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1. Introduction

The concept of generalized topological space (Gi¥&) introduced by Csaszar [3] is one
of the most important developments of general wgpin recent years. In the literature,
several kinds of compactness in GTS have beendintem; e.gy-compact spaces in [2],
u- compact space in [10]. The purpose of the prgsaper is to show that the concept of
a compact space can be generalized by replacing sgis by [-sets. In section 2, all
basic definitions and preliminaries useful for dpgent sections are collected. In section
3, we give the definition of Pcompact space and establish some of the basieiep
and characterizations. In sections 4 and 5, we meithe basic theorems about-D
compactness in subspacgd), spaces and inproducts of generalized topologpates.

2. Preliminaries
We recall some basic definitions and notations oétnessential concepts needed in the
following. Let X be a non-empty set and denote E¥pie power set of X. According to
[3], a collectionu cexp(X) of subsets of X is called a generalized togy (GT) on X
and (X, p) is called a generalized topological space (GTS) ihas the following
properties

.  Qep

ii.  Anyunion of elements qf belongs tqu.
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Let uw be a GT on a set X @. Note that Xe p must not hold; if Xe u then we say that
the GTp is strong [5]. Let M denote the union of all elementsgfof course, NE y,
and M, = X if and only if p is a strong GT. Throughout this paper a spaceufXor
simply X will always mean a strong generalized togal space with the strong
generalized topologu. A subset U of X is called-open if U€ p. A subset V of X is
calledp-closed if X\ V € u. A subset U of X is called-clopen if U is bothu-open and
p-closed.Let (Xu) and (Y,n) be two GTS'’s, then a function f: () — (Y, n) is said to
be (, n)-continuous (see [3]) if and only if 81 = f*(U) € p. fis said to bey(, n)-open
[4] if and only if U€e p = f(U) € n.Throughout this paper, all mappings are assumed to
be onto. Let (Xu) be a GTS and Y be a subset of X, then the cadlegsy = {UNY: Ue
u} is a GT on Y called the subspace generalizedltapoand (Y,uy) is called a sub
space of X [11]. LetBcexp(X) satisfy@eB. Then all unions of some elements®f
constitute a GTu(®B) called the GT generated B, andB is said to be a base fa(B)
[7]. For a better understanding of developmentsTis one can refer to [1,6, 13, 14]

Definition 2.1. [12] A subset A of a space (X) is called a [>-set if there are two sets U,
V € psuch that Ut X and A = U\ V. Letting A = U and V =9 in the above definition,
it is easy to see that every propeopen set U is a Pset.

Definition 2.2. [12] A space (Xy) is calledu-D, if for any pair of distinct points x and y
of X, there exist disjoint [Psets U and V of X containing x and y, respectively

Definition 2.3. A point x € X is called a [>-cluster point of A if N(A\{x}) # ® for each
U €D, with xe U.

Definition 2.4. [8] Let K# @ be an index set, @& @ for k€ K and (%, w), k€ K, a
class of GTS's. X F[xek Xk is the Cartesian product of the sefs Ket us consider all
sets of the for[ex Bx where Rep, and, with the exception of a finite humber of
indices k, B = M,,. We denote b§B the collection of all these sets. Cleaplg®B so that
we can define a Gt = u(8B) having®B for base. We call theproduct of the GT’sy, and
denote it by Rk, . The GTS (X,p) is called the product of the GTS’s (), k € K.
Denote M = M, = Upx and M =Up. We denote bythe projection p: X — X, and x

= p(x) for each xe X.

Lemma 2.1. B,Lemma 2.bM = []yek M.

Lemma 2.2. B,Proposition 2.JIf every py is strong, them is strong and pis (u, )-
continuous for k K.

3. D,-Compact spaces in GTS’s

Definition 3.1. Let (X, n) be a GTS. A collectio® of subsets of X is said to be a cover
of X if the union of the elements #fis equal to X.

It is called a -cover of X if its elements are Bubsets of X

Definition 3.2. Let (X, 1) be a GTS. A sub cover of a coiis a sub collectiofy of A
which itself is a cover.
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Definition 3.3. Let (X, w) be a GTS. Then (M) is said to be a Pcompact space if and
only if each Q-cover of X has a finite [Psub cover.

