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Abstract. The convexity number denoted by � in a connected graph � is the maximum 
cardinality of a proper convex set in � . Here in this paper graphs for which the 
independence number ��(�) of a graph � where  ��(�) = �, ��(�) < � and ��(�) >

�  are completely characterised. Also graphs for which �(�) = �  are characterised. 
Construction of graphs with prescribed ��(�) and � are presented.  
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1. Introduction 
By a graph we mean undirected graph without loops or multiple edges.For terminology and 
notation not given here,the reader may refer to Error! Reference source not found..     

 For a connected graph � a subset � of vertices of � is said to be a convex set if for 
any two vertices , � of �, � contains all the vertices of every  − � shortest path in �. 
The convexity number of � is the maximum cardinality of a proper convex set of �. For a 
graph � = (�, �), a subset � of � is independent if no two vertices in � are adjacent. 
The independence number ��(�) is the maximum cardinality of an independent set in �. 
Convexity number of a graph have been studied in [2,3,4,6]. Clique number of a graph is 
the maximum cardinality of a clique in � denoted by �(�). 

 
Example 1.1. ��(C�) = ���(C�), ��(C�) < ���(C�), ��(K�,�) > ���(K2,3). Thus there 
are graphs for which ��(�)  = ���(� ), ��(�) < ���(�),  ��(�) > ��� (G). For 
prescribed values of �� and ���(�) = � graphs can be constructed.  
 
2. Realization theorems 
Theorem 2.1. For every pair ��, � of integers there exists a non-complete connected 
graph � with �� = Independence number and ���(�) = �.  
Proof: For a non-complete connected graph � either 2 ≤ �� ≤ � ≤ � − 1 or 2 ≤ � <

�� ≤ � − 1 holds. 
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(a) Consider 2 ≤ �� ≤ � ≤ � − 1. 
Case (i) �� = �. 
When �� = � = 2 , �  is the required graph. When �� = � = � − 1 , !",#$"  is the 
required graph. Therefore 3 ≤ �� = � ≤ � − 2, and ��& has �� = �. 
 
Case (ii) �� < �. 
When � = 2, !� has �� = 1. For �� = 1 and any � > 1, !&'" is the required graph. 
When � = � − 1,  !# has �� = 1. For �� = 2 and any � > 2, !",",⋯,",� (a � - partite 
graph) is the required graph. Therefore for 3 ≤ �� < � ≤ � − 2 , consider * =

!&$+,'" + !+,$". Now order of the graph * is �. Let !+,$" = {�", ��, ⋯ , �+,$"}. Let 
!&$+,'" = {", �, ⋯ , &$+,'"} . For � = � + 1 , construct *"  from *  by joining a 
pendant  to one of the vertices " of * . 

Clearly ��(*") = {�", ��, ⋯ , �+,$", } and ���(*") is the whole graph *" with � 
vertices . 

For � = � + 2, construct *� from * such that ", �  and ��" are edges.  
��(*�) = {�", ��, ⋯ , �+,$", } and ���(*�) = �  vertices as neither   nor �  can 

be in ���(*�). 
For � = � + 3 , construct *�  from *  such that ", �, ��, 0�  and 0�"  are 

edges . ��(*�) = {�", ��, ⋯ , �+,$",  or �} and ���(*�) has � vertices.  

Now let � ≥ � + 4.  Consider !&$+,'4  and !+,$4 . Let �(!&$+,'4) =

{", �, ⋯ , &$+,'4}. Let �(!+,$4) = {�", ��, ⋯ , �+,$4}. Obtain �  of order �  from 

!&$+,'4 and !+,$4 by the following construction steps . Let 5 = !&$+,'4 + !+,$4. 
Let � ∈ �(�) be such that � ∉ �(5) and ��" ∈ �(�) . Now split � − � − 1 vertices 
of � among 8 partitions. Suppose � − � − 1 is even and equal to 28 then 8 !�9 can 
be obtained. Let one of the !� be 0 and let �, ��", ", 0�", �", 0� be in �(�) 
.For rest of the !�9, one of the vertex must be joined to , other to � and both to �". 

For this graph neither � nor the !�9 are included in the convexity number as they all 
come together. ���(�) = {�", ��, ⋯ , �+,$4 , ", �, ⋯ , &$+,'4}  and ��(�) =

{�", ��, ⋯ , �+,$4 , 8 vertices joined to�}. Suppose � − � − 1 ≠ 28 and greater than 
28 then rest of the vertices must be in ;� , and one vertex of ;� must be joined to , rest 
of the two vertices joined to � and all the three vertices to �". 

 Suppose � − � − 1 < 28 then !� is transformed to !" in some partitions . Here 
!" should be joined to  as well as to �". In all the above cases ��(�) = �� vertices and 
���(�) = � vertices. 

  (b) Consider 2 ≤ � < �� ≤ � − 1 . When � = 2, !�,+,
 where 2 ≤ �� ≤ � − 1 . 

