beta_0-1}, u\}$ and $con(F_2) = k$ vertices as neither u nor v can be in $con(F_2)$.

For n = k + 3, construct F_3 from F such that u_1u, uv, vu_2, wv and wv_1 are edges. $\beta_0(F_3) = \{v_1, v_2, \dots, v_{\beta_0-1}, u \text{ or } v\}$ and $con(F_3)$ has k vertices.

Now let $n \ge k + 4$. Consider $K_{k-\beta_0+m}$ and $\overline{K_{\beta_0-m}}$. Let $V(K_{k-\beta_0+m}) = \{u_1, u_2, \cdots, u_{k-\beta_0+m}\}$. Let $V(\overline{K_{\beta_0-m}}) = \{v_1, v_2, \cdots, v_{\beta_0-m}\}$. Obtain *G* of order *n* from $K_{k-\beta_0+m}$ and $\overline{K_{\beta_0-m}}$ by the following construction steps. Let $H = K_{k-\beta_0+m} + \overline{K_{\beta_0-m}}$. Let $v \in V(G)$ be such that $v \notin V(H)$ and $vv_1 \in E(G)$. Now split n - k - 1 vertices of *G* among *m* partitions. Suppose n - k - 1 is even and equal to 2m then $m K_{2s}$ can be obtained. Let one of the K_2 be uw and let $uv, vv_1, uu_1, wv_1, uv_1, wu_2$ be in E(G). For rest of the K_2s , one of the vertex must be joined to u, other to u_2 and both to v_1 .

For this graph neither v nor the K_2s are included in the convexity number as they all come together. $con(G) = \{v_1, v_2, \dots, v_{\beta_0-m}, u_1, u_2, \dots, u_{k-\beta_0+m}\}$ and $\beta_0(G) = \{v_1, v_2, \dots, v_{\beta_0-m}, m \text{ vertices joined to} u_2\}$. Suppose $n - k - 1 \neq 2m$ and greater than 2m then rest of the vertices must be in P_3 , and one vertex of P_3 must be joined to u, rest of the two vertices joined to u_2 and all the three vertices to v_1 .

Suppose n - k - 1 < 2m then K_2 is transformed to K_1 in some partitions. Here K_1 should be joined to u as well as to v_1 . In all the above cases $\beta_0(G) = \beta_0$ vertices and con(G) = k vertices.

(b) Consider $2 \le k < \beta_0 \le n - 1$. When $k = 2, K_{2,\beta_0}$ where $2 \le \beta_0 \le n - 1$. When $\beta_0 = n - 1, K_{2,n-1}$ is the required graph. Therefore $3 \le k < \beta_0 \le n - 2$. If n < 9 then for k = 3 one of the graphs $K_{2,2,4}, K_{1,2,5}, K_{1,1,6}$ holds good. For $k = 4, K_{1,1,2,5}$ is the required graph with $\beta_0 = 5$. If $n \ge 9$ the construction is as follows. Let $V(K_{k+1}) = \{u_1, u_2, \cdots, u_{k+1}\}, \quad V(\overline{K_{\beta_0-1}}) = \{v_1, v_2, \cdots, v_{\beta_0-1}\}$ and $V(P_{n-(\beta_0+k)}) = \{w_1, w_2, \cdots, w_{n-(\beta_0+k)}\}$. Let $H = K_{k+1} - u_1u_2$. Now join the vertices of $\overline{K_{\beta_0-1}}$ to u_1 and u_2 . Order of H is $k + \beta_0$. Rest of $n - (k + \beta_0)$ vertices are formed as a path. One of the end vertex w_1 (say) of the path is joined to v_1 and v_2 . Now w_2 is joined to v_3, w_3 to v_4 and so on untill w_i is joined to v_{β_0-1} . Here w_{i+1} is joined to v_1 and the process Relation Between Convexity Number and Independence Number of a Graph

repeated till all the vertices of the path exhaust. Let the resulting graph constructed be *G*. Clearly con(G) = k consisting of vertices $\{u_3, u_4, \dots, u_{k+1}\}$ with exactly one of u_1 or u_2 . Also independence number of *G* consists of vertices $\{v_1, v_2, \dots, v_{\beta_0-1}\}$ with exactly one vertex of K_{k+1} .

3. Graph characterisation

Lemma 3.1. Let S be a subset of V(G). S is a maximum convex set if and only if S is not a geodetic set in $(S \cup \{u\})$ for any $u \in V - S$ and $S \cup T$ is a geodetic set in $(G_1 > f)$ for any T in V - S, for some G_1 , $G_1 = G$ for some $T \subset (V - S)$.

Proof: Let *S* is a maximum convex set in *G*. Then there is no $u \in V - S$ such that *u* lies on a x - y geodesic for any *x*, *y* in *S* that is *S* is not a geodetic set in $(S \cup \{u\})$ for any $u \in V - S$. Since *S* is a maximum convex set, *S* is not contained in any proper convex set of *G*. Therefore $S \cup T$ for any $T \subset V - S$ is not a convex set. Thus $S \cup T$ for any $T \subset V - S$ is a geodetic set in $\langle G_1 \rangle$ for some G_1 . If $G_1 \neq G$ for any $T \subset V - S$ then G_1 becomes a proper convex set with cardinality greater than *S*. Thus a contradiction to *S* a maximum convex set of *G*. Therefore $S \cup T$ is a geodetic set for any $T \subset V - S$ in $\langle G_1 \rangle$ for some $G_1 = G$. Conversely suppose *S* satisfies the condition given in hypothesis then clearly *S* is a maximum convex set of *G*.

