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1. Introduction 
The concept of generalized topological space (GTS) was introduced by Csaszar [3] is one 
of the most important developments of general topology in recent years. In the literature, 
several kinds of compactness in GTS have been introduced; e.g. γ-compact spaces in [2], 
µ- compact space in [10]. The purpose of the present paper is to show that the concept of 
a compact space can be generalized by replacing open sets by Dµ-sets. In section 2, all 
basic definitions and preliminaries useful for subsequent sections are collected. In section 
3, we give the definition of Dµ-compact space and establish some of the basic properties 
and characterizations. In sections 4 and 5, we examine the basic theorems about Dµ-
compactness in subspaces, µ-D2 spaces and inproducts of generalized topological spaces. 
 
2. Preliminaries 
We recall some basic definitions and notations of most essential concepts needed in the 
following. Let X be a non-empty set and denote exp(X) the power set of X. According to 
[3], a collection µ ⊂exp(X) of subsets of X is called a generalized topology (GT) on X 
and (X, µ) is called a generalized topological space (GTS) if µ has the following 
properties 

i. ∅∈ µ  
ii. Any union of elements of µ belongs to µ. 
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Let µ be a GT on a set X ≠ ∅. Note that X ∈ µ must not hold; if X ∈ µ then we say that 
the GT µ is strong [5]. Let Mµ denote the union of all elements of µ; of course, Mµ∈ µ, 
and Mµ = X if and only if µ is a strong GT. Throughout this paper a space (X, µ) or 
simply X will always mean a strong generalized topological space with the strong 
generalized topology µ. A subset U of X is called µ-open if U ∈ µ. A subset V of X is 
called µ-closed if X ∖ V ∈ µ. A subset U of X is called µ-clopen if U is both µ-open and 
µ-closed.Let (X, µ) and (Y, η) be two GTS’s, then a function f: (X, µ) → (Y, η) is said to 
be (µ, η)-continuous (see [3]) if and only if U ∈ η ⇒ f–1(U) ∈ µ. f is said to be (µ, η)-open 
[4] if and only if U ∈ µ ⇒ f(U) ∈ η.Throughout this paper, all mappings are assumed to 
be onto. Let (X, µ) be a GTS and Y be a subset of X, then the collection µ/Y = {U∩Y: U∈ 
µ} is a GT on Y called the subspace generalized topology and (Y, µ/Y) is called a sub 
space of X [11]. Let �⊂exp(X) satisfy ∅∈�. Then all unions of some elements of � 
constitute a GT µ(�) called the GT generated by �, and � is said to be a base for µ(�) 
[7]. For a better understanding of developments in GTS one can refer to [1,6, 13, 14] 
 
Definition 2.1. [12] A subset A of a space (X, µ) is called a Dµ-set if there are two sets U, 
V ∈ µ such that U ≠ X and A = U ∖ V. Letting A = U and V = ∅ in the above definition, 
it is easy to see that every proper µ-open set U is a Dµ-set. 
 
Definition 2.2. [12] A space (X, µ) is called µ-D2 if for any pair of distinct points x and y 
of X, there exist disjoint Dµ-sets U and V of X containing x and y, respectively. 
 
Definition 2.3. A point x ∈ X is called a Dµ-cluster point of A if U∩(A∖{x}) ≠ ∅ for each 
U ∈Dµ with x ∈ U. 
 
Definition 2.4. [8] Let K ≠ ∅ be an index set, Xk ≠ ∅ for k ∈ K and (Xk, µk), k ∈ K, a 
class of GTS’s. X = ∏ Xkk∈K  is the Cartesian product of the sets Xk. Let us consider all 
sets of the form∏ Bkk∈K  where Bk∈µk and, with the exception of a finite number of 
indices k, Bk = M�k

. We denote by � the collection of all these sets. Clearly ∅∈� so that 
we can define a GT µ = µ(�) having � for base. We call µ the product of the GT’s µk and 
denote it by Pk∈Kµk. The GTS (X, µ) is called the product of the GTS’s (Xk,µk), k ∈ K.  
Denote Mk = M�k

= ⋃µk and M = ⋃µ. We denote by pk the projection pk : X → Xk and xk 
= pk(x) for each x ∈ X. 
 
