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Abstract. The diagnostic decision in medicine is frequently encountered with 
uncertainties. Modeling of uncertainties in the process of diagnosis of disease under 
fuzzy environment is an important subject. Various efforts have been made to model the 
uncertainties in this area through fuzzy sets and its generalizations. The theory of type-2 
fuzzy sets is an intuitive and computationally feasible in addressing uncertain and 
imprecise information in decision making. Present work proposes the application of type-
2 fuzzy relations to such problems by extending the Sanchez’s approach. A hypothetical 
example is discussed to illustrate the methodology. 
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1. Introduction   
Membership grades of elements of type-1 fuzzy set are crisp numbers in [0, 1]. The 
utility of the concept of type-1 fuzzy set depends on the capability of the user to construct 
appropriate membership function. Further in a blurring situation, this estimation becomes 
poorer [1]. Interval valued fuzzy set is a generalization of type-1 fuzzy set that uses a 
closed interval contained in [0, 1] for the membership grades of its elements. Although 
interval estimation of membership function in fuzzy sets covers the disadvantage of point 
estimation to some extent yet it gives same weight to all the possibilities of membership 
grade in the interval estimation.   
        Zadeh [2] initiated another important extension of the concept of type-1 fuzzy sets in 
the form of type-2 fuzzy sets. These sets are fuzzy sets whose membership grades 
themselves are type-1 fuzzy sets. Mendel and John [1] gave a simple representation for 
Type-2 fuzzy sets. Due to the dependence of the membership functions on available 
linguistic information and numerical data. Linguistic information (e.g., rules from 
experts), in general, does not give any information about the shapes of the membership 
functions when membership functions are determined or tuned based on numerical data, 
the uncertainty in the numerical data e.g., noise, translates into uncertainty in the 
membership functions. In all such cases, type-2 framework of fuzzy sets can be used to 
model information about the linguistic, numerical uncertainty very well [3]. 
         To diagnose the patient for diseases carries various stages which are certainly filled 
with uncertainties upto some extent. Physicians generally collect information by 
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examining the patient physically and history of the patient. In physical examination, some 
symptoms may be overlooked and some important part of the history may not be revealed 
by the patient. Moreover physicians gather information from the laboratory tests which 
are often depend on the exact interpretation of the results which are rare. However 
techniques are available to measure some symptoms upto the extent of its occurrence yet 
a symptom may be the indicative of several diseases. More information available to the 
physician from different types of examinations and laboratory tests may increase the 
uncertainty (non-specificity). 
  One of the earliest works on medical diagnosis allowing fuzziness was proposed 
by Sanchez [4]. Thereafter some researchers have contributed in this area successfully. In 
this concern, Esogbue and Elder proposed fuzzy mathematical models [5,6,7]. An 
application of fuzzy set theory was given by Adlassing [8]. Chen [9] presented weighted 
fuzzy algorithms and Belacel proposed PROCFTN methodology to handle uncertainties 
[10]. In the same direction Yao and Yao used the concept of fuzzy number and 
compositional rule of inference to make decisions [11]. Roychowdhury et al. gave 
diagnostic decision model using a GA- fuzzy approach [12]. Roy and Biswas [13] 
defined compositions for interval valued fuzzy sets and used them for the same. Type-2 
fuzzy set is a generalization of type-1 fuzzy set as well as of interval valued fuzzy sets. 
Quite recently, Own [14] proposed a switching function and type-2 fuzzy similarity and 
presented applications of these in medical diagnosis and pattern recognition. Pandey et al. 
[15] proposed diagnostic decision model using vague sets. Celik and Yamak [16] applied 
fuzzy soft set theory to medical diagnosis. They used the concept of fuzzy arithmetic 
operations through Sanchez’s approach to make the decisions. Elizabeth and Sujatha [17] 
used interval valued fuzzy number matrices in medical diagnosis present paper extends 
the Sanchez’s approach of medical diagnosis in the type-2 fuzzy atmosphere.This work 
uses the concept of type-2 fuzzy relations and is different from the work given by Own. 
 A brief sketch of the paper is as follows: Section 2 studies some relevant basics of 
type-2 fuzzy sets. Composition operation between type-2 fuzzy relations and a 
proposition have been discussed in section 3. Section 4 introduces the extended 
Sanchez’s approach for type-2 fuzzy sets. To end with, an example and Discussion based 
conclusion of the work are presented in Sections 5 and 6 respectively. 
 
