Annals of Pure and Applied Mathematics Vol. 9, No. 1, 2015, 73-80 ISSN: 2279-087X (P), 2279-0888(online) Published on 16 January 2015 www.researchmathsci.org

Properties of D_μ-Compact Spaces in Generalized Topological Spaces

Jyothis Thomas¹ and Sunil Jacob John²

Department of Mathematics, National Institute of Technology, Calicut Calicut – 673 601, India. ¹E-mail: <u>jyothistt@gmail.com</u>; ²E-mail: <u>sunil@nitc.ac.in</u>

Received 2 December 2014; accepted 6 January 2015

Abstract. The aim of this paper is to introduce a further generalization of compactness in generalized topological spaces. We define and study the concept of D_{μ} -compact spaces in generalized topological spaces. A space(X, μ) is D_{μ} -compact if every D_{μ} -cover of X has a finite D_{μ} -sub cover. Basic properties and characterizations of D_{μ} -compact space are established. D_{μ} -compactness in subspaces, products of generalized topological spaces and in μ - D_2 spaces are also investigated.

Keywords: Generalized topological spaces, D_{μ} -set, D_{μ} -compactness, base, (μ, η) -continuous functions, μ - D_2 space

Mathematics Subject Classification (2010): 54A05,54B05,54B10,54C05,54D10,54D30, 54D70

1. Introduction

The concept of generalized topological space (GTS) was introduced by Csaszar [3] is one of the most important developments of general topology in recent years. In the literature, several kinds of compactness in GTS have been introduced; e.g. γ -compact spaces in [2], μ - compact space in [10]. The purpose of the present paper is to show that the concept of a compact space can be generalized by replacing open sets by D_µ-sets. In section 2, all basic definitions and preliminaries useful for subsequent sections are collected. In section 3, we give the definition of D_µ-compact space and establish some of the basic properties and characterizations. In sections 4 and 5, we examine the basic theorems about D_µcompactness in subspaces, μ -D₂ spaces and inproducts of generalized topological spaces.

2. Preliminaries

We recall some basic definitions and notations of most essential concepts needed in the following. Let X be a non-empty set and denote exp(X) the power set of X. According to [3], a collection $\mu \subset exp(X)$ of subsets of X is called a generalized topology (GT) on X and (X, μ) is called a generalized topological space (GTS) if μ has the following properties

i. Ø∈μ

ii. Any union of elements of μ belongs to μ .

Let μ be a GT on a set $X \neq \emptyset$. Note that $X \in \mu$ must not hold; if $X \in \mu$ then we say that the GT μ is strong [5]. Let M_{μ} denote the union of all elements of μ ; of course, $M_{\mu} \in \mu$, and $M_{\mu} = X$ if and only if μ is a strong GT. Throughout this paper a space (X, μ) or simply X will always mean a strong generalized topological space with the strong generalized topology μ . A subset U of X is called μ -open if $U \in \mu$. A subset V of X is called μ -closed if $X \setminus V \in \mu$. A subset U of X is called μ -clopen if U is both μ -open and μ -closed.Let (X, μ) and (Y, η) be two GTS's, then a function f: $(X, \mu) \rightarrow (Y, \eta)$ is said to be (μ, η) -continuous (see [3]) if and only if $U \in \eta \Rightarrow f^{-1}(U) \in \mu$. If is said to be (μ, η) -open [4] if and only if $U \in \mu \Rightarrow f(U) \in \eta$.Throughout this paper, all mappings are assumed to be onto. Let (X, μ) be a GTS and Y be a subset of X, then the collection $\mu_{/Y} = \{U \cap Y: U \in \mu\}$ is a GT on Y called the subspace generalized topology and $(Y, \mu_{/Y})$ is called a sub space of X [11]. Let $\mathfrak{B} \subset \exp(X)$ satisfy $\emptyset \in \mathfrak{B}$. Then all unions of some elements of \mathfrak{B} constitute a GT $\mu(\mathfrak{B})$ called the GT generated by \mathfrak{B} , and \mathfrak{B} is said to be a base for $\mu(\mathfrak{B})$ [7]. For a better understanding of developments in GTS one can refer to [1,6, 13, 14]

Definition 2.1. [12] A subset A of a space (X, μ) is called a D_{μ} -set if there are two sets U, $V \in \mu$ such that $U \neq X$ and $A = U \setminus V$. Letting A = U and $V = \emptyset$ in the above definition, it is easy to see that every proper μ -open set U is a D_{μ} -set.

Definition 2.2. [12] A space (X, μ) is called μ -D₂ if for any pair of distinct points x and y of X, there exist disjoint D_{μ}-sets U and V of X containing x and y, respectively.

Definition 2.3. A point $x \in X$ is called a D_{μ} -cluster point of A if $U \cap (A \setminus \{x\}) \neq \emptyset$ for each $U \in D_{\mu}$ with $x \in U$.

