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1. Introduction

The study of matrices over general semirings hias@ history. In 1964, Rutherford [3]
gave a proof of Cayley-Hamilton theorem for a cortatiue semiring avoiding the use
of determinants. Since then, a number of workshmory of matrices over semirings
were published [1, 12]. In 1999, Golan describedisags and matrices over semirings
in his work [5] comprehensively. The techniquesnattrices have important applications
in optimization theory, models of discrete eventwogk and graph theory. Luce [16]
characterized the invertible matrices over a Bavlakyebra of at least two elements.
Rutherford [2] has introduced that a square matvier a Boolean algebra of 2 elements
is invertible. Additively inverse semirings areidied by Karvellas [14]. Kaplansky [4],

Petrich [11], Goodearl [6], Reutenauer [1], Fan@][1Kanak [7,8,9] have studied
semiring.

2. Preliminaries
In this section, some fundamental definitions axahaples are presented.

Definition 2.1. Let S be non empty set with two binary operatiensnd. . Then the
algebraic structure (S; +,igcalleda semiring iff
Oa,b,cdsS;
0] (S; +) is a semigroup
(i) (S; .)is a semigroup
(i) a. (b+c)=a.b+a.cand (b+c).a=h.a+c.a.
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Definition 2.2. Let (S; +, .Jbe asemiring ThenS is called

(i) additively commutative iff [Ix,yOS,X+y=y+X.

(i) multiplicatively commutative iff [Ix, yOS, X.y = y.X.
(S; +, .)is calleda commutative semiring iff both (i) and (ii) hold.

Definition 2.3. Let (S; +, .Joe asemiring Then an elemenO[]S is calledzero of S
iff OxOS,
Xx+0=x=0+xand x0=0=0.x.
Definition 2.4. Let (S; +, .be asemiring Then an elemenfL[] S is calledidentity of
Siff
UxOS, x1=x=1x.
Definition 2.5. Let (S; +, .) be a commutative semiring with zépand identity (1) .
Then (S; +, .) is callelempotent semiring iff (xS,
X+ X=X=XX.
Example 2.5 (a). (I =[0,1]; +, .) is aan idempotent semiring, where order in [0,1] is
usual< and + and . are defined as follows:
a+b=max{a, b}, a.b =min{a, b}.
Proposition 2.6. [8] Let (S; +, .) be an idempotent semiring with zgpand identity
(2). Then
(@ x,yS , x+y=0=>x=0=y
(b)Ox, yOS,xy=1=x=1=y.
Definition 2.7. A permutation is said to badd iff it is expressible as the product of odd
number of transpositions.

Definition 2.8. A permutation is said to baven iff it is expressible as the product of even
number of transpositions.

Definition 2.9. Theset of all permutations of n elements is denote®p and is
commonly called theymmetric group of degree n. Clearlys, containsnl elements.

3. Invertibility of matrices over semirings
In this section, we discuss determinant and iniityi of matrices over semirings. Some
properties and examples are presented.

Definition 3.1. Let (S ; +,.) be a semiring anJM (S).Let A=(a;); where
i, j04,2,3,....... n }. Then theranspose of A defined as

A =(a)=(a).
Proposition 3.2. ForA,BOM . (S);
() (A) =A
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(i) (A+B)' = A" +B'

(i) (AB)' =B'A'.
Definition 3.3. Let (S ; +,.) be a semiring with zero(0) and idgntl) and ALM (S) .
Then A is calleda permutation matrix if every element (entry) of A is either 0 or 1 and
each row and each column contains exactly one 1.
Definition 3.4. Let (S ; +,.) be a semiring with zero(0) and idgntl) and ALM (S) .
Then A'is callednvertibleiff OIGOM (S) such thatAG =GA= 1.
Proposition 3.5. Let (S ; +,.) be a semiring with zero (0) and idtgr{tl) and
AOM . (S) .Then the inverse of A (if exists) is unique.

Proof: Let A be an invertible matrix over S.
If possible suppose B and C are two inverses of A.

Then AB=BA =1,

and AC=CA=l,.