Lemma 2.1. [8,Lemma 2.6] M = ∏ Mkk∈K . 
 
Lemma 2.2. [8,Proposition 2.7] If every µk is strong, then µ is strong and pk is (µ, µk)-
continuous for k∈ K. 
 
3. Dµ-Compact spaces in GTS’s 
Definition 3.1. Let (X, µ) be a GTS. A collection � of subsets of X is said to be a cover 
of X if the union of the elements of �is equal to X. 
It is called a Dµ–cover of X if its elements are Dµ-subsets of X 
 
Definition 3.2. Let (X, µ) be a GTS. A sub cover of a cover � is a sub collection � of � 
which itself is a cover. 
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Definition 3.3. Let (X, µ) be a GTS. Then (X, µ) is said to be a Dµ-compact space if and 
only if each Dµ-cover of X has a finite Dµ-sub cover. 
 
Definition 3.4. [10] Let (X, µ) be a GTS. Then (X, µ) is said to be a µ-compact space if 
and only if each µ-open cover of X has a finite µ-open sub cover. 
 
Theorem 3.1. If (X, µ) is a finite GTS. Then X is Dµ-compact. 
Proof: Let X = {x1, x2, … ,xn}. Let � be a Dµ-covering of X. Then each element in X 
belongs to one of the members of �, say x1∈ G1, x2∈ G2, … , xn∈Gn, where Gi∈�, Gi = 
Ui∖ Vi, Ui, Vi∈ µ,Ui ≠ X, i = 1,2, … , n. Since each Gi is a Dµ-set, the collection {G1, G2, 
… ,Gn} is a finite sub collection of Dµ-sets which cover X. Hence X is Dµ-compact. ∎ 
 
Theorem 3.2. If (X, µ) is a GT generated by singleton subsets of X. Then any infinite 
subset of X is not Dµ-compact. 
Proof: Suppose U is an infinite subset of the GT (X, µ) generated by singleton subsets of 
X. Consider the collection � = {{x}: x ∈ U} of singleton subsets of U. � is a Dµ-covering 
of U, since {x} ∈ µ ⇒ {x} ∈Dµ,∀x ∈ X and ⋃  {x} x∈U  = U. Also � is infinite since U is 
infinite. Then there is no finite sub collection of � which covers U. So U is not Dµ-
compact. ∎ 
 
Theorem 3.3. If (X, µ) is a GTS generated by singleton subsets of X and U ⊂ X. Then U 
is Dµ-compact if and only if U is finite. 
 
Theorem 3.4. Let (X, µ) be a GTS, where µ = {U ⊂X : X ∖ U is either finite or is all of 
X}. Then X is Dµ-compact. 
Proof: Let � be a Dµ-cover of X. Let A be an arbitrary member of �. Since A ∈Dµ⇒ A = 
(U ∖ V) where U, V ∈ µ, U ≠ X. Now U ∈ µ ⇒ X ∖ U is finite. Let X ∖ U = {x1, x2, … 
,xn}. Since � is a Dµ-cover of X, each xi belongs to one of the members of �, say, x1∈ A1, 
x2∈ A2, …,xn∈ An, where Ai∈�, Ai = Ui∖ V i, Ui, Vi∈ µ,Ui ≠ X, i = 1,2, … ,n. Then the 
collection {A1, A2, …,An} is a finite sub collection of � of Dµ-sets covering X ∖ U. Since 
U = U ∖∅ is a Dµ-set, the collection {U, A1, A2, … , An} is a finite sub collection of � of 
Dµ-sets covering of X. Hence X is Dµ-compact. ∎ 
 