Definition 2.4. [8] Let $K \neq \emptyset$ be an index set, $X_k \neq \emptyset$ for $k \in K$ and (X_k, μ_k) , $k \in K$, a class of GTS's. $X = \prod_{k \in K} X_k$ is the Cartesian product of the sets X_k . Let us consider all sets of the form $\prod_{k \in K} B_k$ where $B_k \in \mu_k$ and, with the exception of a finite number of indices k, $B_k = M_{\mu_k}$. We denote by \mathfrak{B} the collection of all these sets. Clearly $\emptyset \in \mathfrak{B}$ so that we can define a GT $\mu = \mu(\mathfrak{B})$ having \mathfrak{B} for base. We call μ the *product* of the GT's μ_k and denote it by $P_{k \in K} \mu_k$. The GTS (X, μ) is called the product of the GTS's (X_k, μ_k) , $k \in K$. Denote $M_k = M_{\mu_k} = \bigcup \mu_k$ and $M = \bigcup \mu$. We denote by p_k the projection $p_k : X \to X_k$ and $x_k = p_k(x)$ for each $x \in X$.

Lemma 2.1. [8,Lemma 2.6] $M = \prod_{k \in K} M_k$.

Lemma 2.2. [8,Proposition 2.7] If every μ_k is strong, then μ is strong and p_k is (μ, μ_k) continuous for $k \in K$.

3. D_{μ} -Compact spaces in GTS's

Definition 3.1. Let (X, μ) be a GTS. A collection \mathfrak{A} of subsets of X is said to be a cover of X if the union of the elements of \mathfrak{A} is equal to X. It is called a D_{μ} -cover of X if its elements are D_{μ} -subsets of X

Definition 3.2. Let (X, μ) be a GTS. A sub cover of a cover \mathfrak{A} is a sub collection \mathfrak{F} of \mathfrak{A} which itself is a cover.

Properties of D_u-Compact Spaces in Generalized Topological Spaces

Definition 3.3. Let (X, μ) be a GTS. Then (X, μ) is said to be a D_{μ} -compact space if and only if each D_{μ} -cover of X has a finite D_{μ} -sub cover.

Definition 3.4. [10] Let (X, μ) be a GTS. Then (X, μ) is said to be a μ -compact space if and only if each μ -open cover of X has a finite μ -open sub cover.

Theorem 3.1. If (X, μ) is a finite GTS. Then X is D_{μ} -compact.

Proof: Let $X = \{x_1, x_2, ..., x_n\}$. Let \mathfrak{A} be a D_{μ} -covering of X. Then each element in X belongs to one of the members of \mathfrak{A} , say $x_1 \in G_1$, $x_2 \in G_2$, ..., $x_n \in G_n$, where $G_i \in \mathfrak{A}$, $G_i = U_i \setminus V_i$, U_i , $V_i \in \mu, U_i \neq X$, i = 1, 2, ..., n. Since each G_i is a D_{μ} -set, the collection $\{G_1, G_2, ..., G_n\}$ is a finite sub collection of D_{μ} -sets which cover X. Hence X is D_{μ} -compact.

Theorem 3.2. If (X, μ) is a GT generated by singleton subsets of X. Then any infinite subset of X is not D_{μ} -compact.

Proof: Suppose U is an infinite subset of the GT (X, μ) generated by singleton subsets of X. Consider the collection $\mathfrak{A} = \{\{x\}: x \in U\}$ of singleton subsets of U. \mathfrak{A} is a D_µ-covering of U, since $\{x\} \in \mu \Rightarrow \{x\} \in D_{\mu}, \forall x \in X \text{ and } \bigcup_{x \in U} \{x\} = U$. Also \mathfrak{A} is infinite since U is infinite. Then there is no finite sub collection of \mathfrak{A} which covers U. So U is not D_µ-compact. \blacksquare

Theorem 3.3. If (X, μ) is a GTS generated by singleton subsets of X and U \subset X. Then U is D_µ-compact if and only if U is finite.

Theorem 3.4. Let (X, μ) be a GTS, where $\mu = \{U \subset X : X \setminus U \text{ is either finite or is all of } X\}$. Then X is D_{μ} -compact.

Proof: Let \mathfrak{A} be a D_{μ} -cover of X. Let A be an arbitrary member of \mathfrak{A} . Since $A \in D_{\mu} \Rightarrow A = (U \setminus V)$ where U, $V \in \mu$, $U \neq X$. Now $U \in \mu \Rightarrow X \setminus U$ is finite. Let $X \setminus U = \{x_1, x_2, ..., x_n\}$. Since \mathfrak{A} is a D_{μ} -cover of X, each x_i belongs to one of the members of \mathfrak{A} , say, $x_1 \in A_1$, $x_2 \in A_2$, ..., $x_n \in A_n$, where $A_i \in \mathfrak{A}$, $A_i = U_i \setminus V_i$, U_i , $V_i \in \mu$, $U_i \neq X$, i = 1, 2, ..., n. Then the collection $\{A_1, A_2, ..., A_n\}$ is a finite sub collection of \mathfrak{A} of D_{μ} -sets covering $X \setminus U$. Since $U = U \setminus \emptyset$ is a D_{μ} -set, the collection $\{U, A_1, A_2, ..., A_n\}$ is a finite sub collection of \mathfrak{A} of D_{μ} -sets covering of X. Hence X is D_{μ} -compact.

