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Abstract. Some obstacles create vulnerable situations imdiah market. Overcome this
unexpected situation, it is essential to reformfthancial market by measuring the risk
of share market. This project investigates thesitigity of radial basis functions to
construct different volatility surface by radialdimfunction approaches to understand the
risk of share market. Different types of radial ibasinctions on the basis of different
error measurement such as average error as wallative average error of Dhaka Stock
Exchange (DSE) are measured and multiquadratictitmagives the best result with
compare to other functions especially GaussianTdmid plate spline function.
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1. Introduction

Stock market is one of the principal financial ingions of Bangladesh which opens
door for companies to raise huge amount of cafiteth a lot of individual investors
inside and outside of the country. To observe pitesent situation of the market and to
find the volatility surface we use radial basisdiion with some interpolation and also
try to introduce different Radial basis functionscls as Gaussian function, multi-
guadratic function and thin plane spline functioretvaluate observations.

The history of radial basis function (RBF) approations goes back to 1968,
when multiquadric radial basis functions were fitggded by Hardy to represent
topographical surfaces given sets of sparse sedttereasurements [8]. Today, the
literature on different aspects of RBF approximai®extensive. RBFs are used not only
for interpolation or approximation of data setst lalso as tools for solving e.g.,
differential equations [5, 6]. However, their mainength remains the same: The ability
to elegantly and accurately approximate scatteatd dithout using any mesh. There
have been some concerns about the computatiortahdstability of the RBF methods,
but many different viable approaches to overcoresdrdifficulties have been proposed,
see for example [2, 12, 14] and the referencesithhem this project RBFs are mainly
focused on the reconstruction of unknown functiibosr known data.
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In the early 1970s, Fischer Black, Myron Scholeg] 8obert Merton made a
major breakthrough in the pricing of stock opti¢hl The famous Black-Scholes model
has been intensively studied and used as the ftond®r almost any option pricing
formula in today’s financial markets. The model lRabuge influence on the way that
trader’s price and hedge options [15]. It has &lsen pivotal to the growth and success
of financial engineering in the 1980s and 1990setstiows the Black-Scholes model for
valuing Bangladeshi call and put options on a nieidend paying stock is derived. In
1987 Hull and White explained the pricing of opsamn assets with stochastic volatilities
[10]. Hon and Mao used radial basis function metfardsolving options pricing model
in 1999 [9]. Coleman and Verma reconstructed tHanawn local volatility function for
options pricing model also in 1999 [3]. Recentlyamy researchers working in the field
of financial mathematics especially radial basiscfions approaches to observe share
market situation. In 1999, Schaback improved erbmunds for scattered data
interpolation by radial basis functions [13] andived limit problems for interpolation by
analytic radial basis functions in 2008. Drisc@hd Fornberg described interpolation
problem in the limit of increasingly flat radial $ia functions [4]. Kim, et al.
reconstructed local volatility function approxin@ati by using radial basis function
networks in 2006 [11]. In 2010, Glover used radiasis function approach to
reconstructing the local volatility surface of Epean options [7].

This paper can be explained how volatility can itleee estimated from historical data or
implied from option prices using the model and shaw the Black-Scholes model can
be extended to deal with Bangladeshi call and ptibons on dividend-paying stocks and
present some results on the pricing of Bangladeali options on dividend paying

stocks.

2. Some mathematical tools
The derivation of the Black-Scholes partial diffgial equation (PDE) is based on the
fundamental fact that the option price and thekswice depend on the same underlying
source of uncertainty. I8is asset priceg is volatility, r is risk free rate an¥ (S,t)
the price of a derivative as a function of time atatk price then Black-Scholes partial
differential equation [1] is
2
rv :a_vrs+a_v+16_vo-
0S o 2 9S2
The boundary conditions can be easily determinetth&yption price. For a call option at
expiry the option is worth the difference betwelea turrent underlying asset prisand
the strike priceK, if S>K the call boundary condition is
V; =max(S; —K, 0) (2
where, S; is the asset price at maturify Again, a similar argument can be used for a put
option resulting in the put boundary condition
V; =maxK - S, 0) 3)
The Black-Scholes equation shows that inputs requior modeling an option are the
underlying asset pric&, the strikeK, the maturityT, the risk free rater, and the
volatility o, all these parameters are directly observable ptxite the volatility. The

radial basis function (RBF) is a function of thetdnce of the point to the origin. That is,

282 (l)
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@Ax) = @|x) is the RBF so thag acts on a vector ilR" space and only through the
norm. This means that can be thought a scalar function. The radial blsistions as

the model functions i (x) = a’l(ﬂmx - Xl”) Fo + apq"mx - po) “)

wherep: R* - R is typically nonlinear and is referred to as tlemsfer function [13].