Now CAB=C(AB)=Cl =C
and CAB=(CAB=I,B=B

Thus B =C.
This shows that inverse of A is unique. A

Proposition 3.6. If Ais a permutation matrix iM _(S), then AA' = A A= .
Proof: Suppose A is a permutation matrix.
There are two cases:
Case (i)i:# |
Case (ii)i:= |
For case (i):

n
(AA i = ZAkAtkj
k=1

n
= Z AcAi
k=1
Since there is only one nonzero entry inkttecolumn and #j , so A, and A, can't
both be the nonzero entry.

Therefore (AA'),; = 0.
For case (ii) :
n n n
(AN i = Z AA, = z AA = z Al
k=1
=1 ‘[ A'is a permutation matrix]
Therefore AA' =1 .
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Similarly, AA=1 .
We conclude tha®A' = AA=1 . A

Proposition 3.7. Let (S ; +,.) be a semiring with zero(0) and idigntl) and
AOM (S). If Aisinvertible matrix over S thedA' = AA=1,.

Proof : Let A be an invertible matrix.
Then AX = XA=1forsomeX M, §)

Putting A= (a;)andX = ; ); wherei, j 0{L,2,3,....... nt.
By AX =1I,wehavethatif # j, then

n
Zaikxkj =0
k=1

=%, =0 forall kN
Again by XA =1, we get

>xa =1
s=1
:Zn:ag zzn“)qsag =1; 00N
Again - .
Zn:xiszznlxsag =1; OiON
Now ~ ~

3 =a;.1=3;(Q X = 28X =aX; + D3 X; =a;X; +0
s=1 s=1 S#i

=g;X; +Zn;as'xji =Zr_]:as.xji =(i%)xii =1x;

=x, ; Oi, jON
So A= X'
Therefore X = A"
We conclude that\' is inverse of Ai.eAA = AA=1 . A

Definition 3.8. Let S, be the symmetric group of degree= 2, A, be the alternating
group of degree nanB, =S, / A, that is,

A, ={oUS,: gis aneven permutatior

B, ={oUS,: gis an odd permutation.
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Definition 3.9. Let (S ; +,.) be a commutative semiring with z€p and identity (1)
and n a positive integer greater than 1, thenfat M (S),
the positive determinant of A is defined by

det A=Y (|j Auty)

oA,
andthe negative determinant of A is defined by

det A=Y (|j Aoi)

o0B,
Remark 3.10. () A, ={c ™ c0A} andB, ={c™: cOB}.
(i) det" (1,)=1anddet (,)=0.

Proposition 3.11. For ABOM (S);
(i) det" (A") =det” A
(i) det (A') =def A

Proof : (i) det+(A‘)=J§ (” Aioiy) =Y. (|_J Ao

oA,
:Jgn (l:j Aa‘l(i),i) :agn (D Aa‘l(i),a(a‘l(i)))

=> (|‘J A i), since{o™®),0™@2),......o (N} = {12, nt
oA, 1=

Thereforedet” (A" )= det A A
(i) det (A)=Y (u Aioi) =Y. ([J Asiyi)

= Z (lj Aa_l(i)’i) = Z (Ij Ag-l(i),a(a‘l(i)))

olB, o0B, 1

=Z(UA,JU)),since{a*l(l),a*l(z) ........ TON= 2]

oB,

Thereforedet (A' )= def A A

Proposition 3.12. [2] Let (S; +, .) be an idempotent semiring of 2reénts. Then a
square matrix A over S is invertible over S iff \d permutation matrix.

Proposition 3.13. [1] Let (S; +,.) be a commutative semiring witha@d®) and identity (1)
and a positive integem> 2. If A/BOM (S), then there is an element] Ssuch that

(i)det’ (AB) = (det” A)(det’ B) + (det” A)(det B) +r
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(iydet (AB) = (det” A)(det B) + (det” A)(det B) +r

Proposition 3.14. [1] Let (S; +,.) be a commutative semiring with@@®) and identity
(1) and n a positive integer. F&, BLOM (S)if AB =1 thenBA=1,.

