
Annals of Pure and Applied Mathematics 
Vol. 9, No. 2, 2015, 191-200 
ISSN: 2279-087X (P), 2279-0888(online) 
Published on 14 March 2015 
www.researchmathsci.org 
 

191 
 

Annals of 

Mathematical Modeling with Local Volatility Surface by 
Radial Basis Function Approach 

Lasker Ershad Ali1, Masudul Islam2 and Shamima Sultana1 
1Mathematics Discipline, Khulna University, Khulna-9208, Bangladesh 

E-mail: ershadmathku@gmail.com  
2Statistics Discipline, Khulna University, Khulna-9208, Bangladesh  

E-mail: colinmasudul@gmail.com 

Corresponding author: Lasker Ershad Ali 

Received 18 February 2015; accepted 3 March 2015 

Abstract. Some obstacles create vulnerable situations in financial market. Overcome this 
unexpected situation, it is essential to reform the financial market by measuring the risk 
of share market.  This project investigates the sensitivity of radial basis functions to 
construct different volatility surface by radial basis function approaches to understand the 
risk of share market. Different types of radial basis functions on the basis of different 
error measurement such as average error as well as relative average error of Dhaka Stock 
Exchange (DSE) are measured and multiquadratic function gives the best result with 
compare to other functions especially Gaussian and Thin plate spline function. 
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1. Introduction 
Stock market is one of the principal financial institutions of Bangladesh which opens 
door for companies to raise huge amount of capital from a lot of individual investors 
inside and outside of the country. To observe  the present situation of the market and  to 
find the volatility surface we use radial basis function with some interpolation and also 
try to introduce different Radial basis functions such as Gaussian function, multi-
quadratic function and thin plane spline function to evaluate observations.  

The history of radial basis function (RBF) approximations goes back to 1968, 
when multiquadric radial basis functions were first used by Hardy to represent 
topographical surfaces given sets of sparse scattered measurements [8]. Today, the 
literature on different aspects of RBF approximation is extensive. RBFs are used not only 
for interpolation or approximation of data sets, but also as tools for solving e.g., 
differential equations [5, 6]. However, their main strength remains the same: The ability 
to elegantly and accurately approximate scattered data without using any mesh. There 
have been some concerns about the computational cost and stability of the RBF methods, 
but many different viable approaches to overcome these difficulties have been proposed, 
see for example [2, 12, 14] and the references therein. In this project RBFs are mainly 
focused on the reconstruction of unknown functions from known data. 
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In the early 1970s, Fischer Black, Myron Scholes, and Robert Merton made a 
major breakthrough in the pricing of stock options [1]. The famous Black-Scholes model 
has been intensively studied and used as the foundation for almost any option pricing 
formula in today’s financial markets. The model has a huge influence on the way that 
trader’s price and hedge options [15]. It has also been pivotal to the growth and success 
of financial engineering in the 1980s and 1990s. Here shows the Black-Scholes model for 
valuing Bangladeshi call and put options on a non dividend paying stock is derived. In 
1987 Hull and White explained the pricing of options on assets with stochastic volatilities 
[10]. Hon and Mao used radial basis function method for solving options pricing model 
in 1999 [9]. Coleman and Verma reconstructed the unknown local volatility function for 
options pricing model also in 1999 [3]. Recently, many researchers working in the field 
of financial mathematics especially radial basis functions approaches to observe share 
market situation. In 1999, Schaback improved error bounds for scattered data 
interpolation by radial basis functions [13] and solved limit problems for interpolation by 
analytic radial basis functions in 2008. Driscoll, and Fornberg described interpolation 
problem in the limit of increasingly flat radial basis functions [4]. Kim, et al. 
reconstructed local volatility function approximation by using radial basis function 
networks in 2006 [11]. In 2010, Glover used radial basis function approach to 
reconstructing the local volatility surface of European options [7].  
This paper can be explained how volatility can be either estimated from historical data or 
implied from option prices using the model and show how the Black-Scholes model can 
be extended to deal with Bangladeshi call and put options on dividend-paying stocks and 
present some results on the pricing of Bangladeshi call options on dividend paying 
stocks. 
 