Three types of radial basis functions like Gaussthin plate, and multiquadric are
chosen for the model setup. RBF represents a mapHrdimensional input space to the

one-dimensional output space i.é.: R - R' that consists of a set of weights

{w®}™ and a set of radial basis functi§igs’} ™, wherem<n. There is a large class
of radial basis functions which can be written igemeral form

60 =g (- ®)
where | .| denotes the Euclidean norm afef’} ", is a set of the centers that can be
chosen from the data points. For function approkionahere uses Multiquadric function

approximationg® (r) = Q|x - c(””): Jr2+a™ for soma® >0 (6)
Inverse multiquadric approximation and Gaussiametion approximation respectively.

i — PN —; i
@ (r) = 0|x c()”)— P for somea® >0 ()
4 . r? i
go(')(r):Q‘x—c"’u)zex{—WJ for soma® >0 (8)

wherea® is usually referred to as the width of il basis function and

r=[x-c®|= Jx=c){x-c®)
Here multivariate interpolation is used for recomst volatility surface. Thus the
simplest case of reconstruction ofdavariate unknown functiom’™ from data occurs

when only a finite number of data in the form oflues U™ (X,),....... ,u'(x,) at
arbitrary locationsx,,...... X 1N Rdforming a setX ={X,...... X} are known. In
contrast to the trial points y, ,...... VY, is
n
u) =Y a dlx-vil,) ©
k=1
Them data locationsx,...... ,X,, are called test points or collocation points. atcelate
a trial functionu of the form (9) which reproduces the data(x,),....... Jui(x,) well,

n
we have to solve thenx nlinear system | a'k(pmxi -V ||2)= u'(x),1<i<m (10)
k=1

for n coefficientsa,,...... ,a, matrices with entrie@mxi - yk||2) will occur and they are
called kernel matrices in machine learning. If &hixr no noise in the data, its make then
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sense to reconstrual’ by a functionu of the form (9) by enforcing the exact
interpolation conditions

u'(x;) = Zakgzm xk” 1<j<m=n (11)
This is a system ofm linear equations inm=n unknownsa,,......,a, with a
symmetric coefficient matrix
A, :(¢;(J|xj ‘Xk||2» i kem (12)

In general, solvability of such a system is a seriproblem, but one of the central
features of kernels and radial basis functione imake this problem.

3. The model

Reconstructing the local volatility surface is ugifor radial basis functions and the
advance taken in the paper follows that of [7kely, except radial basis functions are
used instead of spline to represent the local Nibyaunction. That is, a function

o(Sit)= Z W h (13)
j=1
with h a set ofm radial basis functions and'j a set of corresponding weights found that
satisfies
min
a(St)

wherevBS(fi) is the set ofr observed Black-Scholes prices amlc(a(S,t)) is the

[V (a(S.0)-v_(F)]° (14)

option price aSand t are given by
2
v=rs4 a—V+1‘3—Va(s,t)zs2 (15)
The generated surfaces suffer from over fit andimecunstable. To reduce this unstable
condition, Tikhonov regularization can be usedtfis problem

min
Z [v, (a(S,)-v_(f )] +4 > W, (16)
o(S, t) Q=1

Equations (14) and (16) are nonlinear least squamesnization problems. A number of
simplifying assumptions and heuristics are usetktiuce the scale of the optimization
presented in equation (14). Firstly we assumettteaset ofm radial basis functionsy in
equation (13) are known and their positioning (eesjtare fixed. The range of function
sets are used and try to establish the best clioicthe local volatility problem. The
result of this assumption is to reduce the optitiozaproblem to find the optimal weight
vectorw. Secondly we assume that, if Tikhonov regularoratis needed then the

regularization parametdr is chosen by using trial and error methods whieh faund
the optimald given the non-linear nature of the problem is ofithe scope of this
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project. The procedure to recover the local vatgtilinction for the problem is presented
below for each of the key steps. For the functietrhsvith observed market datdahen

(i) Find an initial weight vecton, .