Theorem 3.5. Let (X, µ) be a GTS. Then finite union of Dµ-compact sets is Dµ-compact.  
Proof: Assume that G ⊂ X and F⊂ Xare any two Dµ-compact subsets of X. Let � be a 
Dµ-cover of G∪F. Then � will also be a Dµ-cover of both G and F. So by assumption, 
there exists a finite sub collections of � of Dµ-sets, say, {G1, G2, … , Gn} and {F1, F2, …, 
Fm} covering G and F respectively where Gi = Ai∖ Bi, Ai ≠ X, Ai, Bi∈ µ, i = 1, 2, … , n, Fj 
= Cj∖Dj, Cj ≠ X, Cj, Dj∈ µ, j = 1, 2, … , m.Clearly the collection {G1, G2, … ,Gn, F1, F2, 
…, Fm} is a finite sub collection of � of Dµ-sets covering G∪F. By induction, every finite 
union of Dµ-compact sets is Dµ-compact.∎ 
 
Theorem 3.6. Let (X, µ) be a GTS. Then non-empty Dµ-subsets of a Dµ-compact space 
(X, µ) is Dµ-compact if µ is the collection of µ-clopen sets. 
Proof: Suppose (X, µ) is a Dµ-compact space where µ consists of µ-clopen sets. Let U be 
a non-empty Dµ-subset of X. Then there exists two sets P, Q ∈ µ, P ≠ X such that U = P ∖ 
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Q. Now X∖U = X∖(P∖Q) ∈ µ which implies X∖U ∈Dµ. Let � = {A α} α∈ J, where Aα = 
Bα∖Cα, Bα ≠ X, Bα, Cα∈ µ, be a Dµ-cover of U. Then the collection {{Aα} α∈ J, X ∖ U} is a 
Dµ-covering of X. Since X is Dµ-compact, there is a finite sub collection of � of Dµ-sets 
covering X which can be either  

(i) {A �1
, A�2

, …. , A�n
} or  

(ii)  {A �1
, A�2

, …. , A�n
, X ∖ U} 

Consider (i). Since ⋃ Aαi
n
i=1  = X and U ⊂ X, U ⊂⋃ Aαi

n
i=1 . Then the collection {Aαi

} i = 1,2, 

…., n of Dµ-sets is a finite sub collection of � covering U. Hence U is Dµ-compact. 
Consider (ii). Since (⋃ Aαi

n
i=1 )∪(X ∖ U) = X, then U ⊂⋃ Aαi

n
i=1  because if x ∈ U ⇒ x ∈ X 

⇒ x ∈ (⋃ Aαi
n
i=1 )∪(X∖U) ⇒ x ∈⋃ Aαi

n
i=1  or x ∈ (X ∖ U) ⇒ x ∈⋃ Aαi

n
i=1  since x ∈ U, x ∉ 

(X ∖ U). So U ⊂⋃ Aαi
n
i=1 . Now the collection {Aαi

} i = 1,2, …., n of Dµ-sets is a finite sub 
collection of � covering U. Hence U is Dµ-compact.∎ 
 
Theorem 3.7. Let (X, µ) be a GTS. If X is Dµ-compact and the complement of any non-
empty set U is a Dµ-set, then U is Dµ-compact. 
 
Theorem 3.8. Let (X, µ) be a GTS. If X is Dµ-compact and U is any non-empty µ-closed 
subset of X, then U is Dµ-compact. 
 
Theorem 3.9. Every infinite subset A of a Dµ-compact space (X, µ) has at least one Dµ-
cluster point in X. 
Proof: Suppose X is a Dµ-compact space and let A be an infinite subset of X. If possible 
assume that A has no Dµ-cluster points in X. Then for each x ∈ X, there exist a Dµ-set Ux 
such that Ux ∩ A = {x} or ∅. Then the collection {Ux : x ∈ X} is a Dµ-covering of X. 
Since X is Dµ-compact, there exist points x1, x2, ….,xn in X such that ⋃ Uxi

