q-Continuous Functions in Quad Topological Spaces

U.D.Tapi¹ and Ranu Sharma²

Department of Applied Mathematics and Computational Science
SGSITS, Indore (M.P.), India. ¹Email: utapi@sgsits.ac.in
²Corresponding author, Email: r.tiwari28@yahoo.com

Received 6 June 2015; accepted 5 July 2015

Abstract. The purpose of this paper is to study the properties of q-open sets and q-closed sets and introduce q-continuous function in quad topological spaces (q-topological spaces).

Keywords: quad topological spaces, q-open sets, q-interior, q-closure, q-continuous function.

AMS Mathematics Subject Classification (2010): 54A40

1. Introduction

The concept of bitopological spaces was introduced by Kelly [2] as an extension of topological spaces in 1963. A nonempty set X with two topologies is called bitopological spaces. The study of tri-topological spaces was first initiated by Kovar [3] in 2000, where a non empty set X with three topologies is called tri-topological spaces. Biswas [1] defined some mapping in topological spaces. tri α Continuous Functions and tri β continuous functions introduced by Palaniammal [5] in 2011. Mukundan [4] introduced the concept on topological structures with four topologies, quad topology (4-tuple topology) and defined new types of open (closed) sets. In year 2011, Sweedy and Hassan [6] defined δ**-continuous function in tritopological space. In this paper, we study the properties of q-open sets and q-closed sets and q-continuous function in quad topological space (q-topological spaces).

2. Preliminaries

Definition 2.1.[4] Let X be a nonempty set and T₁, T₂, T₃ and T₄ are general topologies on X. Then a subset A of space X is said to be quad-open (q-open) set if A ⊆ T₁ ∪ T₂ ∪ T₃ ∪ T₄ and its complement is said to be q-closed and set X with four topologies called q-topological spaces (X, T₁, T₂, T₃, T₄). q-open sets satisfy all the axioms of topology.

Note 2.2.[4] We will denote the q-interior (resp. q-closure) of any subset, say of A by q-intA (q-clA), where q-intA is the union of all q-open sets contained in A, and q-clA is the intersection of all q-closed sets containing A.

3. Properties of q-open and q-closed sets

Theorem 3.1. Arbitrary union of q-open sets is q-open.
Proof: Let {Aₐ / α ∈ I} be a family of q-open sets in X.
For each $\alpha \in I$, $A_\alpha \subset T_1 \cup T_2 \cup T_3 \cup T_4$. Therefore, $\bigcup A_\alpha \subset T_1 \cup T_2 \cup T_3 \cup T_4$. (by definition of q-open sets). Therefore $\bigcup A_\alpha$ is q-open.

Theorem 3.2. Arbitrary intersection of q-closed sets is q-closed.

Proof: Let $\{B_\alpha / \alpha \in I\}$ be a family of q-closed sets in X. Let $A_\alpha = \overline{B_\alpha \cap \{A_\alpha / \alpha \in I\}}$ be a family of q-open sets in X. Arbitrary union of q-open sets is q-open. Hence $\bigcup A_\alpha$ is q-open and hence $(\bigcup A_\alpha)^c$ is q-closed i.e $\bigcap A_\alpha$ is q-closed. Hence arbitrary intersection of q-closed sets is q-closed.

Definition 3.3. [4] Let (X, T, T, T) be a q-topological space. Let $A \subset X$, an element $x \in A$ is called q-interior point of A, if \exists a q-open set \overline{A} such that $x \in \overline{A}$.

Definition 3.4 [4] The set of all q-interior points of $A \subset A$ is called q-interior of A and is denoted as $q-int A$.

Note 3.5. (1) $q-int A \subset A$.
(2) $q-int A$ is q-open.
(3) $q-int A$ is the largest q-open set contained in A.

Theorem 3.6. Let (X, T, T, T, T) be a q-topological space. Let $A \subset X$ then A is q-open iff $A = q-int A$.

Proof: A is q-open and $A \subset A$. Therefore, $A \in \{B / B \subset A, B$ is q-open\} A is in the collection and every other member in the collection is a subset of A and hence the union of this collection is A. Hence $\bigcup \{B / B \subset A, B$ is q-open\} = A and hence $q-int A = A$.