When �� = � − 1, !�,#$"  is the required graph. Therefore 3 ≤ � < �� ≤ � − 2 . If 
� < 9  then for � = 3  one of the graphs !�,�, , !",�,�, !",",�  holds good. For � =

4, !",",�,� is the required graph with �� = 5. If � ≥ 9 the construction is as follows. Let 

�(!&'") = {", �, ⋯ , &'"} ,    �(!+,$") = {�", ��, ⋯ , �+,$"}  and �(;#$(+,'&)) =

{0", 0�, ⋯ , 0#$(+,'&)} . Let 5 = !&'" − "�. Now join the vertices of !+,$" to " 
and �. Order of 5 is � + ��. Rest of � − (� + ��) vertices are formed as a path. One of 
the end vertex 0" (say) of the path is joined to �" and ��. Now 0� is joined to ��, 0� 
to �  and so on untill 0> is joined to �+,$". Here 0>'" is joined to �" and the process 
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repeated till all the vertices of the path exhaust. Let the resulting graph constructed be �. 
Clearly ���(�) = � consisting of vertices {�,  , ⋯ , &'"} with exactly one of " or 
�. Also independence number of � consists of vertices {�", ��, ⋯ , �+,$"} with exactly 
one vertex of !&'".             

 
3. Graph characterisation  
Lemma 3.1.  Let � be a subset of �(�). � is a maximum convex set if and only if � is 
not a geodetic set in ?�⋃{}A for any  ∈ � − � and �⋃� is a geodetic set in < �" > 
for any � in � − � , for some �" , �" = � for some � ⊂ (� − �).  
Proof: Let � is a maximum convex set in �. Then there is no  ∈ � − � such that  lies 
on a C − D geodesic for any C, D in � that is � is not a geodetic set in ?�⋃{}A for any 
 ∈ � − �. Since � is a maximum convex set, � is not contained in any proper convex set 
of � . Therefore �⋃�  for any � ⊂ � − �  is not a convex set. Thus �⋃�  for any 
� ⊂ � − � is a geodetic set in < �" > for some �". If �" ≠ � for any � ⊂ � − � then 
�" becomes a proper convex set with cardinality greater than �. Thus a contradiction to � 
a maximum convex set of �.Therefore �⋃T is a geodetic set for any � ⊂ � − � in ?�"A 
for some �" = �. Conversely suppose � satisfies the condition given in hypothesis then 
clearly � is a maximum convex set of �.             
 
Theorem 3.2  Let � be a non-complete connected graph of order �. Then �� = � iff � 
is one of the following graphs. 

 (i)!",#$" 
 (ii)�# where � is even. 
 (iii)!#F,#G,⋯,#H

 with max.|�>| = J. 
 (iv) J − KLJMNMOPJLKℎ  with ��(�) = J  and a set �  with J  vertices having 

property in 3.1.  
Proof: Let � be a connected graph. Let � = ��. 

  
Acyclic: Let � ∈ �(�). Suppose Δ ≠ � − 1. Then there exists a  ∈ �(�) such that 
� ∉ �(�) . Clearly any two neighbors of �  are non-adjacent. Therefore ��(�) =
SOP(�) and � = � − 1. But SOP(�) < � − 1 which is a contradiction. Hence Δ = � −

1. Thus � = !",#$". 
 
Cyclic:  If � has a single cycle of order 8 < � then rest of � − 8 vertices are pendants 
or paths joined to some vertex of the cycle. Therefore � = � − 1 but �� ≠ � − 1. Thus 
� = �#TUVU#. 

If � has multicycles then as we know any graph can be transformed to an J-partite 
graph with maimum cardinality of �>  = ��(�) , �  is either a complete J -partite or 
non-complete J-partite. Clearly if � is complete J-partite then � = J. Let these set of J 
vertices be a set � (say). � = J = �� if and only if maximum cadinality of �> is J. If � 
is transformed to a non-complete J-partite graph then let � be a subset of �(�) with J 
vertices. Suppose � has an independent set with �� = J vertices. � = J if and only if � 
satisfies the hypothesis of 3.1. Conversely if � is one of the following in the hypothesis 
then � = ��.              
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Theorem 3.3. Let � be a noncomplete connected graph of order �. Then �� > � if and 
only if �  is an J - partite graph with 8LC. |�N| > J  and a subset � with J  vertices 
satisfying the hypothesis of 3.1.  
Proof: Let �� > � . Then �  has the following properties. �  has a cycle. �  has no 
pendant and SOP() ≥ 2 for all . Let 8LC. |�N| > J. By 3.2 we are through.              
 
Theorem 3.4. For a non-complete connected graph � of order � , �� < � if and only if 
� is one of the following graph. 
� = L�D�WN� with Δ < � − 1, �#TXYY, !#F,#G,⋯,#H

 with 8LC. |�>| < J or non-complete 
J-partite with 8LC. |�>| < J and a subset � of cardinality J satisfying the hypothesis in 
3.1.  
Proof: If � is acyclic then clearly Δ < � − 1. If � is cyclic then the proof is same as in 
3.2.             
 
Theorem 3.5. Let � be a non-complete connected graph. Then clique number � = � if 
and only if � is a complete J-partite graph or � has a maximum clique set � satisfying 
hypothesis of 3.1 .  
Proof: Clearly � = � ≠ 1. Let �(�) = � . Then � is not acyclic. If � is unicyclic then 
� = 2 but � > 2 for � ≥ 5. If � is a complete graph then �(�) = � but � = � − 1. 
Let � be a set containing maximum clique set . Suppose � does not satisfy the hypothesis 
of 3.1 then there exists a subset � in (� − �) such that �⋃� is a geodetic set in �" ≠ �. 
Clearly �(�) < �. Thus a contradiction. Conversely if a maximum clique set � of � 
satisfies the hypothesis of the theorem then �(�) = �.            

   
4. Conclusion 
In this paper, I have compared two different numbers namely convexity and independence 
number of a graph. Both the parameters are of hereditary property. I have constructed and 
characterised graphs using these two parameters. One can similarly compare two or more 
parameters of same nature. I shall explore the above parameters on product graphs as a part 
of my future work. 
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