2. Preliminaries 
In the present section we discuss type-2 fuzzy set proposed in [1] and some relevant basic 
concepts related to type-2 fuzzy sets. 

Definition 1. A type-2 fuzzy setA
~

defined on a universe of discourse X is characterized 
by a membership function :

A
Xµ →% ([0,1])F and is expressed by the following set 

notation: 

                                      ( ){ }, ( , )) :
A

A x x x Xµ= ∈%
% %                                                    (1) 

([0,1])F �denotes the set of all type-1 fuzzy sets that can be defined on the set [0, 1]. 

( )
A

xµ %% , itself is a type-1 fuzzy set for value of x X∈  and is characterized by a secondary 

membership function : [0,1]x xf J → .Therefore,A
~

can be represented as: 

                                     { }{ }, ( , ( )) : :x xA x u f u u J x X= ∈ ∈%                                  (2) 
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where [0,1]xJ ⊆  is the set of all possible primary memberships corresponding to an 

element x. In discrete case, a type-2 fuzzy setA
~

can also be expressed in the following 
ways: 

, ( ) : , [0,1]x x
u Jx

A x f u u x X u J
∈

   = ∈ ∈ ⊆   
   

∑%                       (3) 

                                [ ( ) / ]
x

x
x X u J

A f u u x
∈ ∈

=∑ ∑% , where [0,1]xJ ⊆  .                          (4) 

The symbol ∑∑ used in (4) indicates inclusion of all admissible values of x and u. 

Now, onwards, type-2 fuzzy set expression in (4) is used.   
 
Example 1. A type-2 fuzzy set defined on a finite universal set and finite set of primary 
membership can be represented by a 3-dimensional picture given in Fig. 1. 

Let X= {1, 2, 3, 4, 5} be the universe of discourse and suppose  

                      1 2 4 5{0,0.2,0.4,0.6,0.8}J J J J= = = = ,     3 {0.6,0.8}J =                                         
be the sets of primary membership for   x = 1, 2,3, 4,5 respectively. The secondary 

membership function associated with x = 4  is represented by a fuzzy set   
0.25 0.3 0.4 0.5 0.4(2) 0 0.2 0.4 0.6 0.8A

µ = + + + +% . 

This secondary membership function can also be viewed through the five vertical lines at 
points (4,0), (4,0.2),(4,0.4), (4,0.6) and (4,0.8) in the figure . Similarly we can define the 
secondary membership function for x = 1, 3, 4, 5. We have shown all secondary 
membership functions in the following figure. Shaded portion is called the footprint 
uncertainty. 

 
Figure 1: 

Definition 2. Uncertainty in the primary memberships of a type-2 fuzzy set consists of a 

bounded region that we call the footprint uncertainty and is denoted by FOU(A
~

). It is 
defined by 

                                                   
FOU(A)= x

x X
J

∈

% U
      

The footprint uncertainty in the example 1 is
 



Kamesh Kumar 

38 
 

 FOU(A)= {0, 0.2, 0.4,0.6,0.8}%  

Definition 3. For every value xx ′= , say, the 2-D plane whose axes are u and ( )xf u′ is 

called the vertical slice. A secondary membership function is thus a vertical slice. It can 
be represented by 

      [ ]( ) ( ) , 0,1x xA
u Jx

x f u u Jµ ′ ′
∈ ′

′ = ⊆∑% , in which 1)(0 ≤≤ ′ uf x , x X′∈ .  

The domain of a secondary membership function is called the primary membership of x 
and the amplitude of a secondary membership function is called a secondary grade. In 
equation (2), ( )xf u  is a secondary grade.  