Definition 3.4. [10] Let (X, u) be a GTS. Then (Xy) is said to be a-compact space if
and only if eachui-open cover of X has a finiteopen sub cover.

Theorem 3.1.If (X, p) is a finite GTS. Then X is Bcompact.

Proof: Let X = {Xy, X, ... ,%}. Let A be a D-covering of X. Then each element in X
belongs to one of the membersWfsay xe G;, € G,, ... , %€G,, where G, G =
U\ Vi, U, Vie Ui # X, 1= 1,2, ..., n. Since each, G a D-set, the collection {g G,,

.. ,Gn} is a finite sub collection of Psets which cover X. Hence X igfBompact.m

Theorem 3.2.1f (X, p) is a GT generated by singleton subsets of X. Tdmgninfinite
subset of X is not Pcompact.

Proof: Suppose U is an infinite subset of the GT |(Xgenerated by singleton subsets of
X. Consider the collectio¥ = {{x}: x € U} of singleton subsets of U is a -covering

of U, since {x} € un = {x} €D,,¥x € X andUyey {x} = U. Also is infinite since U is
infinite. Then there is no finite sub collection ¥fwhich covers U. So U is not,D
compact.m

Theorem 3.3.If (X, ) is a GTS generated by singleton subsets of XLaadX. Then U
is D,-compact if and only if U is finite.

Theorem 3.4.Let (X, u) be a GTS, wherg = {U <X : X \ U is either finite or is all of
X}. Then X is D,-compact.

Proof: Let A be a Q-cover of X. Let A be an arbitrary memberf Since AeD,=> A =
(U\ V) where U, Ve u, U# X. Now Ue pu= X\ Uis finite. Let X\ U = {Xg, X, ...
Xn}. Since is a O-cover of X, eachpbelongs to one of the memberWfsay, x€ A;,
X2€ Ay .., X€ Ap, Where AEY, A = U\ V,, U, Vie wU; # X, i1 =12, ... ,n. Then the
collection {A;, Ay, ...,Aq} is a finite sub collection ol of D,-sets covering X U. Since
U = U\@ is a D-set, the collection {U, A A,, ... , A} is a finite sub collection o of
D,-sets covering of X. Hence X isf2ompact.m

Theorem 3.5.Let (X, p) be a GTS. Then finite union of f2Bompact sets is Fcompact.
Proof: Assume that G= X and F= Xare any two [>-compact subsets of X. L&t be a
D,-cover of GUF. Then will also be a [-cover of both G and F. So by assumption,
there exists a finite sub collections¥®fof D,-sets, say, {@ G,, ... , G} and {Fy, F, ...,
Fm} covering G and F respectively whereGA\ B, Ai#X, A, Bep,i=1,2,...,n,F
=C\D;, G#X,C,Depn, j=1,2, ..., mClearly the collection {GG,, ... ,G, Fi, R,

..., Fm} is & finite sub collection ol of D,-sets covering GF. By induction, every finite
union of D,-compact sets is Bcompactm

Theorem 3.6.Let (X, u) be a GTS. Then non-emptyBubsets of a Pcompact space
(X, ) is D,-compact ifu is the collection ofi-clopen sets.

Proof: Suppose (Xy) is a D-compact space whefeconsists ofi-clopen sets. Let U be
a non-empty [subset of X. Then there exists two sets B @ P# X such that U = R
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Q. Now X\U = X\(P\Q) € n which implies XU €D,. Let A = {A} . 5 Where A =
B.\Cs B. # X, By, C.€ 1, be a Q-cover of U. Then the collection {{#.5 X \ U}is a
D,-covering of X. Since X is [P)compact, there is a finite sub collection2bf D,-sets
covering X which can be either

® {A g Agyr e s Ayt OF

(i) {Ag, Agyr oove s Agn X\ U}
Consider (i). Sinc&)iL; A, = X and Uc X, U cUL; A,,. Then the collection {A}i-= 12,
,,,,, n Of D,-sets is a finite sub collection &f covering U. Hence U is Pcompact.
Consider (ii). SinceliZ; A, )U(X \ U) = X, then UcU; A, because if 6 U= x € X
= X € (Uit1 Ag)U(X\U) = x EUL; A, or x€ (X \ U) = x UL, A, since x€ U, x ¢
X\ U). So Ucu{‘:lAai. Now the collection {,%i}i: 12, ...nOf D,-sets is a finite sub
collection of2l covering U. Hence U is Fcompactm

Theorem 3.7.Let (X, p) be a GTS. If X is pcompact and the complement of any non-
empty set U is a Pset, then U is Pcompact.

