Annals of Pure and Applied Mathematics Vol. 9, No. 2, 2015, 151-156 ISSN: 2279-087X (P), 2279-0888(online) Published on 20 February 2015 www.researchmathsci.org

Pairwise Fuzzy Bicontinuous Map in Fuzzy Biclosure Space

R. Navalakhe¹ and U.D. $Tapi^2$

Department of Applied Mathematics & Computational Science Shri G.S.Institute of Technology & Science, 23 Park Road, Indore (M.P.) PIN-452003 India. ¹Email: <u>sgsits.rachna@gmail.com</u>, ²Email: utapi@sgsits.ac.in

Received 11 December 2014; accepted 5 January 2015

Abstract. The purpose of this paper is to introduce the concept of pairwise fuzzy bicontinuous map in fuzzy biclosure space and study some of their properties.

Keywords: Fuzzy closure operator, fuzzy biclosure space, fuzzy continuous map, Pairwise fuzzy bicontinuous map

AMS Mathematics Subject Classification : 54A40

1. Introduction

Fuzzy closure spaces were first studied by Mashhour and Ghanim [2]. Recently, Chawalit Boonpok [1] introduced the notion of biclosure spaces. Such spaces are equipped with two arbitrary closure operators. He extended some of the standard results of separation axioms in closure space to a biclosure space. Thereafter a large number of papers have been written to generalize the concept of closure space to a biclosure space. Now Tapi and Navalakhe [3] has introduced the notion of fuzzy biclosure spaces and generalized the concept of fuzzy biclosure space.

2. Preliminaries

Definition 2.1. A fuzzy biclosure space is a triple (X, u_1, u_2) where X is a non empty

set and u_1, u_2 are two fuzzy closure operators on X which satisfy the following properties:

- (i) $u_1(0_x) = 0_x$ and $u_2(0_x) = 0_x$
- (ii) $\mu \le u_1 \mu$ and $\mu \le u_2 \mu$ for all $\mu \le I^X$

(iii) $u_1(\mu \vee \upsilon) = u_1 \mu \vee u_1 \upsilon$ and $u_2(\mu \vee \upsilon) = u_2 \mu \vee u_2 \upsilon$ for all $\mu, \upsilon \leq I^X$.

Definition 2.2. [3] A subset μ of a fuzzy biclosure space (X, u_1, u_2) is called fuzzy closed if $u_1u_2\mu = \mu$. The complement of fuzzy closed set is called fuzzy open.

R. Navalakhe and U.D.Tapi

Definition 2.3, [3] A fuzzy closure space (Y, v_1, v_2) is said to be a subspace of (X, u_1, u_2) if $Y \le X$ and $v_1 \mu = u_1 \mu \wedge 1_Y$ or $v_2 \mu = u_2 \mu \wedge 1_Y$ for each fuzzy subset $\mu \le I^Y$. If 1_Y is fuzzy closed in (X, u_1, u_2) , then the subspace (Y, v_1, v_2) of (X, u_1, u_2) is also fuzzy closed.

Definition 2.4. [3] Let (X, u_1, u_2) and (Y, v_1, v_2) be fuzzy biclosure spaces. A map $f:(X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ is called fuzzy continuous if $f^{-1}(\mu)$ is a fuzzy closed subset of (X, u_1, u_2) for every fuzzy closed subset μ of (Y, v_1, v_2) .

Clearly, it is easy to prove that a map $f:(X, u_1, u_2) \to (Y, v_1, v_2)$ is fuzzy continuous if and only if $f^{-1}(v)$ is a fuzzy open subset of (X, u_1, u_2) for every fuzzy open subset v of (Y, v_1, v_2) .

Definition 2.5. The product of a family $\{(X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2}): \alpha \in J\}$ of fuzzy biclosure spaces denoted

by $\prod_{\alpha \in J} \left(X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2} \right) \text{ is the fuzzy biclosure space } \left(\prod_{\alpha \in J} X_{\alpha}, u^{1}, u^{2} \right) \text{ where } \\ \left(\prod_{\alpha \in J} X_{\alpha}, u^{i} \right) \text{ for } i \in \{1, 2\} \text{ is the product of the family of fuzzy closure spaces } \\ \left\{ X_{\alpha}, u^{i} : \alpha \in J \right\}.$

Remark 2.6. Let $\prod_{\alpha \in J} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2}) = \left(\prod_{\alpha \in J} X_{\alpha}, u^{1}, u^{2}\right)$. Then for each $\mu \leq \prod_{\alpha \in J} X_{\alpha}, u^{1}u^{2}\mu = \prod_{\alpha \in J} u_{\alpha}^{1}u_{\alpha}^{2}\pi_{\alpha}(\mu)$.