Definition 4. A type-1 fuzzy set A% can also be expressed as a type-2 fuzzy set. Its type-2 
representation is1 ( )

A
x x x Xµ ∀ ∈% . It means that the secondary membership function 

has only one value in its domain, namely the primary membership ( )
A

xµ %  at which the 

secondary grade equals to 1. 
 

Example 2. Let { } { } { } { }{ , , , } 0.4 , 0.6 , 1 , 0.5a b c dX a b c d if J J J J= = = = = then  

                     A
~

=1/ 0.4 1/ 0.6 1/1 1/ 0.5a b c d+ + +   
is a type-1 fuzzy set. 
 
Definition 5. [3] Let A

~
 and B

~
are two type-2 fuzzy sets in a discrete universe of 

discourse X. Let ( )
A

xµ % = ( )x
u

f u u∑   and ( )
B

xµ % =  ( )x
v

f ν ν∑   are the membership 

grades corresponding to every x∈X for A
~

 andB
~

 respectively, where u, v are primary 
grades and ( )xf u , ( )xf ν  are secondary grades. Then  

                          ( ) ( )x x
u v

A B f u g v u ν= ∗ ∨∑∑% %U ,                                                (5) 

                              ( ) ( )x x
u v

A B f u g v u v= ∗ ∗∑∑% %I ,                                                  (6) 

                                           ( ) 1x
u

A f u u= −∑%%                                                                (7) 

where ∨  represents the t-conorm and ∗  represents a t-norm. For computation max, min 
operations may be used for t- conorm and t-norm respectively. If more than one 
computation of u and v give the same point u∨ v then in the union we keep the one with 
the largest membership grade. Similar logic will be adopted in case of intersection. 
 
3. Type-2 fuzzy relations and their compositions 
A n- ary type-2 fuzzy relation is a type-2 fuzzy set defined on the Cartesian product of 
the crisp sets 1 2,,  ,  nX X X… . Since the membership grade of association between 

elements of a type-1 fuzzy relation is a real number in [0, 1] while in case of type-2 fuzzy 
relations, it is fuzzy set defined on [0,1]. For simplicity, let us consider the case of binary 
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relation i.e. X Y×  where 1 2{ , ,..., }mX x x x= and 1 2{ , ,..., }nY y y y= .Then type-2 fuzzy 

relation R
~

 on X Y×  is represented by type-2 fuzzy matrix in the following way 

1 1 1

2 1 2

1

( , ) . . . ( , )

( , ) . . . ( , )

. . . . .( , )

. . . . .

( , ) . . . ( , )

mR R

mR R

n n mR R

x y x y

x y x y

R X Y

x y x y

µ µ
µ µ

µ µ

 
 
 
 =
 
 
 
 

% %

% %

% %

% %

% %

%

% %

 

where each ( , )i jR
x yµ %%  is a type-1 fuzzy set, a membership grade.  

Definition 6. [3] Let R
~

and S
~

 are two type-2 fuzzy relations defined on X Y×  and 

Y Z×  respectively. Then compositions of relations is a type-2 fuzzy relation onX Z×  
and is given by  

                                    ( , ) ( , ) ( , )
RS R S

y Y

x z x y y zµ µ µ
∈

 =  % % %%o
% % %U I                                       (8) 

( , ) , ( , ) , ( , )x y X Y y z Y Z x z X Z and y Y∈ × ∈ × ∈ × ∀ ∈ , 

U represents the union of two type-2 fuzzy sets and I means intersection of two type-2 
fuzzy sets. The formulae for union and intersection are defined in (5) and (6). 
Now, we are able to prove the following proposition for type-2 fuzzy relations.  
 

Proposition 1. If R
~

 and S
~

 are two type-2 fuzzy relations on YX × and ZY ×  
respectively then 

  (i) 1 1( ( ) )R R− − =% %                                                                                                 (9) 

  (ii) 1 1 1( )S R R S− − −=% %% %o o                                     (10) 

Proof (i): The inverse type-2 fuzzy relationR
~

(X, Y), denoted by 1R−% (Y, X), is defined 

by  1 ( , ) ( , )
RR

y x x yµ µ− = %%
% %  ∀ x∈  X and ∀ y∈ Y. The inverse relation matrix is 

obtained by transposing the following relation matrix. 