Theorem 3.5. Let (X, μ) be a GTS. Then finite union of D_{μ} -compact sets is D_{μ} -compact. **Proof:** Assume that $G \subset X$ and $F \subset X$ are any two D_{μ} -compact subsets of X. Let \mathfrak{A} be a D_{μ} -cover of $G \cup F$. Then \mathfrak{A} will also be a D_{μ} -cover of both G and F. So by assumption, there exists a finite sub collections of \mathfrak{A} of D_{μ} -sets, say, $\{G_1, G_2, \ldots, G_n\}$ and $\{F_1, F_2, \ldots, F_m\}$ covering G and F respectively where $G_i = A_i \setminus B_i$, $A_i \neq X$, A_i , $B_i \in \mu$, $i = 1, 2, \ldots, n$, $F_j = C_j \setminus D_j$, $C_j \neq X$, C_j , $D_j \in \mu$, $j = 1, 2, \ldots$, m.Clearly the collection $\{G_1, G_2, \ldots, G_n, F_1, F_2, \ldots, F_m\}$ is a finite sub collection of \mathfrak{A} of D_{μ} -sets covering G \cup F. By induction, every finite union of D_{μ} -compact sets is D_{μ} -compact.

Theorem 3.6. Let (X, μ) be a GTS. Then non-empty D_{μ} -subsets of a D_{μ} -compact space (X, μ) is D_{μ} -compact if μ is the collection of μ -clopen sets.

Proof: Suppose (X, μ) is a D_{μ} -compact space where μ consists of μ -clopen sets. Let U be a non-empty D_{μ} -subset of X. Then there exists two sets P, $Q \in \mu$, $P \neq X$ such that $U = P \setminus Q$

Q. Now X\U = X\(P\Q) $\in \mu$ which implies X\U $\in D_{\mu}$. Let $\mathfrak{A} = \{A_{\alpha}\}_{\alpha \in J}$, where $A_{\alpha} = B_{\alpha} \setminus C_{\alpha}$, $B_{\alpha} \neq X$, B_{α} , $C_{\alpha} \in \mu$, be a D_µ-cover of U. Then the collection $\{\{A_{\alpha}\}_{\alpha \in J}, X \setminus U\}$ is a D_µ-covering of X. Since X is D_µ-compact, there is a finite sub collection of \mathfrak{A} of D_µ-sets covering X which can be either

(i) $\{A_{\alpha_1}, A_{\alpha_2}, ..., A_{\alpha_n}\}$ or

(ii) $\{A_{\alpha_1}, A_{\alpha_2}, \dots, A_{\alpha_n}, X \setminus U\}$

Consider (i). Since $\bigcup_{i=1}^{n} A_{\alpha_i} = X$ and $U \subset X$, $U \subset \bigcup_{i=1}^{n} A_{\alpha_i}$. Then the collection $\{A_{\alpha_i}\}_{i=1,2,\dots,n}$ of D_{μ} -sets is a finite sub collection of \mathfrak{A} covering U. Hence U is D_{μ} -compact.

Consider (ii). Since $(\bigcup_{i=1}^{n} A_{\alpha_i}) \cup (X \setminus U) = X$, then $U \subset \bigcup_{i=1}^{n} A_{\alpha_i}$ because if $x \in U \Rightarrow x \in X$ $\Rightarrow x \in (\bigcup_{i=1}^{n} A_{\alpha_i}) \cup (X \setminus U) \Rightarrow x \in \bigcup_{i=1}^{n} A_{\alpha_i}$ or $x \in (X \setminus U) \Rightarrow x \in \bigcup_{i=1}^{n} A_{\alpha_i}$ since $x \in U, x \notin (X \setminus U)$. So $U \subset \bigcup_{i=1}^{n} A_{\alpha_i}$. Now the collection $\{A_{\alpha_i}\}_{i=1,2,...,n}$ of D_{μ} -sets is a finite sub collection of \mathfrak{A} covering U. Hence U is D_{μ} -compact.

Theorem 3.7. Let (X, μ) be a GTS. If X is D_{μ} -compact and the complement of any nonempty set U is a D_{μ} -set, then U is D_{μ} -compact.

Theorem 3.8. Let (X, μ) be a GTS. If X is D_{μ} -compact and U is any non-empty μ -closed subset of X, then U is D_{μ} -compact.

Theorem 3.9. Every infinite subset A of a D_{μ} -compact space (X, μ) has at least one D_{μ} -cluster point in X.