Proposition 2.7. [3] Let $\{(X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2}) : \alpha \in J\}$ be a family of fuzzy biclosure spaces. Then for each $\beta \in J$, the projection map $\pi_{\beta} : \prod_{\alpha \in J} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2}) \rightarrow (X_{\beta}, u_{\beta}^{1}, u_{\beta}^{2})$ is fuzzy continuous.

Proposition 2.8.[3] Let $\{(X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2}) : \alpha \in J\}$ be a family of fuzzy biclosure spaces and let $\beta \in J$. Then $\eta \leq X_{\beta}$ is a fuzzy closed subset of $(X_{\beta}, u_{\beta}^{1}, u_{\beta}^{2})$ if and only if $\eta \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha}$ is a fuzzy closed subset of $\prod_{\alpha \in J} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$.

Pairwise Fuzzy Bicontinuous Map in Fuzzy Biclosure Space

Proposition 2.9. [3] Let $\{(X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2}) : \alpha \in J\}$ be a family of fuzzy biclosure spaces and let $\beta \in J$. Then $\gamma \leq X_{\beta}$ is a fuzzy open subset of $(X_{\beta}, u_{\beta}^{1}, u_{\beta}^{2})$ if and only if $\gamma \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha}$ is a fuzzy open subset of $\prod_{\alpha \in J} (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2})$.

3. Pairwise fuzzy bicontinuous maps

Definition 3.1. Let (X, u_1, u_2) and (Y, v_1, v_2) be fuzzy biclosure spaces. A map $f:(X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ is called pairwise fuzzy bicontinuous if maps $f:(X, u_1) \rightarrow (Y, v_2)$ and $f:(X, u_2) \rightarrow (Y, v_1)$ are fuzzy continuous.

Remark 3.2. Every pairwise fuzzy bicontinuous map is fuzzy bicontinuous map.

Proposition 3.3. Let (X, u_1, u_2) and (Y, v_1, v_2) be fuzzy biclosure spaces. Then $f:(X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ is pairwise fuzzy bicontinuous if and only if $u_1 f^{-1}(v) \leq f^{-1}(v_2 v)$ and $u_2 f^{-1}(v) \leq f^{-1}(v_1 v)$ for every $v \leq Y$.

Proof: Let $v \leq Y$. Then $f^{-1}(v) \leq X$. Since the map f is pairwise fuzzy bicontinuous,

$$f(u_1 f^{-1}(v)) \le v_2 f(f^{-1}(v)) \le v_2 v \text{ and } f(u_2 f^{-1}(v)) \le v_1 f(f^{-1}(v)) \le v_1 v.$$

Therefore, $u_1 f^{-1}(v) \le f^{-1}(v_2 v)$ and $f(u_2 f^{-1}(v)) \le v_1 f(f^{-1}(v)) \le v_1 v.$

Therefore, $u_1 f^{-1}(v) \le f^{-1}(v_2 v)$ and $u_2 f^{-1}(v) \le f^{-1}(v_1 v)$.

Conversely, let $\mu \leq X$. Then $f(\mu) \leq Y$. Thus $u_1 f^{-1}(f(\mu)) \leq f^{-1}(v_2 f(\mu))$ and $u_2 f^{-1}(f(\mu)) \leq f^{-1}(v_1 f(\mu))$. Consequently

$$f(u_{1}\mu) \leq f(u_{1}f^{-1}(f(\mu))) \leq f(f^{-1}(v_{2}f(\mu))) \leq v_{2}f(\mu) \text{ and}$$

$$f(u_{2}\mu) \leq f(u_{2}f^{-1}(f(\mu))) \leq f(f^{-1}(v_{1}f(\mu))) \leq v_{1}f(\mu).$$

Hence, the map f is pairwise fuzzy bicontinuous.