Conversely, since $q-int A$ is q-open, $A = q-int A$ implies that A is q-open.

Theorem 3.7. $q-int (A \cup B) \supset q-int A \cup q-int B$

Proof: $q-int A \subset A$ and q-int A is q-open.

$q-int B \subset B$ and q-int B is q-open.

Union of two q-open sets is q-open and hence $q-int A \cup q-int B$ is a q-open set. Also $q-int A \cup q-int B \subset A \cup B$.

$q-int A \cup q-int B$ is one q-open subset of $A \cup B$ and $q-int (A \cup B)$ is the largest q-open subset of $A \cup B$.

Hence, $q-int (A \cup B) \supset q-int A \cup q-int B$.

Definition 3.8. [4] Let (X, T, T, T, T) be a quad topological space and let $A \subset X$. The intersection of all q-closed sets containing A is called the q-closure of A & denoted by $q-cl A$. $q-cl A = \bigcap \{B / B \supset A, B$ is tri a closed\}.

Note 3.9. Since intersection of q-closed sets is q-closed, q-cl A is a q-closed set.

Note 3.10. q-cl A is the smallest q-closed set containing A.
q-Continuous Function in Quad Topological Spaces

Theorem 3.11. A is q-closed iff \(A = q - cl A \).

Proof: \(q - cl A = \cap \{ B / B \owns A, B \text{ is q-closed} \} \).

If A is a q-closed then A is a member of the above collection and each member contains A. Hence their intersection is A. Hence \(q - cl A = A \). Conversely if \(A = q - cl A \), then A is q-closed because q-cl A is a q-closed set.

Theorem 3.12. Let \((X, T_1, T_2, T_3, T_4)\) be a quad topological space for any \(A \subseteq X \).

\[(q - int A)^C = q - cl A^C.\]

Proof:
\[
\begin{align*}
(q - int A)^C &= \cup \{ G / G \subseteq A \text{ and } G \text{ is } q - \text{open} \}^C \\
&= \cap \{ G^C / G^C \owns A^C \text{ and } G^C \text{ is } q - \text{closed} \} \\
&= \cap \{ F = G^C / F \owns A^C \text{ and } F \text{ is } q - \text{closed} \} \text{ where } F = G^C \\
&= q - cl A^C.
\end{align*}
\]

Definition 3.13. Let \(A \subseteq X \), be a quad topological space. \(x \in X \) is called a q-limit point of A, if every q-open set U containing x, intersects \(A - \{x\} \). (i.e.) every q-open set containing x, contains a point of A other than x.

Example 3.14. Let \(X = \{a, b, c\} \), \(T_1 = \{\emptyset, \{a\}, \{a, b\}, X\} \), \(T_2 = \{\emptyset, \{a\}, X\} \), \(T_3 = \{\emptyset, \{a\}, \{a, c\}, X\} \), \(T_4 = \{\emptyset, \{a, b\}, \{a, c\}\} \).

q-open sets are \(\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\} \).

Consider A = \{a, c\}. Then b is a q-limit point of A.

Definition 3.15. Let \(A \subseteq X \). The set of all q-limit points of A is called the q-derived set of A and is denoted as \(q - D(A) \).

Theorem 3.16. \(q - cl A = A \cup q - D(A) \).

Proof: Let \(x \in q - cl A \). If \(x \in cl A \), then \(x \in A \cup q - D(A) \). If \(x \not\in A \), then we claim that \(x \) is a q-limit point of \(A \). Let \(U \) be a q-open set containing \(x \). Suppose \(U \cap A = \emptyset \).

Then \(A \subseteq U^c \) and \(U^c \) is q-closed and hence \(q - cl A \subseteq U^c \). This implies \(x \in U^c \). Therefore every q-open set \(U \) containing \(x \) intersects \(A - \{x\} \).

Hence \(x \in q - D(A) \) and \(x \in A \cup q - D(A) \). Therefore \(q - cl A \subseteq A \cup q - D(A) \). Conversely, it is clear that \(A \subseteq q - cl A \). It is enough to prove \(q - D(A) \subseteq q - cl A \).