n
i=1 = X. But 

(Ux1
∩ A) ∪ (Ux2

∩ A) ∪ ….∪ (Uxn
∩ A) = {x1} ∪ {x2} ∪ …. ∪ {xn} or ∅ which implies 

(Ux1
∪ Ux2

∪ …. ∪Uxn
)∩ A  = {x1, x2, …. ,xn} or ∅ which implies X∩A =  {x1, x2, …. , 

xn} or ∅⇒A =  {x1, x2, …. , xn} or ∅, contradicts that A is infinite ∎ 
 
Theorem 3.10. A GTS (X, µ) is Dµ–compact if there exists a base � for it such that every 
cover of X by members of � has a finite sub cover. 
Proof: Assume that � is a base for the GTS (X, µ) with the property that every cover of 
X by members of � has a finite sub cover. Let � be any Dµ-cover of X, not necessarily 
by members of �. Now if U ∈�⇒ U ∈Dµ⇒ there exists two µ–open sets P and Q, P ≠ X 
such that U= P ∖ Q. Since P, Q ∈ µ ⇒ there exists two sub families �P, �Q of � such that 
P =  ⋃ B# ∈ �$

andQ =  ⋃ B# ∈ �&
. Let �U = �P∪�Q. Thus for each U ∈�, there exists a 

sub family �U of � such that U='⋃ B(#) ∈ �*
+ ∖ (⋃ B-#.∈ �*

) where Bi∈�P⊂�U and 

Bj∈�Q⊂�U. Let0 = ⋃  �12 ∈ � . Then 0 is a cover of X since � is a cover of X and 
more over 0⊂�. So by hypothesis 0 has a finite sub collection, say, {V1, V2, …,Vn} 
covering X. For each i = 1, 2, …, n there exists Ui∈� such that Vi ∈ �Ui

. Now Vi∈�Ui
⇒ 

there exists two sub families �Pi
 and �Qi

of �,  �Pi
∪ �Qi

 =  �Ui
 and   Vi ∈  �Ui

=
 �Pi

∪ �Qi
⇒ Vi⊂ [(⋃ B3#4∈�Pi

)∖(⋃ B5#6∈�Qi
)]⇒ V i⊂ (Pi∖ Qi) where Pi = (⋃ B3#4 ∈ �Pi

) 
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and Qi = (⋃ B5#6  ∈ �Qi
). Thus each Vi, i= 1, 2, … , n is contained in a Dµ-set. So {U1, U2, 

…, Un} is a finite sub collection of � covering X. Hence X is Dµ-compact.∎ 
 
Theorem 3.11. Let (X, µ) be a GTS. Then the following statements are equivalent. 

(i) X is Dµ-compact 
(ii)  For every collection � of complements of Dµ-subsets of X, the intersection of 

all the elements of � is empty then the collection � contains a finite sub 
collection with empty intersection. 

Proof: (i) ⇒ (ii) Suppose X is Dµ-compact space. Let ℭ = {U ∖V : U, V ∈µ , U ≠ X} be 
the collection of all Dµ-subsets of X and let � =  {X ∖ (U ∖ V) : (U ∖ V) ∈ℭ} be the 
collection of all complements of Dµ-subsets of X. Suppose the intersection of all the 
elements of � is empty. i.e, ⋂ 9X∖ (U( ∖ V()<=∅.i  Then X∖⋂ 9X∖ (U( ∖ V()<i =X∖∅. i.e, 
[ ⋂ 9X∖ (U( ∖ V()<]i

c =X. Therefore by De-Morgan’s Law, ⋃ (U( ∖ V()i  = X. Then the 
collection {(Ui∖ V i)} i of Dµ-subsets is a covering of X. Since X is Dµ-compact, there is a 
finite sub collection say, {U1∖V1, U2∖ V2,… , Un∖Vn} of  {(U i∖ V i)} i covering X. i.e, 
⋃ (U( ∖ V()=