2. Some mathematical tools 
The derivation of the Black-Scholes partial differential equation (PDE) is based on the 
fundamental fact that the option price and the stock price depend on the same underlying 
source of uncertainty. If S is asset price, σ  is volatility, r is risk free rate and ),( tSV  
the price of a derivative as a function of time and stock price then Black-Scholes partial 
differential equation [1] is 
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The boundary conditions can be easily determined by the option price. For a call option at 
expiry the option is worth the difference between the current underlying asset price S and 
the strike price K, if S > K the call boundary condition is 

)0,max( KSV TT −=                                                      (2) 

where, TS is the asset price at maturity T. Again, a similar argument can be used for a put 
option resulting in the put boundary condition 

)0,max( TT SKV −=                                                      (3) 
The Black-Scholes equation shows that inputs required for modeling an option are the 
underlying asset price S, the strike K, the maturity T, the risk free rate  r, and the 
volatility   all these parameters are directly observable except for the volatility. The 

radial basis function (RBF) is a function of the distance of the point to the origin. That is, 
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)()( xx φφ =   is the RBF so that φ  acts on a vector in nR   space and only through the 

norm. This means that φ  can be thought a scalar function. The radial basis functions as 

the model functions is ( ) ( )pp xxxxxf −++−= φαφα ...........)( 11                        (4) 

where RR →+:φ  is typically nonlinear and is referred to as the transfer function [13].  
Three types of radial basis functions like Gaussian, thin plate, and multiquadric are 
chosen for the model setup. RBF represents a map from P-dimensional input space to the 

one-dimensional output space i.e. 1: RRf p →  that consists of a set of weights 
m
i

iw 1
)( }{ =  and a set of radial basis functions m

i
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)( }{ =  where nm ≤ . There is a large class 

of radial basis functions which can be written in a general form 

( ))()()( )( iii cxxg −= φ                                                          (5) 

where .  denotes the Euclidean norm and m
i

ic 1
)( }{ =   is a set of the centers that can be 

chosen from the data points. For function approximation here uses Multiquadric function 

approximation ( ) 2)(2)()( )( iii arcxr +=−=φ   for some 0)( >ia                            (6)   

Inverse multiquadric approximation and Gaussiann function approximation respectively.  
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where )(ia  is usually referred  to as the width of the th basis function and 

                                 ( )( ).. )()()( iii cxcxcxr −−=−=      

Here multivariate interpolation is used for reconstruct volatility surface. Thus the 

simplest case of reconstruction of a d -variate unknown function *u  from data occurs 

when only a finite number of data in the form of values )(,),........( *
1

*
mxuxu  at 

arbitrary locations mxx ,......,1  in dR forming a set },......,{ 1 mxxX =  are known. In 

contrast to the n trial points nyy ,......,1  is   
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The m data locations mxx ,......,1  are called test points or collocation points. To calculate 

a trial function u of the form (9) which reproduces the data )(,),........( *
1

*
mxuxu   well, 

we have to solve the nm× linear system  ( ) mixuyx iki

n

k
k <<≈−∑

=
1),(*

2
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φα     (10) 

for n coefficients nαα ,......,1  matrices with entries ( )
2ki yx −φ  will occur and they are 

called kernel matrices in machine learning. If there is no noise in the data, its make then 
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sense to reconstruct *u by a function u  of the form (9) by enforcing the exact 
interpolation conditions 

( ) nmjxxxu kj

n

k
kj =≤≤−=∑

=

1,)(
2

1

* φα                             (11) 

This is a system of m  linear equations in nm =  unknowns nαα ,......,1  with a 

symmetric coefficient matrix 

 ( )( )
mkjkjx xxA
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In general, solvability of such a system is a serious problem, but one of the central 
features of kernels and radial basis functions is to make this problem. 
 