Let \(x \in q - D(A) \). If \(x \in A \) then it is true. So let us take \(x \not\in A \). Now we have to prove that \(x \) is an q-closed set containing A. Suppose not, \(x \not\in B \) where B is a q-closed set containing A. \(B \owns A \). Now \(x \in B^c \). \(B^c \) is q-open and \(B^c \cap A = \emptyset \). Contradiction to the fact that \(x \) is a q-limit point of A. Hence \(x \in q - cl A \). Therefore \(x \in q - cl A \).

Hence \(q - cl A = A \cup q - D(A) \).

4. q-continuous function

Definition 4.1. Let \((X, T_1, T_2, T_3, T_4)\) and \((Y, T_1', T_2', T_3', T_4')\) be two quad topological spaces. A function \(f : X \to Y \) is called q-continuous function if \(f^{-1}(V) \) is q-open in \(X \) for every q-open set \(V \) in \(Y \).
Example 4.2. Let $X = \{1, 2, 3, 4\}$, $T_1 = \emptyset, \{1\}, X$, $T_2 = \emptyset, \{1, 3\}, X$.

$T_2 = \emptyset, \{1\}, \{1, 2\}, X$, $T_4 = \emptyset, \{4\}, \{1, 4\}, X$

Let $Y = \{a, b, c, d\}$, $T_1' = \emptyset, \{a\}, Y$, $T_2' = \emptyset, \{a\}, \{a, b\}, Y$, $T_3' = \emptyset, \{a, b\}, \{a, d\}, Y$

Let $f : X \to Y$ be a function defined as $f(1) = a; f(2) = b; f(3) = c; f(4) = d$.

q-open sets in (X, T_1, T_2, T_3, T_4) are $\emptyset, \{1\}, \{1, 2\}, \{1, 3\}, \{4\}, \{1, 4\}, X$.

q-open sets in $(Y, T_1', T_2', T_3', T_4')$ are $\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{d\}, \{a, d\}, Y$.

Since $f^{-1}(V)$ is q-open in X for every q-open set V in Y, f is q-continuous.

Definition 4.3. Let X and Y be two q-topological spaces. A function $f : X \to Y$ is said to be q-continuous at a point $a \in X$ if for every q-open set V containing $f(a)$, \exists a q-open set U containing a, such that $f(U) \subset V$.

Theorem 4.4. $f : X \to Y$ is q-continuous iff f is q-continuous at each point of X.

Proof: Let $f : X \to Y$ be q-continuous.

Take any $a \in X$. Let V be a q-open set containing $f(a)$.

$f : X \to Y$ is q-continuous, since $f^{-1}(V)$ is q-open set containing a.

Let $U = f^{-1}(V)$. Then $f(U) \subset V \Rightarrow \exists$ a q-open set U containing a and $f(U) \subset V$.

Hence f is q-continuous at a.

Conversely, suppose f is q-continuous at each point of X.

Let V be a q-open set of Y. If $f^{-1}(V) = \emptyset$ then it is q-open.

Take any $a \in f^{-1}(V)$ f is q-continuous at a.

Hence $\exists U_a$, q-open set containing a and $f(U_a) \subset V$.

Let $U = U \cup \{U_a / a \in f^{-1}(V)\}$.

Claim: $U = f^{-1}(V)$.

$a \in f^{-1}(V) \Rightarrow U_a \subset U \Rightarrow a \in U$.

$x \in U \Rightarrow x \in U_a$ for some $a \Rightarrow f(x) \in V \Rightarrow x \in f^{-1}(V)$. Hence $U = f^{-1}(V)$.

Each U_a is q-open. Hence U is q-open. $f^{-1}(V)$ is q-open in X.

Hence f is q-continuous.

Theorem 4.5. Let (X, T_1, T_2, T_3, T_4) and $(Y, T_1', T_2', T_3', T_4')$ be two q-topological spaces. Then $f : X \to Y$ is q-continuous function iff $f^{-1}(V)$ is q-closed in X whenever V is q-closed in Y.

Proof: Let $f : X \to Y$ be q-continuous function.

Let V be any q-closed in Y.