>?@  = X. Then X∖⋃ (U( ∖ V()=
>?@  = ∅ 

⇒⋂ [(U( ∖ V()]cn
i=1  = ∅⇒⋂ 9X∖ (U( ∖ V()<=

>?@  = ∅. 
(ii) ⇒ (i) Assume that for every collection � = {X ∖ (U ∖ V) : U, V ∈ µ, U ≠ X} 

of complements of Dµ-subsets of X, the intersection of all the elements of � is empty 
implies the collection � contains a finite sub collection with empty intersection. Let 
ℭ={U i∖V i :Ui, Vi∈ µ, Ui ≠ X, ∀i} be a Dµ-cover of X. i.e, ⋃ (U( ∖ V()>  = X 
⇒ [ ⋃ (U( ∖ V()]i

c = ∅. By De-Morgan’s law, ⋂ [(U( ∖ V()]c
i  = ∅. Then by hypothesis, 

⋂ [(U( ∖ V()]c=
>?@  = ∅. Then [⋂ [(U( ∖ V()]cn

i=1 ]
c

 = X. Again by De-Morgan’s law, 
⋃ (U( ∖ V()

=
>?@  = X. i.e, the collection {U1∖V1, U2∖ V2,… , Un∖Vn} of D µ-sets is a finite 

sub collection of ℭ covering X. Hence X is Dµ-compact. ∎ 
 
Theorem 3.12. A GTS (X, µ) is Dµ-compact iff every collection of complements of Dµ-
subsets of X which satisfies the finite intersection property has, itself, a non-empty 
intersection. 
Proof: Suppose X is Dµ-compact. Let {X ∖ (Ui∖ Vi) :Ui,Vi∈µ, Ui≠ X} be a collection of 
complements of Dµ-subsets of X which satisfies the finite intersection property. Then 
⋂ 9X∖ (U( ∖ V()<=

>?@ ≠ ∅. Since X is Dµ-compact, by above theorem ⋂ 9X∖ (U( ∖ V()<>  = 
∅⇒⋂ 9X∖ (U( ∖ V()<=

>?@  = ∅. Therefore ⋂ 9X∖ (U( ∖ V()<=
>?@  ≠ ∅⇒⋂ 9X∖ (U( ∖ V()<>  ≠ ∅. 

Conversely, suppose {X∖(Ui∖V i) : Ui,V i∈ µ, Ui≠ X} is a collection of 
complements of Dµ-subsets of X which satisfies the finite intersection property has, itself, 
a non-empty intersection. i.e, ⋂ 9X∖ (U( ∖ V()<=

>?@  ≠ ∅⇒ ⋂ 9X∖ (U( ∖ V()<>  ≠ ∅. Then 
⋂ 9X∖ (U( ∖ V()<>  = ∅⇒⋂ 9X∖ (U( ∖ V()<=

>?@  = ∅. Then by the above theorem X is Dµ-
compact. ∎ 
 
Theorem 3.13. If (X, µ) is Dµ-compact, then for every collection � = {U i :Ui∈ µ, Ui ≠ X} 
of µ-open sets covering X ⇒ there exists a finite sub collection of � covering X. 
Proof: Suppose that X is Dµ-compact. Let � = {U i :Ui∈ µ, Ui ≠ X} be a collection of µ-
open sets covering X. i.e, ⋃ Uii∈I  = X where Ui∈�. Now the collection {(Ui∖ V i) :Ui, 
V i∈�} is a collection of Dµ-sets covering X. Since X is Dµ-compact, there exists a finite 
sub collection, say, {U1∖ V1, U2∖V2, …, Un∖Vn : Ui, Vi∈�, i = 1,2, … , n} ofDµ-sets 
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covering X. Then the collection {U1, U2, … Un : Ui∈ µ, Ui ≠ X, i = 1,2, … , n} is a finite 
sub collection of � covering X. ∎ 
 