    

1 1 1

2 1 2

1

( , ) . . . ( , )

( , ) . . . ( , )

. . . . .( , )

. . . . .

( , ) . . . ( , )

mR R

mR R

n n mR R

x y x y

x y x y

R X Y

x y x y

µ µ
µ µ

µ µ

 
 
 
 =
 
 
 
 

% %

% %

% %

% %

% %

%

% %
 

An inverse relation matrix is given as: 

                                            

1 1 1

1 2 2

( 1)

1

( , ) . . . ( , )

( , ) . . . ( , )

. . . . .( , )

. . . . .

( , ) . . . ( , )

nR R

nR R

m n mR R

x y x y

x y x y

R Y X

x y x y

µ µ
µ µ

µ µ

−

 
 
 
 =
 
 
 
 

% %

% %

% %

% %

% %

%

% %
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It is obvious that  

   

1 1 1

2 1 2
1( 1)

1

( , ) . . . ( , )

( , ) . . . ( , )

. . . . .( , )

. . . . .

( , ) . . . ( , )

mR R

mR R

n n mR R

x y x y

x y x y

R X Y

x y x y

µ µ
µ µ

µ µ

−−

 
 
 
 =
 
 
 
 

% %

% %

% %

% %

% %

%

% %

 

Hence                                            1 1( ( ) ) .R R− − =% %  
Proof (ii): 

Since, 1 :R Y X− →% , 1 :S Z Y− →% , :S R X Z→% %o , 1( ) :S R Z X− →% %o and 
1 1 : .R S Z X− − →%% o  

Now we have,   1( ) ( , ) ( , )S R z x S R x z− =% %% %o o  = ( , ) ( , )
R S

y Y

x y y zµ µ
∈

  % %% %U I  

Since, 1 :S Z Y− →%  is defined by 1 ( , ) ( , )
SS

z y y zµ µ− = %%
% % and   1 :R Y X− →%  is 

defined by 1 ( , ) ( , )
RR

y x x yµ µ− = %%
% % , it is obvious that 

( , ) ( , )
R S

y Y

x y y zµ µ
∈

  % %% %U I = 1 1( , ) ( , )
S R

y Y

z y y xµ µ− −
∈

 
 % %
% %U I = 1 1S R− −% %o  

Therefore,  1 1 1( ) .S R S R− − −=% %% %o o                                 
 
5. Proposed approach for medical diagnosis based on type-2 fuzzy relations 
 This section extends Sanchez’s approach for medical diagnosis using the concept of 
type-2 fuzzy sets. 

Let  S ={ s1, s2,…, sr},  D={d1, d1,…, dm} and P={p1, p1,…, pn}  denote the sets of 
symptoms, diseases and patients respectively. We define that the physician medical 
knowledge be represented as type-2 fuzzy relation showing the association between 
symptoms and diseases.Type-2 fuzzy relation representing the association between 
patients and symptoms is another knowledge that represents the severity of different 
symptoms to patients. These associations are represented by type-2 fuzzy matrices whose 
entries are type-1 fuzzy sets. Therefore, medical diagnosis on the basis of type -2 fuzzy 
sets involves development of type-2 fuzzy relations. To get the diagnostic decision 
appropriate composition rules can be used.                                                                                                                    

Let A
~

 be the type-2 fuzzy relation showing the relationship between patients and 
symptoms which is obtained using the type-1 fuzzy sets as entries for the linguistic terms. 
It can be defined as the following type-2 fuzzy matrix: 

  

1 1 1

2 1 2

1

( , ) . . . ( , )

( , ) . . . ( , )

. . . . .

. . . . .

( , ) . . . ( , )

rA A

rA A

n n rA A

p s p s

p s p s

A

p s p s

µ µ
µ µ

µ µ

 
 
 
 =
 
 
 
 

% %

% %

% %

% %

% %

%

% %
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and R
~

 be type-2 fuzzy relation showing the relationship between symptoms and 
diseases, is obtained by the previous physician medical knowledge. It is expressed as: 

 

1 1 1

2 1 2

1

( , ) . . . ( , )

( , ) . . . ( , )

. . . . .