Theorem 3.2 Let G be a non-complete connected graph of order n. Then $\beta_0 = k$ iff G is one of the following graphs.

(i) $K_{1,n-1}$ (ii) C_n where *n* is even. (iii) K_{n_1,n_2,\cdots,n_r} with max. $|V_i| = r$. (iv) r - partitegraph with $\beta_0(G) = r$ and a set *S* with *r* vertices having property in 3.1.

Proof: Let *G* be a connected graph. Let $k = \beta_0$.

Acyclic: Let $v \in V(G)$. Suppose $\Delta \neq n-1$. Then there exists a $u \in V(G)$ such that $uv \notin E(G)$. Clearly any two neighbors of v are non-adjacent. Therefore $\beta_0(G) = deg(v)$ and k = n - 1. But deg(v) < n - 1 which is a contradiction. Hence $\Delta = n - 1$. Thus $G = K_{1,n-1}$.

Cyclic: If *G* has a single cycle of order m < n then rest of n - m vertices are pendants or paths joined to some vertex of the cycle. Therefore k = n - 1 but $\beta_0 \neq n - 1$. Thus $G = C_{n=even}$.

If G has multicycles then as we know any graph can be transformed to an r-partite graph with maimum cardinality of $V_i = \beta_0(G)$, G is either a complete r-partite or non-complete r-partite. Clearly if G is complete r-partite then k = r. Let these set of r vertices be a set S (say). $k = r = \beta_0$ if and only if maximum cadinality of V_i is r. If G is transformed to a non-complete r-partite graph then let S be a subset of V(G) with r vertices. Suppose G has an independent set with $\beta_0 = r$ vertices. k = r if and only if S satisfies the hypothesis of 3.1. Conversely if G is one of the following in the hypothesis then $k = \beta_0$.

S.V.Padmavathi

Theorem 3.3. Let G be a noncomplete connected graph of order n. Then $\beta_0 > k$ if and only if G is an r - partite graph with max. |Vi| > r and a subset S with r vertices satisfying the hypothesis of 3.1.

Proof: Let $\beta_0 > k$. Then *G* has the following properties. *G* has a cycle. *G* has no pendant and $deg(u) \ge 2$ for all *u*. Let max. |Vi| > r. By 3.2 we are through.

Theorem 3.4. For a non-complete connected graph G of order n, $\beta_0 < k$ if and only if G is one of the following graph.

G = acyclic with $\Delta < n - 1$, $C_{n=odd}$, K_{n_1,n_2,\cdots,n_r} with max. $|V_i| < r$ or non-complete *r*-partite with max. $|V_i| < r$ and a subset *S* of cardinality *r* satisfying the hypothesis in 3.1.

Proof: If *G* is acyclic then clearly $\Delta < n - 1$. If *G* is cyclic then the proof is same as in 3.2.

Theorem 3.5. Let G be a non-complete connected graph. Then clique number $\omega = k$ if and only if G is a complete r-partite graph or G has a maximum clique set S satisfying hypothesis of 3.1.

Proof: Clearly $\omega = k \neq 1$. Let $\omega(G) = k$. Then *G* is not acyclic. If *G* is unicyclic then $\omega = 2$ but k > 2 for $n \ge 5$. If *G* is a complete graph then $\omega(G) = n$ but k = n - 1. Let *S* be a set containing maximum clique set. Suppose *S* does not satisfy the hypothesis of 3.1 then there exists a subset *T* in (V - S) such that *S*U*T* is a geodetic set in $G_1 \neq G$. Clearly $\omega(G) < k$. Thus a contradiction. Conversely if a maximum clique set *S* of *G* satisfies the hypothesis of the theorem then $\omega(G) = k$.

4. Conclusion

In this paper, I have compared two different numbers namely convexity and independence number of a graph. Both the parameters are of hereditary property. I have constructed and characterised graphs using these two parameters. One can similarly compare two or more parameters of same nature. I shall explore the above parameters on product graphs as a part of my future work.

Acknowledgement. The author is thankful to the University Grants Commission, New Delhi, for sponsoring this work under grant of Junior Research Fellowship.

REFERENCES

- 1. F.Buckley and F.Harary, Distance in graphs, Redwood City, Addison–Wesley, 1990.
- 2. G.Chartrand, C.E.Wall and P.Zhang, The convexity number of a graph, *Graphs and Combinatorics*, 18 (2002) 209-217.
- 3. D.B.West, Introduction to Graph Theory, Second Edition Prentice- Hall, 2001.
- 4. J.Gimbel, Some remarks on the convexity number of a graph, *Graphs and Combinatorics*, 19 (2003) 351-361.
- 5. F.Harary, Graph Theory, Addison Wesle, Reading Mass, 1969.
- 6. J.Nieminen and F.Harary, Convexity in graphs, J. Differ. Geom., 16 (1981) 185-190.
- 7. D.K.Thakkar and A.A.Prajapati, Vertex covering and independence in semi-graph, *Annals of Pure and Applied Mathematics*, 4(2) (2013) 172-181.
- 8. M.Van de Vel, Theory of convex structures, North Holland, Amsterdam, MA, 1993.