3. The model 
Reconstructing the local volatility surface is using for radial basis functions and the 
advance taken in the  paper follows that of [7] closely, except radial basis functions are 
used instead of spline to represent the local volatility function. That is, a function 
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with h a set of m radial basis functions and 
j

w  a set of corresponding weights found that 
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where )(
i

fv
BS

 is the set of  observed Black-Scholes prices and )),(( tS
i

v σ  is the 

option price at S and  t are given by 
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The generated surfaces suffer from over fit and become unstable. To reduce this unstable 
condition, Tikhonov regularization can be used for this problem 
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Equations (14) and (16) are nonlinear least squares minimization problems. A number of 
simplifying assumptions and heuristics are used to reduce the scale of the optimization 
presented in equation (14). Firstly we assume that the set of m radial basis functions, h in 
equation (13) are known and their positioning (centers) are fixed. The range of function 
sets are used and try to establish the best choice for the local volatility problem. The 
result of this assumption is to reduce the optimization problem to find the optimal weight 
vector . Secondly we assume that, if Tikhonov regularization is needed then the 

regularization parameterλ  is chosen by using trial and error methods which are found 
the optimalλ  given the non-linear nature of the problem is out of the scope of this 
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project. The procedure to recover the local volatility function for the problem is presented 
below for each of the key steps. For the function set h with observed market data f then 
(i) Find an initial weight vector 0w . 

(ii) Evaluate the cost function given in equation (14) 
(iii) Using an optimization algorithm update the optimal weight vector. 
The whole procedure is very sensitive to initial choice of weight vector. To solve this and 
generate a surface of realistic volatilities a simple method is used. To find an 
initial 0w such that the implied volatilities of observed market data f are interpolated using 

the appropriate radial basis function set h and solve the following equation, 
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This provides an initial weight vector 
0

w that gives a volatility surface that is reasonable. 

Nelder-Mead Simplex Optimization algorithm is used as an optimization algorithm. The 
basic idea behind the Nelder-Mead Simplex algorithm is the creation and evolution of a 
simplex of points on the cost function surface to find the minimum. A simplex is a 
prototype with 1+n vertices in n dimensions. The vertices of this prototype are evaluated 
and adjusted using several simple rules depending on the geometry of the function being 
searched. The first stage of the Nelder-Mead algorithm is creating the simplex.  
For the implementation of this project the Preconditioned Conjugate Gradient approach 
[7] is used and the optimization algorithms for purposes of efficiency and simplicity it is 
decided that implementations in the MATLAB optimization toolbox would be used. The 
data which are used in this research obtained from Dhaka Stock Exchange and collect 
information about different strikes and different maturity rates from Bangladesh Bank. 
All data which are used in this research are secondary data.  
 
4. Results and discussions 
The basic problem of scientific computing that recovers the multivariate functions from 
discrete data. For this purpose we use radial basis functions and confine to reconstruct 
from strong data consisting of evaluations of the function itself or its derivatives at 
discrete points. Using 258 data to recover the functions from data sets are given as 
integrals against the test functions which are the challenging research problems [12]. 
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Figure 1: Different radial basis functions 
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The above figure shows the different radial basis functions like Gaussian, multiquadratic 
and thin plate spline. It shows that the Gaussian function is better than other radial basis 
functions. Now investigate the errors for radial basis functions.  
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Figure 2: Average error for different radial basis functions 

The figure (2) shows average error for the different type of radial basis functions by using 
258 data. It shows that all types of radial basis functions are overlapping each other. So it 
can’t identify the best for minimizing the error. 
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Figure 3: Relative average error for different radial basis functions 

The above figure shows the relative average error for the different type of radial basis 
functions for 258 data and the multiquadratic function is best from other radial basis 
functions.  

For the purposes of comparison, we use the same test problems presented in [7], 
[12] and several measures of performance are used for consistency. Firstly the average 
absolute error at each of the n known data points in pricing is given by 
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This research examines the radial basis interpolating function to reconstruct the surface 
and to judge the smoothness according to radial basis optimization algorithm. The radial 
basis function approach is running to use local volatility by the Nelder-Mead 
optimization, with Gaussian, multiquadratic and thin plate spline function sets are 
presented in table (1). 
 