Theorem 3.8.Let (X, n) be a GTS. If X is P-compact and U is any non-emptyclosed
subset of X, then U is, Fcompact.

Theorem 3.9.Every infinite subset A of a Pcompact space (X) has at least one D
cluster pointin X.

Proof: Suppose X is a Pcompact space and let A be an infinite subset.df gossible
assume that A has ngluster points in X. Then for eachexX, there exist a Pset U
such that YN A = {x} or @. Then the collection {J: x € X} is a D,-covering of X.
Since X is D-compact, there exist points, X, ....,.% in X such thatJil; Uy, = X. But
(Uy,NA) U (Uy,NA) U ..U (Uy NA) = {Xi} U {Xz} U ....U {Xp} or @ which implies
(Uy,UUy,U ... UU, )N A = {Xg, X, .... ,X} or @ which implies X0A = {X1, X, ... ,
Xn} OF @=2A = {X4, Xo, .... , %} Or @, contradicts that A is infinita

Theorem 3.10.A GTS (X, p) is D,—compact if there exists a baBéor it such that every
cover of X by members @& has a finite sub cover.

Proof: Assume thatB is a base for the GTS (X) with the property that every cover of
X by members o8 has a finite sub cover. L&t be any Q-cover of X, not necessarily
by members of8. Now if U ell= U €D,= there exists twa—open sets P and Q #AX
such that U= R Q. Since P, & p = there exists two sub famili&, Bq of B such that
P = Ugeg, Band) = Ugesqy B Let By = BpUBq. Thus for each WU, there exists a
sub family B, of B such that UfUg, c s, B;) \ (Up,e s, B;) Where BeBcBy and
Bi€BocBy. Letd = Uy ey By. ThenD is a cover of X sincél is a cover of X and
more overDcB. So by hypothesi® has a finite sub collection, say, {W,, ...,V,}
covering X. For each i=1, 2, ..., n there existsWsuch that Y€ By,. Now V.EB =
there exists two sub famili€Bp and%Qi of B, Bpu By = By, and V€ By =

BpU By = Vic [(Upes, Bi)\(Upes, B)l= Vic (R\ Q) where P= (Up, e s, Bi)
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and Q= (UBlE%Q B)). Thus each Vi=1, 2, ..., nis contained in g8et. So {U, U,,
..., Up} is a finite sub collection ofl covering X. Hence X is Pcompactm

Theorem 3.11Let (X, u) be a GTS. Then the following statements are edgt.
® X is D,-compact
(i) For every collectio®l of complements of Psubsets of X, the intersection of
all the elements ol is empty then the collectio®l contains a finite sub
collection with empty intersection.
Proof: (i) = (ii) Suppose X is Pcompact space. L& = {U \V : U, V ep, U# X} be
the collection of all subsets of X and 1l = {X \ (U\ V) : (U\ V) €€} be the
collection of all complements of Bubsets of X. Suppose the intersection of all the
elements of is empty. i.eN;[X\ (U; \ Vi)]=0. Then X\ N;[X\ (U; \ V;)]=X\Q. i.e,
[ Ni[X\ (U; \ V))]]°=X. Therefore by De-Morgan’s Lawy;(U; \ V;) = X. Then the
collection {(U\ Vi)}: of D,-subsets is a covering of X. Since X ig-@mpact, there is a
finite sub collection say, {J\V1, U\ Va... , U\V} of {(U;\ V)}:i covering X. i.e,
i=1(Ui \ Vi) = X. Then XU, (Ui \ Vi) =@
=N U\ W] =020, X\ (U \ VD] = 0.

(i) = (i) Assume that for every collecti®={X \ (U\ V): U, Ve U#X}
of complements of Psubsets of X, the intersection of all the elemenit8l is empty
implies the collectior®l contains a finite sub collection with empty intton. Let
C={U)\Vi U, Vie n, U # X, vi} be a D-cover of X. i.e,U;(U;\Vj) = X
=[Ui(U; \ V)D]¢ = 8. By De-Morgan’s law;[(U; \ V)]¢ = @. Then by hypothesis,
N, [(U;\VDI° = @. Then [N2,[(U; \ V)I°]° = X. Again by De-Morgan's law,

~.(U; \ V) = X. i.e, the collection {L\Vy, U\ V,,..., U\V,} of D,-sets is a finite
sub collection off covering X. Hence X is Pcompact.m

Theorem 3.12.A GTS (X, p) is D,-compact iff every collection of complements of-D
subsets of X which satisfies the finite intersettiproperty has, itself, a non-empty
intersection.