. . . . .

( , ) . . . ( , )

mR R

mR R

r r mR R

s d s d

s d s d

R

s d s d

µ µ
µ µ

µ µ

 
 
 
 =
 
 
 
 

% %

% %

% %

% %

% %

%

% %

 

 
Use the composition rule of inference defined in (8) we have  

T R A= %% % o =

1 1 1

2 1 2

1

( , ) . . . ( , )

( , ) . . . ( , )

. . . . .

. . . . .

( , ) . . . ( , )

mT T

mT T

n n mT T

p d p d

p d p d

p d p d

µ µ
µ µ

µ µ

 
 
 
 
 
 
 
 

% %

% %

% %

% %

% %

% %

 

membership grades of T%  are given by 

( , ) ( , ) ( , )i j i r r jT RA
r

p d p s s dµ µ µ =  % % %% % %U I i jp P and d D∀ ∈ ∈ .                         (11) 

Thus T
~

is a type-2 fuzzy matrix, showing the relationship between patients and 
diseases. 

The type-2 fuzzy relaion, R%  used in the composition defined by (11) is the 
solution of the following type-2 fuzzy equation 

                                 D R B=% % %o                                                                 (12) 

B% , a type-2 fuzzy relatiion that represents the severity of the symptoms andD% , 

the type-2 fuzzy relation showing the diagnoses of the known patients. By solving the 

type-2 fuzzy relation equation in (12) forR% , an accumulated medical knowledge can be 
obtained to associate the symptoms and diseases which is to be used in the composition 
defined in (11). Yan et al. [18] proposed semi tensor product of matrices to solve the 
type-2 fuzzy relation equations.       

 
Property 1. Select an appropriate defuzzification method, Defuzzify the fuzzy sets 

(entries of the type-2 fuzzy matrixT
~

) to obtain crisp entries, that are representative of 
corresponding entries of the matix. Defuzzified crisp matrix is written as  

1 1 1

1

m

D

n n m

t t

T

t t

 
 =  
 
 

K

% M O M

L

 

If   ���� ��� = ��	 , where 1 ≤ � ≤ �   then patient 
�
��  diagnosis as �	 . If  ���� ��� 

occurs or closely occurs for more than one value. Symptoms can be reassessed and 
weights can be given to the symptoms. 
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Algorithm:  
Step 1: Introduce type-2 fuzzy relation (type-2 fuzzy matrix), A% to model the 
uncertaintities of  the state of the patient  
Step 2: Using equation (12), obtain the physician medical knowledge in the form of type-
2 fuzzy relation R%  which shows the association between symptoms and diseases 
Step 3: Use an appropriate compositional rule to infer the association between patients 
and diseases. Here composition rule defined in equation (8) has been used to perform the 
analysis. 
Step 4: Property 1 is used to make diagnostic decision. 
 
6. An example 
Here we present an example to illustrate the methodology defined in the section 5 
numerically. This example has been already disscused in [11, 15]. 

Let { }1 2 3( ), ( ), ( )S S Headace S Fever S Phlegm=  

{ }1 2 3 4( ), ( ), ( ), ( )D d Cold d Pulmonary tuberculosis d Pertusis d Pneumonia=
                       

{ }21,PPP =   
The state of the patients is transformed to the following type-2 fuzzy relation whose 
entries are linguistic terms: 

H igh H igh H ig h
A

M ed ium L ow V ery low

 
=  
 

% . 

These linguistic terms can be written in the form of type-2 fuzzy sets as follows: 















+

++

++

++

++

++
=

1.0
9.0

0
1

1
95.0

9.0
1

8.0
7.0

3.0
8.0

2.0
1

1.0
7.0

1
9.0

9.0
1

8.0
7.0

6.0
9.0

5.0
1

4.0
6.0

1
95.0

9.0
1

8.0
7.0~

A  

 The type-2 fuzzy relationR
~

, the association between symptoms and diseases is  
obtained on the basis of previous medical knowledge. This relation can also be 
constructed more logically by the approach given in [17]. 



