Proof: Suppose X is a D_{μ} -compact space and let A be an infinite subset of X. If possible assume that A has no D_{μ} -cluster points in X. Then for each $x \in X$, there exist a D_{μ} -set U_x such that $U_x \cap A = \{x\}$ or \emptyset . Then the collection $\{U_x : x \in X\}$ is a D_{μ} -covering of X. Since X is D_{μ} -compact, there exist points x_1, x_2, \ldots, x_n in X such that $\bigcup_{i=1}^n \bigcup_{x_i} = X$. But $(\bigcup_{x_1} \cap A) \cup (\bigcup_{x_2} \cap A) \cup \ldots \cup (\bigcup_{x_n} \cap A) = \{x_1\} \cup \{x_2\} \cup \ldots \cup \{x_n\}$ or \emptyset which implies $(\bigcup_{x_1} \cup \bigcup_{x_2} \cup \ldots \cup \bigcup_{x_n} \cap A) = \{x_1, x_2, \ldots, x_n\}$ or \emptyset which implies $X \cap A = \{x_1, x_2, \ldots, x_n\}$ or \emptyset which implies $X \cap A = \{x_1, x_2, \ldots, x_n\}$ or $\emptyset \Rightarrow A = \{x_1, x_2, \ldots, x_n\}$ or \emptyset , contradicts that A is infinite

Theorem 3.10. A GTS (X, μ) is D_{μ}-compact if there exists a base \mathfrak{B} for it such that every cover of X by members of \mathfrak{B} has a finite sub cover.

Proof: Assume that \mathfrak{B} is a base for the GTS (X, μ) with the property that every cover of X by members of \mathfrak{B} has a finite sub cover. Let \mathfrak{U} be any D_{μ} -cover of X, not necessarily by members of \mathfrak{B} . Now if $U \in \mathfrak{U} \Rightarrow U \in D_{\mu} \Rightarrow$ there exists two μ -open sets P and Q, $P \neq X$ such that $U = P \setminus Q$. Since P, $Q \in \mu \Rightarrow$ there exists two sub families \mathfrak{B}_P , \mathfrak{B}_Q of \mathfrak{B} such that $P = \bigcup_{B \in \mathfrak{B}_P} \text{Band}Q = \bigcup_{B \in \mathfrak{B}_Q} B$. Let $\mathfrak{B}_U = \mathfrak{B}_P \cup \mathfrak{B}_Q$. Thus for each $U \in \mathfrak{U}$, there exists a sub family \mathfrak{B}_U of \mathfrak{B} such that $U = (\bigcup_{B_i \in \mathfrak{B}_U} B_i) \setminus (\bigcup_{B_j \in \mathfrak{B}_U} B_j)$ where $B_i \in \mathfrak{B}_P \subset \mathfrak{B}_U$ and $B_j \in \mathfrak{B}_Q \subset \mathfrak{B}_U$. Let $\mathfrak{D} = \bigcup_{U \in \mathfrak{U}} \mathfrak{B}_U$. Then \mathfrak{D} is a cover of X since \mathfrak{U} is a cover of X and more over $\mathfrak{D} \subset \mathfrak{B}$. So by hypothesis \mathfrak{D} has a finite sub collection, say, $\{V_1, V_2, ..., V_n\}$ covering X. For each i = 1, 2, ..., n there exists $U_i \in \mathfrak{U}$ such that $V_i \in \mathfrak{B}_{U_i}$. Now $V_i \in \mathfrak{B}_{U_i} \Rightarrow$ there exists two sub families \mathfrak{B}_{P_i} and \mathfrak{B}_Q_i of \mathfrak{B} , $\mathfrak{B}_{P_i} \cup \mathfrak{B}_Q_i = \mathfrak{B}_{U_i}$ and $V_i \in \mathfrak{B}_{U_i} = \mathfrak{B}_{P_i} \cup \mathfrak{B}_{Q_i} \Rightarrow V_i \subset [(\bigcup_{B_k \in \mathfrak{B}_{P_i}} B_k) \setminus (\bigcup_{B_l \in \mathfrak{B}_Q_i} B_l)] \Rightarrow V_i \subset (P_i \setminus Q_i)$ where $P_i = (\bigcup_{B_k \in \mathfrak{B}_{P_i}} B_k)$

Properties of D_µ-Compact Spaces in Generalized Topological Spaces

and $Q_i = (\bigcup_{B_1 \in \mathfrak{B}_{Q_i}} B_l)$. Thus each V_i , i = 1, 2, ..., n is contained in a D_{μ} -set. So $\{U_1, U_2, ..., U_n\}$ is a finite sub collection of \mathfrak{U} covering X. Hence X is D_{μ} -compact.

Theorem 3.11. Let (X, μ) be a GTS. Then the following statements are equivalent.