Theorem 3.14. Suppose (X, µ) is µ-compact. If for every collection � = {U i∖V i :Ui, Vi∈ 
µ, Ui ≠ X} of D µ-sets covering X, then there exists a finite sub collection of � covering 
X. 
Proof: Suppose (X, µ) is µ-compact. Let � = {U i∖V i :Ui, Vi∈ µ, Ui ≠ X} be a collection 
of Dµ-sets covering X. i.e, ⋃ (Uii∈I ∖ V i)= X where Ui, Vi∈�. Now the collection {Ui 
:Ui∈µ, Ui ≠ X, Ui∖V i∈� for some Vi∈ µ} is a collection of µ-open sets covering X. Since 
X is µ-compact, there exists a finite sub collection, say, {U 1, U2, …, Un : Ui∈µ, Ui ≠ X, 
Ui∖ Vi∈� for someVi∈ µ, i= 1,2, … , n} of µ-open sets covering X. Since each proper µ-
open sets are Dµ-sets, the collection {U1, U2, … Un : Ui∈µ, Ui ≠ X, Ui∖ Vi∈� for some 
V i∈ µ, i= 1,2, … , n} is a finite sub collection of � covering X. ∎ 
 
4. Dµ-Compact spaces in subspaces of GTS’s and in µ-D2 spaces 
Theorem 4.1. Let Y be a subset of a GTS (X, µ). Then the following are equivalent: 

(i) Y is Dµ-compact w.r.t. µ 
(ii)  Y is Dµ/Y-compact w.r.t. the subspace GT µ/Y on Y. 

Proof: (i)⇒(ii) Suppose Y is Dµ-compact. Let � = {Hα} α∈ J be a Dµ/Y
-covering of Y. Then 

for each α, Hα∈Dµ/Y
⇒ there exists Uα, Vα∈ µ/Y such that Hα = Uα∖ Vα. Now Uα, Vα∈ µ/Y⇒ 

there exists Aα, Bα∈µ such that Uα=Aα∩Y and Vα=Bα∩Y. Hence for each α, 
Hα=(Aα∩Y)∖(Bα∩Y) = (Aα∖ Bα)∩Y = Gα∩Y where Gα = (Aα∖ Bα) ∈Dµ. Therefore the 
collection {Gα} α∈J of Dµ-sets is a Dµ-covering of Y. Since Y is Dµ-compact w.r.t. µ, by 
hypothesis, there is a finite sub collection of Dµ-sets, say, {G�1

, G�2
, …. ,G�n

} covering 
Y. But then, the collection {G�1

∩Y, G�2
∩Y, ….,G�n

∩  Y} = {H �1
, H�2

, …. ,H�n
} of 

Dµ/Y
-sets is a finite sub collection of � covering Y. Hence Y is Dµ/Y

-compact w.r.t. µ/Y. 
 

(ii)⇒(i) Suppose Y is Dµ/Y
-compact w.r.t. the subspace GT µ/Y on Y. Let � = 

{Gα} α∈ J be a Dµ-covering of Y where Gα∈Dµ, ∀ α. Now Gα∈Dµ⇒ there exists Aα, Bα∈ µ 
such that Gα=(Aα∖Bα). Set Hα = Gα∩Y. Then Hα = (Aα∖ Bα) ∩Y = (Aα∩Y)∖(Bα∩Y) 
implies Hα∈Dµ/Y

. But then the collection {Hα} α∈ J of Dµ/Y
-sets is a covering of Y w.r.t. µ/Y. 

Since Y is Dµ/Y
-compact, by hypothesis, there is a finite sub collection 

{H �1
, H�2

, …. ,H�n
} of Dµ/Y

-sets covering Y. i.e, {G�1
∩ Y, G�2

∩ Y, …., G�n
∩ Y} is a 

finite sub collection of Dµ/Y
-sets covering Y. Then the collection {G�1

, G�2
, …. ,G�n

} of 

Dµ-sets is a finite sub collection of � covering Y. Hence Y is Dµ-compact. ∎ 
 
Theorem 4.2. Let (Y, µ/Y) be a subspace of the GTS (X, µ) and let A⊂ Y ⊂ X. Then A is 
Dµ-compact if and only if A is Dµ/Y

-compact. 
Proof: Let µ/A and (µ/Y)/A be the subspace GT’s on A. Then by the above theorem, A is 
Dµ-compact if and only if A is Dµ/A