Proof: Suppose X is Pcompact. Let {X\ (U)\ V)) :U;,Viey, U# X} be a collection of
complements of Psubsets of X which satisfies the finite intersectproperty. Then
X\ (U \ VD]# . Since X is Q-compact, by above theorefm[X\ (U; \ V)] =

P=Ni1[X\ (U; \ V] = @. Thereforeni_, [X\ (U; \ V)] # @=N;[X\ (U; \ V)] # 0.

Conversely, suppose U\Vi) : U,Vie n, U# X} is a collection of
complements of Psubsets of X which satisfies the finite intersactproperty has, itself,
a non-empty intersection. i.€)=;[X\ (U; \ W] # 0= N;[X\ (U;\ V})] # @. Then
N:[X\ (U; \ W] = 0=N7,[X\ (U; \ ;)] = @. Then by the above theorem X is-D
compact.m

Theorem 3.13.If (X, p) is D,-compact, then for every collecti@h= {U; :Ui€ p, U; # X}

of p-open sets covering * there exists a finite sub collection¥fcovering X.

Proof: Suppose that X is Pcompact. Le®l = {U; :U€e u, U; # X} be a collection ofu-
open sets covering X. i.&ig U; = X where WY=A. Now the collection {({\ V;) :U;,
V;ieU} is a collection of D)-sets covering X. Since X is,zompact, there exists a finite
sub collection, say, {¥\ Vi, U\Vy, ..., U\V,: U, Vied, i = 1,2, ..., n} of-sets
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covering X. Then the collection {JU,, ... U,: Ue u, U # X, i=1,2, ..., n}is a finite
sub collection ofl covering X.m

Theorem 3.14.Suppose (Xu) is u-compact. If for every collectio® = {U;\V; :U;, Vi€

u, Uy # X} of D -sets covering X, then there exists a finite sulbecton of 2 covering
X.

Proof: Suppose (Xp) is u-compact. Le®l = {U;\V; :U;, Vi€ u, U; # X} be a collection
of D,-sets covering X. i.elJig (U, \ Vi)= X where U, Viel. Now the collection {U
Uien, Ui £ X, U\VeX for some Ve u} is a collection ofu-open sets covering X. Since
X is p-compact, there exists a finite sub collection,, §&y, Uy, ..., Uy @ Uiy, U; £ X,
Ui\ Ve for someVe y, i= 1,2, ..., n} ofu-open sets covering X. Since each proper
open sets are Bsets, the collection {YJ U,, ... U, : Uep, U # X, U;\ V;eU for some
Ve, i=1,2, ..., n}is afinite sub collection &f covering X.m

4. D,-Compact spaces in subspaces of GTS’s andjirD, spaces
Theorem 4.1.Let Y be a subset of a GTS (X). Then the following are equivalent:
® Y is D,-compact w.r.tu
(i) Y is Dyy-compact w.r.t. the subspace GF on Y.

Proof: (i)=(ii) Suppose Y is P-compact. Le®l = {H},;be a Q/Y—covering of Y. Then
for eacha, HaeDu/Y: there exists | V€ wy such that = U,\ V.. Now U,, V€ uy=
there exists 4 B,epn such that WEA,NY and V,=B,NY. Hence for eacho,
H.=(A.NY)\(B.NY) = (A By)NY = G,NY where G = (A,\ B,) €D,. Therefore the
collection {G;} .;0f D,-sets is a [covering of Y. Since Y is [pJcompact w.r.ty, by
hypothesis, there is a finite sub collection gfd@ts, say, {gl, Geyr -+ ,Gan} covering
Y. But then, the collection {@mv, Ge,NY, .Gy, N Y} = {H agr Hagr oo ,Han} of
D, -sets is a finite sub collection ¥fcovering Y. Hence Y is P, -compact w.r.tyyy.