- (i) X is D_{μ} -compact
- (ii) For every collection \mathfrak{A} of complements of D_{μ} -subsets of X, the intersection of all the elements of \mathfrak{A} is empty then the collection \mathfrak{A} contains a finite sub collection with empty intersection.

Proof: (i) \Rightarrow (ii) Suppose X is D_{μ} -compact space. Let $\mathfrak{C} = \{U \setminus V : U, V \in \mu, U \neq X\}$ be the collection of all D_{μ} -subsets of X and let $\mathfrak{A} = \{X \setminus (U \setminus V) : (U \setminus V) \in \mathfrak{C}\}$ be the collection of all complements of D_{μ} -subsets of X. Suppose the intersection of all the elements of \mathfrak{A} is empty. i.e, $\bigcap_{i}[X \setminus (U_{i} \setminus V_{i})] = \emptyset$. Then $X \setminus \bigcap_{i}[X \setminus (U_{i} \setminus V_{i})] = X \setminus \emptyset$. i.e, $[\bigcap_{i}[X \setminus (U_{i} \setminus V_{i})]]^{c} = X$. Therefore by De-Morgan's Law, $\bigcup_{i}(U_{i} \setminus V_{i}) = X$. Then the collection $\{(U_{i} \setminus V_{i})\}_{i}$ of D_{μ} -subsets is a covering of X. Since X is D_{μ} -compact, there is a finite sub collection say, $\{U_{1} \setminus V_{1}, U_{2} \setminus V_{2}, \dots, U_{n} \setminus V_{n}\}$ of $\{(U_{i} \setminus V_{i})\}_{i}$ covering X. i.e, $\bigcup_{i=1}^{n} (U_{i} \setminus V_{i}) = X$. Then $X \setminus \bigcup_{i=1}^{n} (U_{i} \setminus V_{i}) = \emptyset$.

 $\Rightarrow \bigcap_{i=1}^{n} \left[\left(\mathsf{U}_{i} \setminus \mathsf{V}_{i} \right) \right]^{c} = \emptyset \Rightarrow \bigcap_{i=1}^{n} \left[\mathsf{X} \setminus \left(\mathsf{U}_{i} \setminus \mathsf{V}_{i} \right) \right] = \emptyset.$

(ii) ⇒ (i) Assume that for every collection $\mathfrak{A} = \{X \setminus (U \setminus V) : U, V \in \mu, U \neq X\}$ of complements of D_{μ} -subsets of X, the intersection of all the elements of \mathfrak{A} is empty implies the collection \mathfrak{A} contains a finite sub collection with empty intersection. Let $\mathfrak{C}=\{U_i \setminus V_i : U_i, V_i \in \mu, U_i \neq X, \forall i\}$ be a D_{μ} -cover of X. i.e, $\bigcup_i (U_i \setminus V_i) = X$ $\Rightarrow [\bigcup_i (U_i \setminus V_i)]^c = \emptyset$. By De-Morgan's law, $\bigcap_i [(U_i \setminus V_i)]^c = \emptyset$. Then by hypothesis, $\bigcap_{i=1}^n [(U_i \setminus V_i)]^c = \emptyset$. Then $[\bigcap_{i=1}^n [(U_i \setminus V_i)]^c]^c = X$. Again by De-Morgan's law, $\bigcup_{i=1}^n (U_i \setminus V_i) = X$. i.e, the collection $\{U_1 \setminus V_1, U_2 \setminus V_2, \dots, U_n \setminus V_n\}$ of D_{μ} -sets is a finite sub collection of \mathfrak{C} covering X. Hence X is D_{μ} -compact. ■

Theorem 3.12. A GTS (X, μ) is D_{μ} -compact iff every collection of complements of D_{μ} -subsets of X which satisfies the finite intersection property has, itself, a non-empty intersection.

Proof: Suppose X is D_{μ} -compact. Let $\{X \setminus (U_i \setminus V_i) : U_i, V_i \in \mu, U_i \neq X\}$ be a collection of complements of D_{μ} -subsets of X which satisfies the finite intersection property. Then $\bigcap_{i=1}^{n} [X \setminus (U_i \setminus V_i)] \neq \emptyset$. Since X is D_{μ} -compact, by above theorem $\bigcap_{i} [X \setminus (U_i \setminus V_i)] = \emptyset \Rightarrow \bigcap_{i=1}^{n} [X \setminus (U_i \setminus V_i)] = \emptyset$. Therefore $\bigcap_{i=1}^{n} [X \setminus (U_i \setminus V_i)] \neq \emptyset \Rightarrow \bigcap_{i} [X \setminus (U_i \setminus V_i)] = \emptyset$.