(i) Evaluate the cost function given in equatidd)

(i) Using an optimization algorithm update thetiopal weight vector.

The whole procedure is very sensitive to initiabicke of weight vector. To solve this and
generate a surface of realistic volatilities a danpnethod is used. To find an

initial w,, such that the implied volatilities of observed nedrtatef are interpolated using
the appropriate radial basis function lseind solve the following equation,

min N m m .
SIf=-Ywhix || +4 > wj (17)
) | ) 0 j\li ) 0
0 j=1 j=1 j=1
This provides an initial weight vectcw0 that gives a volatility surface that is reasonable.

Nelder-Mead Simplex Optimization algorithm is usedan optimization algorithm. The
basic idea behind the Nelder-Mead Simplex algorithrihe creation and evolution of a
simplex of points on the cost function surface itad fthe minimum. A simplex is a
prototype withn+1vertices inn dimensions. The vertices of this prototype arduatad
and adjusted using several simple rules dependirthe geometry of the function being
searched. The first stage of the Nelder-Mead dlgoris creating the simplex.

For the implementation of this project the Prectioded Conjugate Gradient approach
[7] is used and the optimization algorithms forgmses of efficiency and simplicity it is
decided that implementations in the MATLAB optintipa toolbox would be used. The
data which are used in this research obtained fidvaka Stock Exchange and collect
information about different strikes and differenatority rates from Bangladesh Bank.
All data which are used in this research are searyndhta.

4. Results and discussions

The basic problem of scientific computing that nears the multivariate functions from
discrete data. For this purpose we use radial Hasidtions and confine to reconstruct
from strong data consisting of evaluations of thacfion itself or its derivatives at
discrete points. Using 258 data to recover the tfons from data sets are given as
integrals against the test functions which arecti@lenging research problems [12].

Different Radial Basis Function
T

sl Gaussain Function 4

Multi quardic Function

L L L L L
o 50 100 150 200 250 300
Days of Index Data

Figure 1: Different radial basis functions
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The above figure shows the different radial basixfions like Gaussian, multiquadratic
and thin plate spline. It shows that the Gausgimctfon is better than other radial basis
functions. Now investigate the errors for radiadibdunctions.

Average Error For Different Radial Basis Function
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Figure 2: Average error for different radial basis functions
The figure (2) shows average error for the diffetgpe of radial basis functions by using
258 data. It shows that all types of radial basiefions are overlapping each other. So it
can't identify the best for minimizing the error.

Relative Average Error For Different Radial Basis Function
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Figure 3: Relative average error for different radial basisctions
The above figure shows the relative average enotHe different type of radial basis
functions for 258 data and the multiquadratic fiorctis best from other radial basis
functions.
For the purposes of comparison, we use the samprtdsdems presented in [7],
[12] and several measures of performance are usedohsistency. Firstly the average
absolute error at each of thé&kcnown data points in pricing is given by

n
Averageerror=% > ‘Vi (a)—fi‘ (18)
=1

where\/i (o) is the price at the data pointand fi is the observed radial basis function.

The maximum absolute error is observed at the gatats for the equation (8).Then
interpolation is also giveroy

Max error= Max’\/i (0)- fi‘ di=1.....n of1
10 ‘Vi(a)_fi‘

Averageelativeerror=— > —— 20}
n: —

=1 fi
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V@)~ 1)

Max relativeerror= Max| di=1....n (21)

[
This research examines the radial basis interpgjdtinction to reconstruct the surface
and to judge the smoothness according to radias logsimization algorithm. The radial
basis function approach is running to use localatidy by the Nelder-Mead

optimization, with Gaussian, multiquadratic andnttplate spline function sets are
presented in table (1).

Radial Basis Average Maximum Average Maximum

Function Absolute Error | Absolute Relative Error| Relative Error
Error

Genere 3809.19: 4612.34. 0.99959 0.99999:

Gaussia 3810.29. 4612.64: 0.99989: 1.00000:1

Multiquadratic 3809.07! 4610.68: 0.99956! 0.99988.