Proposition 3.4. Let (X, u_1, u_2) , (Y, v_1, v_2) and (Z, w_1, w_2) be fuzzy biclosure spaces. If $f: (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ is pairwise fuzzy bicontinuous and $h: (Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ is fuzzy continuous, then $h \circ f: (X, u_1, u_2) \rightarrow (Z, w_1, w_2)$ is pairwise fuzzy bicontinuous.

Proof: Let $\mu \leq X$. Since $h \circ f(u_1\mu) = h(f(u_1\mu))$, $h \circ f(u_2\mu) = h(f(u_2\mu))$ and the map f is pairwise fuzzy bicontinuous, therefore $h(f(u_1\mu)) \leq h(v_2f(\mu))$ and $h(f(u_2\mu)) \leq h(v_1f(\mu))$. Since the map h is fuzzy continuous, $h(v_2f(\mu)) \leq w_2h(f(\mu))$ and $h(v_1f(\mu)) \leq w_1h(f(\mu))$. Thus

R. Navalakhe and U.D.Tapi

 $h \circ f(u_1\mu) \le w_2h \circ f(\mu)$ and $h \circ f(u_2\mu) \le w_1h \circ f(\mu)$. Consequently, the map $h \circ f$ is pairwise fuzzy bicontinuous.

Proposition 3.5. Let (X, u_1, u_2) and (Y, v_1, v_2) be fuzzy biclosure spaces and let (Z, w_1, w_2) be a fuzzy closed subspace of (X, u_1, u_2) . If the map $f: (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ is pairwise fuzzy bicontinuous, then the map $f | z: (Z, w_1, w_2) \rightarrow (Y, v_1, v_2)$ is pairwise fuzzy bicontinuous.

Proof: Let the map f be pairwise fuzzy bicontinuous. If $v \leq Z$, then

$$f | z(w_1(\upsilon)) = f | z(u_1\upsilon \wedge Z) = f | z(u_1\upsilon) = f(u_1\upsilon) \le v_2 f(\upsilon) = v_2 f | z(\upsilon) \text{ and}$$

$$f | z(w_2(\upsilon)) = f | z(u_2\upsilon \wedge Z) = f | z(u_2\upsilon) = f(u_2\upsilon) \le v_1 f(\upsilon) = v_1 f | z(\upsilon).$$

Consequently, the map $f | z$ is pairwise fuzzy bicontinuous.

Proposition 3.6. Let (X, u_1, u_2) be a fuzzy biclosure space, $\{(Y_{\alpha}, v_{\alpha}^1, v_{\alpha}^2) : \alpha \in J\}$ be a family of fuzzy biclosure spaces and $f:(X, u_1, u_2) \rightarrow \prod_{\alpha \in J} (Y_{\alpha}, v_{\alpha}^1, v_{\alpha}^2)$ be a map. Then the map $f:(X, u_1, u_2) \rightarrow \prod_{\alpha \in J} (Y_{\alpha}, v_{\alpha}^1, v_{\alpha}^2)$ is pairwise fuzzy bicontinuous if and only if the map $\pi_{\alpha} \circ f:(X, u_1, u_2) \rightarrow (Y_{\alpha}, v_{\alpha}^1, v_{\alpha}^2)$ is pairwise fuzzy bicontinuous for each $\alpha \in J$.

Proof: Let f be pairwise fuzzy bicontinuous. Since π_{α} is fuzzy continuous for each $\alpha \in J$, it follows that $\pi_{\alpha} \circ f$ is pairwise fuzzy bicontinuous for each $\alpha \in J$.