Conversely, suppose {X\(U_i\V_i) : U_i,V_i\in \mu, U_i\neq X} is a collection of complements of D_µ-subsets of X which satisfies the finite intersection property has, itself, a non-empty intersection. i.e, $\bigcap_{i=1}^{n} [X \setminus (U_i \setminus V_i)] \neq \emptyset \Rightarrow \bigcap_{i} [X \setminus (U_i \setminus V_i)] \neq \emptyset$. Then $\bigcap_{i} [X \setminus (U_i \setminus V_i)] = \emptyset \Rightarrow \bigcap_{i=1}^{n} [X \setminus (U_i \setminus V_i)] = \emptyset$. Then by the above theorem X is D_µ-compact. \blacksquare

Theorem 3.13. If (X, μ) is D_{μ} -compact, then for every collection $\mathfrak{A} = \{U_i : U_i \in \mu, U_i \neq X\}$ of μ -open sets covering $X \Rightarrow$ there exists a finite sub collection of \mathfrak{A} covering X.

Proof: Suppose that X is D_{μ} -compact. Let $\mathfrak{A} = \{U_i : U_i \in \mu, U_i \neq X\}$ be a collection of μ -open sets covering X. i.e, $\bigcup_{i \in I} U_i = X$ where $\bigcup_i \in \mathfrak{A}$. Now the collection $\{(U_i \setminus V_i) : U_i, V_i \in \mathfrak{A}\}$ is a collection of D_{μ} -sets covering X. Since X is D_{μ} -compact, there exists a finite sub collection, say, $\{U_1 \setminus V_1, U_2 \setminus V_2, ..., U_n \setminus V_n : U_i, V_i \in \mathfrak{A}, i = 1, 2, ..., n\}$ of D_{μ} -sets

covering X. Then the collection $\{U_1, U_2, \dots, U_n : U_i \in \mu, U_i \neq X, i = 1, 2, \dots, n\}$ is a finite sub collection of \mathfrak{A} covering X.

Theorem 3.14. Suppose (X, μ) is μ -compact. If for every collection $\mathfrak{A} = \{U_i \setminus V_i : U_i, V_i \in \mu, U_i \neq X\}$ of D_{μ} -sets covering X, then there exists a finite sub collection of \mathfrak{A} covering X.

Proof: Suppose (X, μ) is μ -compact. Let $\mathfrak{A} = \{U_i \setminus V_i : U_i, V_i \in \mu, U_i \neq X\}$ be a collection of D_{μ} -sets covering X. i.e, $\bigcup_{i \in I} (U_i \setminus V_i) = X$ where $U_i, V_i \in \mathfrak{A}$. Now the collection $\{U_i : U_i \in \mu, U_i \neq X, U_i \setminus V_i \in \mathfrak{A}$ for some $V_i \in \mu\}$ is a collection of μ -open sets covering X. Since X is μ -compact, there exists a finite sub collection, say, $\{U_1, U_2, ..., U_n : U_i \in \mu, U_i \neq X, U_i \setminus V_i \in \mathfrak{A}$ for some $V_i \in \mu$, $i = 1, 2, ..., n\}$ of μ -open sets covering X. Since each proper μ -open sets are D_{μ} -sets, the collection $\{U_1, U_2, ..., U_n : U_i \in \mu, U_i \neq X, U_i \setminus V_i \in \mathfrak{A}$ for some $V_i \in \mu$, $i = 1, 2, ..., n\}$ is a finite sub collection of \mathfrak{A} covering X.

4. D_μ-Compact spaces in subspaces of GTS's and in μ-D₂ spaces

Theorem 4.1. Let Y be a subset of a GTS (X, μ) . Then the following are equivalent:

- (i) Y is D_{μ} -compact w.r.t. μ
- (ii) Y is $D_{\mu/Y}$ -compact w.r.t. the subspace GT μ_{Y} on Y.

Proof: (i)=(ii) Suppose Y is D_{μ} -compact. Let $\mathfrak{A} = \{H_{\alpha}\}_{\alpha \in J}$ be a $D_{\mu/Y}$ -covering of Y. Then for each α , $H_{\alpha} \in D_{\mu/Y} \Rightarrow$ there exists U_{α} , $V_{\alpha} \in \mu/Y$ such that $H_{\alpha} = U_{\alpha} \setminus V_{\alpha}$. Now U_{α} , $V_{\alpha} \in \mu/Y \Rightarrow$ there exists A_{α} , $B_{\alpha} \in \mu$ such that $U_{\alpha} = A_{\alpha} \cap Y$ and $V_{\alpha} = B_{\alpha} \cap Y$. Hence for each α , $H_{\alpha} = (A_{\alpha} \cap Y) \setminus (B_{\alpha} \cap Y) = (A_{\alpha} \setminus B_{\alpha}) \cap Y = G_{\alpha} \cap Y$ where $G_{\alpha} = (A_{\alpha} \setminus B_{\alpha}) \in D_{\mu}$. Therefore the collection $\{G_{\alpha}\}_{\alpha \in J}$ of D_{μ} -sets is a D_{μ} -covering of Y. Since Y is D_{μ} -compact w.r.t. μ , by hypothesis, there is a finite sub collection of D_{μ} -sets, say, $\{G_{\alpha_{1}}, G_{\alpha_{2}}, \dots, G_{\alpha_{n}}\}$ covering Y. But then, the collection $\{G_{\alpha_{1}} \cap Y, G_{\alpha_{2}} \cap Y, \dots, G_{\alpha_{n}} \cap Y\} = \{H_{\alpha_{1}}, H_{\alpha_{2}}, \dots, H_{\alpha_{n}}\}$ of $D_{\mu_{N}}$ -sets is a finite sub collection of \mathfrak{A} covering Y. Hence Y is $D_{\mu_{N}}$ -compact w.r.t. μ/Y .