Thin plate splin 3809.44. 4611.50. 0.99965. 1.00002:

Table 1: Summarized result using Nelder-Mead algorithm

By using the equation (18) and the values fromtéide (1), we get different figures of
Gaussian average error by using MATLAB code whaseshown in the figures bellow.

Gaussian average Error for 15 days
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Figure 4. Gaussian average error for 15 days using Neldexe\gorithm

Gaussian Relative Average Error for 15 days

\datility evar
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Figure5: Gaussian relative average error for 15 days udi&lder-Mead algorithm
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Multiquadratic Average Error for 15 days
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Figure6: Multiquadratic average error for 15 days usingddelMead algorithm

Multiquadratic Relative Average Error for 15 days
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Figure 7. Multiquadratic relative average error for 15 dayd\elder-Mead

Thin Plate spline Awverage Error for 15 days
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Figure8: Thin Plate Spline average error for 15 days usiefgidr-Mead algorithm

Thin Plate spline Relative Average Error for 15 days

\atility @

Maturity Strike

Figure 9: Thin Plate Spline relative average error for 1%sdasing Nelder-Mead
algorithm

It is clear that from the above figures, the thiat@ spline performs well closely
followed by the multiquadratic while the Gaussiarfprms poorly show smooth well
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defined surfaces which closely resemble the knowlatiity function or both the thin
plate spline and the multiquadratic and a veryaliistsurface for the Gaussian.

In this research we try to find the minimum erroramg different types of radial
basis function. In figure (1) we get three diffardgpes of curves of radial basis
functions. But it is difficult to measure which teke best function. That's why, we
consider radial basis function in term of averagerewhich are shown in figure (2) but
face some problem to understand which functioméskiest. So we use relative average
error for different radial basis function and dget best result for minimization the error
for multiquadratic function which shown in figurg)(

Again we go for numerical solution to find the aloge error. From table (1) the
average absolute error for general radial basistiom is 3809.191, the maximum
absolute error for general radial basis functiodG42.344, the average relative error for
general radial basis function is 0.999597 and tlaimum relative error for general
radial basis function is 0.999998. The average latess@rror for Gaussian radial basis
function is 3810.291, the maximum absolute errorGaussian radial basis function is
4612.648, the average relative error for Gaussiaial basis function is 0.999893 and
the maximum relative error for Gaussian radial $&snction is 1. The average absolute
error for multiquadratic radial basis function B09.075, the maximum absolute error for
multiquadratic radial basis function is 4610.683¢ taverage relative error for
multiquadratic radial basis function is 0.999565ahd maximum relative error for
multiquadratic radial basis function is 0.99988heTaverage absolute error for Thin
plate spline radial basis function is 3809.444,tfeximum absolute error for Thin plate
spline radial basis function is 4611.504, the agereelative error for Thin plate spilne
radial basis function is 0.999651 and the maximetative error for Thin plate spline
radial basis function is 1.000023. Comparing thsulte both Thin plate spline and
multiquadratics perform well, but Gaussian functgmis not perform satisfactory level.
So, more accurate result has shown by using théiquadiratic radial basis function.
Thus multiquadratic radial basis function gives enaccurate result than other two radial
basis function in terms of error.

5. Conclusion

The main purpose of this research has been caoigtestigate the sensitivity of radial
basis functions to construct different volatiliyriace for different kinds of Radial Basis
Function approaches to understand market conddiod find the best radial basis
function approaches both graphically and numesichil different error measurement.
For that reason, we use different types of radéeid function to evaluate the absolute
average error, relative average error and try nd fiut the best function to minimize
error. At first we try to find the minimum error graphically but we couldn’t identify
the best option to minimize the error. Then we gothe numerical solution using an
index data (DGEN) and finally get a solution foe timultiquadratic function which is the
best function to minimize the error from other eddiasis function. We have wanted to
find out the best function to minimize error witlumerical study for my data index
(DGEN) but we see a few changes for different tyfpesadial basis function which is
unexpected. So in near future we would like to wagiin with another data index and
will be able to measure the best function to mimarthe error.
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