-compact and A is Dµ/Y
-compact if and only if A is 

(D�/F
)/G-compact. But Dµ/A

= (D�/F
)/G. Hence the proof.∎ 
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Theorem 4.3. Let (X, µ) be a GTS. If K is Dµ-compact and F is µ-closed then K∩F is Dµ-
compact. 
Proof: Since F is µ-closed in X, F∩K is µ/K-closed in the subspace GT on K. By theorem 
3.8, F∩K is Dµ/K

-compact. By theorem 4.1, F∩K is Dµ-compact. ∎ 

 
Theorem 4.4. If E is a Dµ-compact subset of a µ-D2 space (X, µ) and x ∈ X is not in E, 
then there is a µ-open set F such that E ⊂ F. 
Proof: Suppose E is a Dµ-compact subset of X and x ∈ X is not in E. Since X is µ-D2, for 
each p∈ E, there exists Dµ-sets Ux and Vp such that x ∈Ux, p ∈Vp, Ux ∩ Vp = ∅, where 
Ux=Ax∖Bx, Vp= Gp∖Hp, Ax, Bx, Gp, Hp∈ µ, Ax ≠ X, Gp ≠ X. Now the collection {Vp : p ∈ 
E} is a Dµ-covering of E. Since E is Dµ-compact, there exists a finite sub collection, say, 
{V p1

, Vp2
, … , Vpn

} of D µ-sets covering E. Then E ⊂⋃ Vpi

n
i=1 = ⋃ (Gpi

n
i=1 ∖Hpi

) ⊂ ⋃ Gpi

n
i=1 . 

Let F = ⋃ Gpi

n
i=1 . Then F is µ-open and E ⊂ F.∎ 

 
Remark 4.1. If Y is a Dµ-compact subset of a µ-D2 space (X, µ), then Y need not be µ-
closed. 
Consider the following example. Let X= {1, 2, 3} and µ = {∅, {1}, {1, 2}, {2, 3}, X}. 
Then Dµ-sets are {∅, {1}, {1, 2}, {2, 3}, {2}, {3}}. Let Y = {1,3}. Th en X is µ-D2 and Y 
is Dµ-compact, but Y is not µ-closed. 
 
5. Dµ-Compact spaces in products of GTS’s 
Theorem 5.1. If (X, µ) and (Y, η) are GTS’s and f: (X, µ) → (Y, η) is (µ, η)-continuous 
and onto. If (X, µ) is Dµ-compact then (Y, η) is Dη-compact. 
Proof: Suppose (X, µ) and (Y, η) be two GTS’s andf: (X, µ) → (Y, η) be a (µ, η)-
continuous function from X onto Y. Assume that X is Dµ-compact. Suppose � is any Dη-
cover of Y, then the collection {f–1(A) : A ∈�} is a cover of X. Now A ∈�⇒ A∈Dη⇒ A 
= B ∖ C where B, C ∈η, B≠Y and f–1(A) = f–1(B∖C) = f–1(B)∖f–1(C).Since f is continuous, 
f–1(B) and f–1(C) ∈ µ. Therefore the collection {f–1(A) : A ∈�} = {f –1(B)∖f–1(C) : f–1(B), f–
1(C) ∈ µ, f–1(B) ≠ X} is a Dµ-cover of X. Since X is Dµ-compact, there is a finite sub 
collection of Dµ-sets, say, {f–1(A1), f

–1(A2), … , f–1(An)} covering X, where A1, A2, … , 
An∈�. Since the mapping is onto, the collection {A1, A2, … , An} of D η-sets is a finite 
sub collection of Dη-sets covering Y. Hence Y is Dη-compact.∎ 
 
Theorem 5.2. Let (X, µ) be the products of the GTS’s (Xk, µk), k ∈ K. If (X, µ) is Dµ-
compact and every µk is strong, then every (Xk, µk) is Dµk-compact. 
Proof: Let pk : (X, µ) → (Xk, µk) be the projection map. By [8, proposition 2.7], pk is 
continuous for k ∈ K. By theorem 5.1, since continuous image of a Dµ-compact space is 
Dµ-compact, every (Xk, µk) is Dµk

-compact, k ∈ K.∎ 
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