Conversely, let the map $\pi_{\alpha} \circ f$ be pairwise fuzzy bicontinuous for each $\alpha \in J$. Suppose that the map f is not pairwise fuzzy bicontinuous. Consequently, $f:(X, u_1) \to \prod_{\alpha \in J} (Y_{\alpha}, v_{\alpha}^2)$ is not fuzzy bicontinuous or $f:(X, u_2) \to \prod_{\alpha \in J} (Y_{\alpha}, v_{\alpha}^1)$ is not fuzzy bicontinuous. If the map $f:(X, u_1) \to \prod_{\alpha \in J} (Y_{\alpha}, v_{\alpha}^2)$ is not fuzzy bicontinuous. Then there exists a fuzzy subset μ of X such that $f(u_1\mu) \not\leq \prod_{\alpha \in J} v_{\alpha}^2 \pi_{\alpha}(f(\mu))$. Therefore, there exists $\beta \in J$ such that $\pi_{\beta}(f(u_1\mu)) \not\leq v_{\beta}^2 \pi_{\beta}(f(\mu))$. This contradicts the continuous for each $\alpha \in J$, it follows that $\pi_{\alpha} \circ f$ is pairwise fuzzy bicontinuity of $\pi_{\beta} \circ f$. If $f:(X, u_2) \to \prod_{\alpha \in J} (Y_{\alpha}, v_{\alpha}^1)$ is not fuzzy bicontinuous. Then there exists a fuzzy subset μ of X such that $f(u_2\mu) \not\leq \prod_{\alpha \in J} v_{\alpha}^2 \pi_{\alpha}(f(\mu))$. Therefore, there exists a

Pairwise Fuzzy Bicontinuous Map in Fuzzy Biclosure Space

 $\beta \in J$ such that $\pi_{\beta}(f(u_{2}\mu)) \leq v_{\beta}^{1}\pi_{\beta}(f(\mu))$. This contradicts the fuzzy bicontinuity of the map $\pi_{\beta} \circ f$. Hence, the map f is pairwise fuzzy bicontinuous.

Proposition 3.7. Let $\{(X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2}) : \alpha \in J\}$ and $\{(Y_{\alpha}, v_{\alpha}^{1}, v_{\alpha}^{2}) : \alpha \in J\}$ be families of fuzzy biclosure spaces. For each $\alpha \in J$, $f_{\alpha} : X_{\alpha} \to Y_{\alpha}$ be a map and let $f:\prod_{\alpha\in J}X_{\alpha}\to\prod_{\alpha\in J}Y_{\alpha} \quad be \quad defined \quad by \quad f\left((x_{\alpha})_{\alpha\in J}\right)=\left(f_{\alpha}(x_{\alpha})\right)_{\alpha\in J}. \quad Then \quad the \quad map$ $f:\prod_{\alpha\in J} \left(X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2}\right) \to \prod_{\alpha\in J} \left(Y_{\alpha}, v_{\alpha}^{1}, v_{\alpha}^{2}\right) \text{ is pairwise fuzzy bicontinuous if and only if the }$ map $f_{\alpha}: (X_{\alpha}, u_{\alpha}^{1}, u_{\alpha}^{2}) \rightarrow (Y_{\alpha}, v_{\alpha}^{1}, v_{\alpha}^{2})$ is pairwise fuzzy bicontinuous for each $\alpha \in J$. **Proof:** Let the map f be pairwise fuzzy bicontinuous, let $\beta \in J$ and

$$\mu \leq X_{\beta} \text{.Then } f_{\beta}\left(u_{\beta}^{1}\mu\right) = \pi_{\beta}\left(f_{\beta}\left(u_{\beta}^{1}\mu\right) \times \prod_{\substack{\alpha\neq\beta\\\alpha\in J}} f_{\alpha}\left(u_{\alpha}^{1}X_{\alpha}\right)\right) = \pi_{\beta}\left(f\left(u_{\beta}^{1}\mu \times \prod_{\substack{\alpha\neq\beta\\\alpha\in J}} u_{\alpha}^{1}X_{\alpha}\right)\right)\right)$$

$$= \pi_{\beta}\left(f\left(\prod_{\alpha\in J} u_{\alpha}^{1}\pi_{\alpha}\left(\mu \times \prod_{\substack{\alpha\neq\beta\\\alpha\in J}} X_{\alpha}\right)\right)\right) \leq \pi_{\beta}\left(\prod_{\alpha\in J} v_{\alpha}^{2}\pi_{\alpha}\left(f\left(\mu \times \prod_{\substack{\alpha\neq\beta\\\alpha\in J}} X_{\alpha}\right)\right)\right)\right)$$