(ii)⇒(i) Suppose Y is $D_{\mu/Y}$ -compact w.r.t. the subspace GT μ/Y on Y. Let $\mathfrak{B} = \{G_{\alpha}\}_{\alpha \in J}$ be a D_{μ} -covering of Y where $G_{\alpha} \in D_{\mu}$, $\forall \alpha$. Now $G_{\alpha} \in D_{\mu}$ ⇒ there exists A_{α} , $B_{\alpha} \in \mu$ such that $G_{\alpha} = (A_{\alpha} \setminus B_{\alpha})$. Set $H_{\alpha} = G_{\alpha} \cap Y$. Then $H_{\alpha} = (A_{\alpha} \setminus B_{\alpha}) \cap Y = (A_{\alpha} \cap Y) \setminus (B_{\alpha} \cap Y)$ implies $H_{\alpha} \in D_{\mu/Y}$. But then the collection $\{H_{\alpha}\}_{\alpha \in J}$ of $D_{\mu/Y}$ -sets is a covering of Y w.r.t. μ/Y . Since Y is $D_{\mu/Y}$ -compact, by hypothesis, there is a finite sub collection $\{H_{\alpha_1}, H_{\alpha_2}, \dots, H_{\alpha_n}\}$ of $D_{\mu/Y}$ -sets covering Y. i.e, $\{G_{\alpha_1} \cap Y, G_{\alpha_2} \cap Y, \dots, G_{\alpha_n} \cap Y\}$ is a finite sub collection of $D_{\mu/Y}$ -sets covering Y. Then the collection $\{G_{\alpha_1}, G_{\alpha_2}, \dots, G_{\alpha_n}\}$ of D_{μ} -sets is a finite sub collection of \mathfrak{B} covering Y. Hence Y is D_{μ} -compact. ■

Theorem 4.2. Let (Y, μ_{Y}) be a subspace of the GTS (X, μ) and let $A \subset Y \subset X$. Then A is D_{μ} -compact if and only if A is $D_{\mu_{Y}}$ -compact.

Proof: Let μ_{A} and $(\mu_{Y})_{A}$ be the subspace GT's on A. Then by the above theorem, A is D_{μ} -compact if and only if A is $D_{\mu_{A}}$ -compact and A is $D_{\mu_{Y}}$ -compact if and only if A is $(D_{\mu_{Y}})_{A}$ -compact. But $D_{\mu_{A}} = (D_{\mu_{Y}})_{A}$. Hence the proof.

Properties of D_u-Compact Spaces in Generalized Topological Spaces

Theorem 4.3. Let (X, μ) be a GTS. If K is D_{μ} -compact and F is μ -closed then $K \cap F$ is D_{μ} compact.

Proof: Since F is μ -closed in X, F \cap K is $\mu_{/K}$ -closed in the subspace GT on K. By theorem 3.8, F \cap K is $D_{\mu_{/K}}$ -compact. By theorem 4.1, F \cap K is D_{μ} -compact.

Theorem 4.4. If E is a D_{μ} -compact subset of a μ - D_2 space (X, μ) and $x \in X$ is not in E, then there is a μ -open set F such that $E \subset F$.

Proof: Suppose E is a D_{μ} -compact subset of X and $x \in X$ is not in E. Since X is μ - D_2 , for each $p \in E$, there exists D_{μ} -sets U_x and V_p such that $x \in U_x$, $p \in V_p$, $U_x \cap V_p = \emptyset$, where $U_x = A_x \setminus B_x$, $V_p = G_p \setminus H_p$, A_x , B_x , G_p , $H_p \in \mu$, $A_x \neq X$, $G_p \neq X$. Now the collection $\{V_p : p \in E\}$ is a D_{μ} -covering of E. Since E is D_{μ} -compact, there exists a finite sub collection, say, $\{V_{p_1}, V_{p_2}, \dots, V_{p_n}\}$ of D_{μ} -sets covering E. Then $E \subset \bigcup_{i=1}^n V_{p_i} = \bigcup_{i=1}^n (G_{p_i} \setminus H_{p_i}) \subset \bigcup_{i=1}^n G_{p_i}$. Let $F = \bigcup_{i=1}^n G_{p_i}$. Then F is μ -open and $E \subset F$.