++

++

++

++

++

++

++

++

++

++

++

++

=

3.0
95.0

2.0
1

1.0
6.0

2.0
8.0

1.0
1

0.0
3.0

4.0
9.0

3.0
1

2.0
6.0

2.0
9.0

1.0
1

0.0
3.0

3.0
9.0

2.0
1

1.0
6.0

2.0
9.0

1.0
1

0.0
3.0

7.0
9.0

6.0
1

5.0
7.0

5.0
9.0

4.0
1

3.0
6.0

3.0
9.0

2.0
1

1.0
2.0

2.0
8.0

1.0
1

0.0
3.0

4.0
9.0

3.0
1

2.0
7.0

5.0
8.0

4.0
1

3.0
6.0

~
R

. 

Using composition rule of type-2 fuzzy relations A
~

 andR
~

 defined in (8), we get a type-2 
fuzzy relation T%  showing the relationship between patients and diseases. 

T% = 
0.6 0.8 0.7 0.9 0.6 0.9 0.6 0.91 1 1 1

0.3 0.4 0.5 0.5 0.6 0.7 0.1 0.2 0.3 0.2 0.3 0.4
0.6 0.9 0.2 0.9 0.7 0.8 0.6 0.8 0.81 1 1

0.3 0.4 0.5 0.1 0.2 0.3 0.1 0.2 0.3 0.2 0.3 0.4

 + + + + + + + +
 
 + + + + + + + +
 

. 
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To make diagnostic decision, the notion of defuzzification for each entry of the type-2 
fuzzy matrix has been taken which gives a deffuzified matrix and using the probability 
distribution rule, expected percentages of chances to suffer with different diseases for the 
patients are obtained. For speciality, centre of area method has been adopted for 

defuzzification. This results matrix, DT%   

   
0.4083 0.6077 0.2120 0.3120

0.4120 0.2333 0.2040 0.2720DT
 

=  
 

% . 

Normalizing the above matrix, we get 

   
0.2651 0.3946 0.1377 0.2026

0.3674 0.2081 0.1819 0.2426NT
 

=  
 

% . 

Now, using probability distribution rule, we get the expected percentage of diagnosis as 
follows: 

           For patient P1 :  D1 is 26.51%, D2 is  39.46%, D3 is 13.77%,  D4 is  20.26%, 
               For patient P2 :  D1 is 36.74%,  D2 is  20.81%,  D3 is 18.19%, D4 is   24.26% 
 
4.7. Discussion and conclusion 
It is clear from the result of the example discussed in the previous section using proposed 
methodology that patient1P  is diagnosed to have disease 2D  and patient 2P is diagnosed 

to have disease1D . This example has already been discussed in [11, 15] via fuzzy 
relations and vague sets respectively. In the present methodology, it has been discussed in 
type-2 fuzzy environment by allowing more fuzziness in the state of the patients and the 
relation between symptoms and diseases. Diagnoses of [11, 15] and present paper for 
both the patients are same but expected percentage for possible diseases certainly 
deviated.Thus, the role of type-2 fuzzy environment introduced in diagnostic decisions 
may affect the result with more authenticity.  

In the process of medical diagnosis, state of patient are given by the patient 
through linguistic terminology like as high headache, much more vomiting, medium pain 
in backbone etc., consideration of  type-1 fuzzy sets as grades for association instead of 
membership grades in [0,1] is more advantageous to model the state of the patient. 
Similarly type-2 fuzzy relation has been introduced representing the association between 
symptoms and diseases. Sanchez’s approach has been extended for medical diagnosis in 
this reference. The approach used to form type-2 fuzzy matrix showing the association of 
symptoms and diseases is based on the work mentioned in [18].This is computationally 
costly. For future work, comparison may be made of present approach with the approach 
given by Own [14]. It would also be interesting to extend the existing work in the 
framework of interval type-2 fuzzy sets. 
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