Proposition 3.15.[18] Let (S; +,.) be an idempotent semiring aralpositive integer
n>2.If AOM,(S)isinvertible over S, thedet” A+det A=1.

Remark 3.16. (i) Every Boolean ring is commutative semiring.
(i)  Boolean semiring is commutative semiring with zero.
(iii)  Every Booleaing is Boolean semiring.
(iv) Boolean semgiis idempotent.
Proposition 3.17. Let (R ; +,.) be a Boolean ring with identity ddan a positive integer
n=2.1f AOM,(R)is invertible over R, theet” A+det A=1.

Proof: Let AOM, (R) be an invertible matrix.

By definition 3.4, there existB UM (R)such thatAB = BA=1 .

Since Boolean ring is commutative semiring, so pBsition 3.13here is an element
r [0 R such that

det (AB) = (det” A)(def’ B) + (det A)(det B)+r ... (i)
and
det (AB) = (det” A)(det B) + (det A)(det' B)y+r ... (ii)

But det’ (AB)= det (, F !
det (AB)=det (, )= (
From (i) we get

1= (det" A)(det’ B) +(det A)(det B)+r ... (iii)
From (ii) we get
0= (det" A)(det B) +(det A)(det' B)+r ... (iv)
By proposition 2.6(a), from (iv) we get
(det” A)(det B) =0 RN (%)
and (det A)(det' B)+r =0
= (det A)(detB = 0 cee Vi)
andc =O (vii)

From (iii) and (vii) we get
1= (det" A)(det’ B) +(det A)(det B)
= (det” A)(det’ B) + (det” A)(det B) + (det” A)(det B) + (det A)(det B) =1
[ by (v) and (vi)]
= (det” A+det A)(det' B+det B) =1
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By Proposition 2.6(b) we get
det' A+ def A= 1 A

Proposition 3.18. Let (S; +,.) be an idempotent and commutative samivith zero (0)
and identity (1), n a positive integer add 1M (S) . Then A is invertible over S iff

(i) the product of amyo elements in the same row is 0
and (i) the sum of all elemeint®ach column is 1.

Proof: Suppose that (i) and (ii) hold.

We claim that
A'A= .
If i0{123,....... N}, then from (ii)

(NM=§%&=§%&=Zﬁ

=> A {- Sis idempotent]
k=1

=1
Also for distincti, j 0 {1,23,....... n} from (i)

(N%:gﬁ&=g&%

SAA AN FAA +AA,

= 0+0+0+......... +0 [ by ()]

=0
This shows that

AA=I,
By Proposition 3.14, we get
AA =1,
Therefore
AA=AA =1 .

Hence A is invertible over S and inverse of Ais
Conversely suppose
A is invertible ovBr
By Proposition 2.6(b) , the Proposition is obviguslte for n =1.
Let n >1and assume that A is invertible over S.

Let BOM(S)be such thaB = BA=1 .

Let
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Now
0=l n)ij = (BA)ij = z B/ A
1=1
ThereforeB, Ai =0, 0, |, 0{123,....... Npsuchthat #j ... (1)
Let
p,q, k0 {123....... N} be such thag # k.
Then

AP = A A1
quAbK(AB)pp = Aqupk(lzzl: Ablap)

:IZ;:quApkAp| By = AuAuABo +Z A A (A, By)

1k

ﬁik(akpAmwéAmAp. (B,A)

1£k
=0+0 from (1)
=0
Hence (i) is proved.
From Proposition 3.15, we have that
det” A+det A=1
By (i) we have
AciA 2Pz A o =0 if K,k ks, .k, 0{123,.......n} are not all distinct.

..(2)
Then
(z A1) (z A:2) (Z Arg) e (Z A )= ZA<11'A<22-A<33 ........ A<nn
¢=1 {=1 ¢=1 {=1 Ky Ky Kg oo Ky 0{1,2,3,...0}
:Z A 1P 2) 2P @3 A (yn from (2)
ols,
=det" A+det A=1.
By Proposition 2.6(b) we get
O A)=0 A= A= e AL =L
Z=1 7=1 7=1 Z=1
Hence (ii) is proved. A
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