Radial Basis 
Function 

Average 
Absolute Error 

Maximum 
Absolute 
Error 

Average 
Relative Error 

Maximum 
Relative Error 

General 3809.191 4612.344 0.999597 0.999998 
Gaussian 3810.291 4612.648 0.999893 1.000000 
Multiquadratic 3809.075 4610.683 0.999565 0.999881 
Thin plate spline 3809.444 4611.504 0.999651 1.000023 

Table 1: Summarized result using Nelder-Mead algorithm 

By using the equation (18) and the values from the table (1), we get different figures of 
Gaussian average error by using MATLAB code whose are shown in the figures bellow. 

3000

3500

4000

4500

0

0.1

0.2

0.3

0.4
3000

3200

3400

3600

3800

4000

4200

Strike

 Gaussian  average Error  for 15 days

Maturity

V
ol
at
ili
ty
 e
rr
or

 
Figure 4: Gaussian average error for 15 days using Nelder-Mead algorithm  
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Figure 5: Gaussian relative average error for 15 days using Nelder-Mead algorithm  
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Figure 6: Multiquadratic average error for 15 days using Nelder-Mead algorithm  
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Figure 7: Multiquadratic relative average error for 15 days by Nelder-Mead  
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Figure 8: Thin Plate Spline average error for 15 days using Nelder-Mead algorithm  
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Figure 9: Thin Plate Spline relative average error for 15 days using Nelder-Mead 
algorithm 

It is clear that from the above figures, the thin plate spline performs well closely 
followed by the multiquadratic while the Gaussian performs poorly show smooth well 
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defined surfaces which closely resemble the known volatility function or both the thin 
plate spline and the multiquadratic and a very unstable surface for the Gaussian. 

In this research we try to find the minimum error among different types of radial 
basis function. In figure (1) we get three different types of curves of radial basis 
functions. But it is difficult to measure which is the best function. That’s why, we 
consider radial basis function in term of average error which are shown in figure (2) but 
face some problem to understand which function is the best. So we use relative average 
error for different radial basis function and get the best result for minimization the error 
for multiquadratic function which shown in figure (3).  

Again we go for numerical solution to find the absolute error. From table (1) the 
average absolute error for general radial basis function is 3809.191, the maximum 
absolute error for general radial basis function is 4612.344, the average relative error for 
general radial basis function is 0.999597 and the maximum relative error for general 
radial basis function is 0.999998. The average absolute error for Gaussian radial basis 
function is 3810.291, the maximum absolute error for Gaussian radial basis function is 
4612.648, the average relative error for Gaussian radial basis function is 0.999893 and 
the maximum relative error for Gaussian radial basis function is 1. The average absolute 
error for multiquadratic radial basis function is 3809.075, the maximum absolute error for 
multiquadratic radial basis function is 4610.683, the average relative error for 
multiquadratic radial basis function is 0.999565and the maximum relative error for 
multiquadratic radial basis function is 0.999881. The average absolute error for Thin 
plate spline radial basis function is 3809.444, the maximum absolute error for Thin plate 
spline radial basis function is 4611.504, the average relative error for Thin plate spilne 
radial basis function is 0.999651 and the maximum relative error for Thin plate spline 
radial basis function is 1.000023. Comparing the results both Thin plate spline and 
multiquadratics perform well, but Gaussian function sets not perform satisfactory level. 
So, more accurate result has shown by using the multiquadratic radial basis function. 
Thus multiquadratic radial basis function gives more accurate result than other two radial 
basis function in terms of error. 

 
5. Conclusion 
The main purpose of this research has been carried to investigate the sensitivity of radial 
basis functions to construct different volatility surface for different kinds of Radial Basis 
Function approaches to understand market condition and find the best radial basis 
function approaches both graphically and numerically by different error measurement. 
For that reason, we use different types of radial basis function to evaluate the absolute 
average error, relative average error and try to find out the best function to minimize 
error. At first we try to find the minimum error by graphically but we couldn’t identify 
the best option to minimize the error. Then we go for the numerical solution using an 
index data (DGEN) and finally get a solution for the multiquadratic function which is the 
best function to minimize the error from other radial basis function. We have wanted to 
find out the best function to minimize error with numerical study for my data index 
(DGEN) but we see a few changes for different types for radial basis function which is 
unexpected. So in near future we would like to work again with another data index and 
will be able to measure the best function to minimize the error. 
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