$$= \pi_{\beta}\left(\prod_{\alpha\in J} v_{\alpha}^{2}\pi_{\alpha}\left(f_{\beta}\left(\mu\right) \times \prod_{\substack{\alpha\neq\beta\\\alpha\in J}} f_{\alpha}\left(X_{\alpha}\right)\right)\right) = \pi_{\beta}\left(v_{\beta}^{2}f_{\beta}\left(\mu\right) \times \prod_{\substack{\alpha\neq\beta\\\alpha\in J}} v_{\beta}^{2}f_{\beta}\left(\mu\right)$$
and

and

$$\begin{split} f_{\beta}\left(u_{\beta}^{2}A\right) &= \pi_{\beta}\left(f_{\beta}\left(u_{\beta}^{2}\mu\right) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} f_{\alpha}\left(u_{\alpha}^{2}X_{\alpha}\right)\right) = \pi_{\beta}\left(f\left(u_{\beta}^{2}\mu \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} u_{\alpha}^{2}X_{\alpha}\right)\right)\right) \\ &= \pi_{\beta}\left(f\left(\prod_{\alpha \in J} u_{\alpha}^{2}\pi_{\alpha}\left(\mu \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha}\right)\right)\right) \leq \pi_{\beta}\left(\prod_{\alpha \in J} v_{\alpha}^{1}\pi_{\alpha}\left(f\left(\mu \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} X_{\alpha}\right)\right)\right)\right) \\ &= \pi_{\beta}\left(\prod_{\alpha \in J} v_{\alpha}^{1}\pi_{\alpha}\left(f_{\beta}\left(\mu\right) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} f_{\alpha}\left(X_{\alpha}\right)\right)\right) = \pi_{\beta}\left(v_{\beta}^{1}f_{\beta}\left(\mu\right) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in J}} v_{\beta}^{2}f_{\alpha}\left(X_{\alpha}\right)\right) = v_{\beta}^{1}f_{\beta}\left(\mu\right) \\ \end{split}$$

Hence, the map f_{β} is pairwise fuzzy bicontinuous.

Conversely, let the map f_{α} be pairwise fuzzy bicontinuous for each $\alpha \in J$ and let $\mu \leq \prod_{\alpha \in J} X_{\alpha}$. Then

R. Navalakhe and U.D.Tapi

$$\begin{split} f\left(\prod_{\alpha\in J}u_{\alpha}^{1}\pi_{\alpha}\left(\mu\right)\right) &= \prod_{\alpha\in J}f_{\alpha}\left(\prod_{\alpha\in J}u_{\alpha}^{1}\pi_{\alpha}\left(\mu\right)\right) = \prod_{\alpha\in J}f_{\alpha}\left(u_{\alpha}^{1}\pi_{\alpha}\left(\mu\right)\right) \\ &\leq \prod_{\alpha\in J}v_{\alpha}^{2}f_{\alpha}\left(\pi_{\alpha}\left(\mu\right)\right) = \prod_{\alpha\in J}v_{\alpha}^{2}\pi_{\alpha}\left(f\left(\mu\right)\right) \text{ and} \\ f\left(\prod_{\alpha\in J}u_{\alpha}^{2}\pi_{\alpha}\left(\mu\right)\right) &= \prod_{\alpha\in J}f_{\alpha}\left(\prod_{\alpha\in J}u_{\alpha}^{2}\pi_{\alpha}\left(\mu\right)\right) = \prod_{\alpha\in J}f_{\alpha}\left(u_{\alpha}^{2}\pi_{\alpha}\left(\mu\right)\right) \\ &\leq \prod_{\alpha\in J}v_{\alpha}^{1}f_{\alpha}\left(\pi_{\alpha}\left(\mu\right)\right) = \prod_{\alpha\in J}v_{\alpha}^{1}\pi_{\alpha}\left(f\left(\mu\right)\right) \end{split}$$

Therefore, the map f is pairwise fuzzy bicontinuous.

REFERENCES

- 1. B.Chawalit, Hausdorff biclosure spaces, Int. J. Contemp. Math Sciences, 5(8) (2010) 359-363.
- 2. A.S.Mashhour and M.H.Ghanim, Fuzzy closure spaces, *Journal of Mathematical Analysis and Applications*, 6(1) (1985) 154-170.
- 3. U.D.Tapi and R.Navalakhe, Fuzzy biclosure spaces, *International Journal of Mathematical Analysis*, 5(16) (2011) 789-795.