(i)=(i) Suppose Y is B, -compact w.r.t. the subspace Gk on Y. LetB =
{Gu}ue s be a Q-covering of Y where @D, V a. Now G,€D,= there exists 4 B,€ p
such that G=(A,\B,). Set H = G,NY. Then H, = (A,\ B, NY = (A,NY)\(B,NY)
implies HeD,, . But then the collection {i} ,e ;of Dy, -sets is a covering of Y w.ryy.
Since Y is R, -compact, by hypothesis, there is a finite sub ectibn
{H agr Hags +- ,Han} of Dwy-sets covering Y. i.e, {Q—‘,lﬂ Y,G,NY, ..., Gy, NY}is a
finite sub collection of R, -sets covering Y. Then the collection {G G, .... ,Gy,} of
D,-sets is a finite sub collection & covering Y. Hence Y is Pcompact.m

Theorem 4.2.Let (Y, wy) be a subspace of the GTS (§,and let A=Y c X. Then Ais
D,-compact if and only if A is [, -compact.

Proof: Let wa and {uy)a be the subspace GT's on A. Then by the above ¢hgoA is
D,-compact if and only if A is [, -compact and A is ]2, -compact if and only if A is

(D) a-compact. But = (D, ,),a. Hence the proo

Wy Wy
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Theorem 4.3.Let (X, p) be a GTS. If K is P-compact and F ig-closed then KF is D;-
compact.

Proof: Since F isu-closed in X, FK is pk-closed in the subspace GT on K. By theorem
3.8, MKis D, -compact. By theorem 4.1 is D,-compact.m

Theorem 4.4.1f E is a O-compact subset of @D, space (Xu) and xe X is not in E,
then there is @-open set F such thatE&F.

Proof: Suppose E is a,Fcompact subset of X andexX is not in E. Since X ig-D,, for
each g E, there exists Psets U and \j, such that xeU,, p €V, U, N V, = @, where
U,=A\By, V= Go\H,, Ay, By, Gy, Ho€ 1, Ac# X, Gy # X. Now the collection {\j: p€

E} is a D,-covering of E. Since E is,Bcompact, there exists a finite sub collection,, say
{Vp,Vp, -, Vp } of D,-sets covering E. Then EUL; V), :Ui”:l(Gpi \Hp) € UL; Gy

Let F =U; Gy. Then F isu-open and = F.m

Remark 4.1.1f Y is a D,-compact subset of @D, space (Xy), then Y need not bg-
closed.

Consider the following example. Let X= {1, 2, 3}din = {0, {1}, {1, 2}, {2, 3}, X}.
Then D-sets are @, {1}, {1, 2}, {2, 3}, {2}, {3}}. Let Y ={1,3}. Th en Xisu-D, and Y
is D,-compact, but Y is nat-closed.

5. D,-Compact spaces in products of GTS’s

Theorem 5.1.1f (X, w) and (Y,n) are GTS’s and f: (Xy) — (Y, n) is (u, n)-continuous
and onto. If (X,u) is D,-compact then (Yy) is D,-compact.

Proof: Suppose (Xu) and (Y,n) be two GTS's andf: (Xp) — (Y, n) be a , n)-
continuous function from X onto Y. Assume that XDigcompact. Suppos# is any D-
cover of Y, then the collection {(A) : A €} is a cover of X. Now A= AeD,= A
=B\ C where B, Gen, B£Y and f(A) = f(B\C) = f(B)\f*(C).Since f is continuous,
f(B) and f(C) € n. Therefore the collection T{A) : A e} = {f (B)\f/(C) : f(B),
Y(C) € p, T(B) # X} is a D,-cover of X. Since X is Pcompact, there is a finite sub
collection of D-sets, say, {f(A), F(A,), ..., T(Ay)} covering X, where A A, ...,
A€U. Since the mapping is onto, the collection {A,, ... , A} of D,-sets is a finite
sub collection of sets covering Y. Hence Y is,2ompactm

Theorem 5.2.Let (X, p) be the products of the GTS’s Xu), k € K. If (X, p) is D,-
compact and every is strong, then every (Xu) is Dy-compact.

Proof: Let pc : (X, ) — (X w) be the projection map. By [8, proposition 2.7},ip
continuous for ke K. By theorem 5.1, since continuous image of,ecBmpact space is
D,-compact, every (X ) is D,, -compact, ke K.m
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