Remark 4.1. If Y is a D_{μ} -compact subset of a μ - D_2 space (X, μ), then Y need not be μ -closed.

Consider the following example. Let $X = \{1, 2, 3\}$ and $\mu = \{\emptyset, \{1\}, \{1, 2\}, \{2, 3\}, X\}$. Then D_{μ} -sets are $\{\emptyset, \{1\}, \{1, 2\}, \{2, 3\}, \{2\}, \{3\}\}$. Let $Y = \{1,3\}$. Then X is μ -D₂ and Y is D_{μ} -compact, but Y is not μ -closed.

5. D_{μ} -Compact spaces in products of GTS's

Theorem 5.1. If (X, μ) and (Y, η) are GTS's and f: $(X, \mu) \rightarrow (Y, \eta)$ is (μ, η) -continuous and onto. If (X, μ) is D_{μ} -compact then (Y, η) is D_{η} -compact.

Proof: Suppose (X, μ) and (Y, η) be two GTS's andf: $(X, \mu) \rightarrow (Y, \eta)$ be a (μ, η) continuous function from X onto Y. Assume that X is D_{μ} -compact. Suppose \mathfrak{A} is any D_{η} cover of Y, then the collection $\{f^{-1}(A) : A \in \mathfrak{A}\}$ is a cover of X. Now $A \in \mathfrak{A} \Rightarrow A \in D_{\eta} \Rightarrow A$ $= B \setminus C$ where B, $C \in \eta$, $B \neq Y$ and $f^{-1}(A) = f^{-1}(B \setminus C) = f^{-1}(B) \setminus f^{-1}(C)$. Since f is continuous, $f^{-1}(B)$ and $f^{-1}(C) \in \mu$. Therefore the collection $\{f^{-1}(A) : A \in \mathfrak{A}\} = \{f^{-1}(B) \setminus f^{-1}(C) : f^{-1}(B), f^{-1}(C) \in \mu, f^{-1}(B) \neq X\}$ is a D_{μ} -cover of X. Since X is D_{μ} -compact, there is a finite sub collection of D_{μ} -sets, say, $\{f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)\}$ covering X, where $A_1, A_2, \ldots, A_n \in \mathfrak{A}$. Since the mapping is onto, the collection $\{A_1, A_2, \ldots, A_n\}$ of D_{η} -sets is a finite sub collection of D_{η} -sets covering Y. Hence Y is D_{η} -compact.

Theorem 5.2. Let (X, μ) be the products of the GTS's (X_k, μ_k) , $k \in K$. If (X, μ) is D_{μ} compact and every μ_k is strong, then every (X_k, μ_k) is $D_{\mu k}$ -compact.

Proof: Let $p_k : (X, \mu) \to (X_k, \mu_k)$ be the projection map. By [8, proposition 2.7], p_k is continuous for $k \in K$. By theorem 5.1, since continuous image of a D_{μ} -compact space is D_{μ} -compact, every (X_k, μ_k) is D_{μ_k} -compact, $k \in K$.

REFERENCES

- 1. A.Csaszar, Generalized Open Sets, Acta Math. Hungar., 75 (1997) 65–87.
- 2. A.Csaszar, γ-Compact spaces, Acta Math. Hungar., 87 (2000) 99–107.
- 3. A.Csaszar, Generalized topology, generalized continuity, *Acta Math. Hungar.*, 96 (2002) 351–357.
- 4. A.Csaszar, γ-connected sets, Acta Math. Hungar., 101 (2003) 273–279.

- 5. A.Csaszar, Extremally disconnected generalized topologies, *Annales Univ. Sci. Budapest.*, 47 (2004) 91–96.
- 6. A.Csaszar, Generalized open sets in generalized topologies, *Acta Math. Hungar.*, 106 (2005) 53–66.
- 7. A.Csaszar, Modification of generalized topologies via hereditary classes, *Acta Math. Hungar.*, 115 (2007) 29–36.
- 8. A. Csaszar, Product of generalized topologies, *Acta Math. Hungar.*, 123 (2009) 127–132.
- 9. M.Gansfer, S.Jafari and M.Steiner, On some very strong compactness conditions, *Acta Math. Hungar.*, 130 (2011) 188–194.
- 10. J.Thomas and S.J.John, μ-Compactness in generalized topological spaces, *Journal of Advanced Studies in Topology*, 3 (2012) 18–22.
- 11. J.LI, Generalized topologies generated by sub bases, *Acta Math. Hungar.*, 114 (2007) 1–12.
- 12. M.S.Sarsak, Weak separation axioms in generalized topological spaces, *Acta Math. Hungar.*, 131 (2011) 110–121.
- 13. R.Shen, Remarks on products of generalized topologies, *Acta Math. Hungar.*, 124 (2009) 363–369.
- 14. G.E.Xun and G.E.Ying, μ-separations in generalized topological spaces, *Appl. Math. J. Chinese Univ.*, 25 (2010) 243–252.