V^c is tri a open in Y $\Rightarrow f^{-1}(V^c)$ is q-open in X.

$[f^{-1}(V)]^c$ is q-open in X.

$f^{-1}(V)$ is q-closed in X.

Hence $f^{-1}(V)$ is q-closed in X whenever V is q-closed in Y.

Conversely, suppose $f^{-1}(V)$ is q-closed in X whenever V is q-closed in Y.

V is a q-open set in Y.

V^c is q-closed in Y.

120
q-Continuous Function in Quad Topological Spaces

⇒ \(f^{-1}(V^c) \) is tri α closed in X.
⇒ \([f^{-1}(V)]^c\) is q-closed in X.
⇒ \(f^{-1}(V) \) is q-open in X.

Hence \(f \) is q-continuous.

Theorem 4.6. Let \((X,T_1,T_2,T_3,T_4)\) and \((Y,T'_1,T'_2,T'_3,T'_4)\) be two q-topological spaces. Then, \(f : X \rightarrow Y \) is q-continuous iff \(f[q - cl(A)] \subseteq q - cl(f(A)) \forall A \subseteq X \).

Proof: Suppose \(f : X \rightarrow Y \) is q-continuous. Since \(q - cl(f(A)) \) is q-closed in Y. Then by theorem (4.5) \(f^{-1}(q - cl(f(A))) \) is q-closed in X.

\[
q - cl[f^{-1}(q - cl(f(A))] = f^{-1}(q - cl(f(A)).
\]

Now : \(f(A) \subseteq q - cl(f(A)) \subseteq f^{-1}(q - cl(f(A)).
Then \(q - cl(A) \subseteq q - cl[f^{-1}(q - cl(f(A))] = f^{-1}(q - cl(f(A))) \) by (1)

Then \(f(q - cl(f(A))) \subseteq q - cl(f(A)) \).
Conversely, let \(f(q - cl(f(A))) \subseteq q - cl(f(A)) \forall A \subseteq X \).

Let \(F \) be q-closed set in Y., so that \(q - cl(F) = F \).

Now \(f^{-1}(F) \subseteq X \).

By hypothesis, \(f(q - cl(F)) \subseteq q - cl(f^{-1}(F)) \)

Therefore \(q - cl(f^{-1}(F)) \subseteq f^{-1}(F). \)

But \(f^{-1}(F) \subseteq q - cl(f^{-1}(F)) \) always.

Hence \(q - cl(f^{-1}(F)) = f^{-1}(F) \) and so \(f^{-1}(F) \) is q-closed in X.

Hence by theorem (4.5) \(f \) is q-continuous.

5. q-Homomorphism

Definition 5.1. Let \((X,T_1,T_2,T_3,T_4)\) and \((Y,T'_1,T'_2,T'_3,T'_4)\) be two q-topological spaces. A function \(f : X \rightarrow Y \) is called q-open map if \(f(V) \) q-open in Y for every q-open set \(V \) in X.

Example 5.2. In example 4.2 \(f \) is q- open map also.

Definition 5.3. Let \((X,T_1,T_2,T_3,T_4)\) and \((Y,T'_1,T'_2,T'_3,T'_4)\) be two q-topological spaces .Let \(f : X \rightarrow Y \) be a mapping . \(f \) is called q-closed map if \(f(F) \) is q-closed in Y for every q-closed set \(F \) in X.

Example 5.4. The function \(f \) defined in the example 4.2 is q-closed map.

Result 5.5. Let \(X \) & \(Y \) be two q-topological spaces. Let \(f : X \rightarrow Y \) be a mapping. \(f \) is q-continuous iff \(f^{-1} \) is q-open map.

Definition 5.6. Let \((X,T_1,T_2,T_3,T_4)\) and \((Y,T'_1,T'_2,T'_3,T'_4)\) be two q-topological spaces. Let \(f : X \rightarrow Y \) be a mapping . \(f \) is called a q-homeomorphism.

If (i) \(f \) is a bijection.
(ii) \(f \) is q-continuous.
(iii) \(f^{-1} \) is q-continuous.

Example 5.7. The function \(f \) defined in the example 4.2 is
(i) a bijection. (ii) \(f \) is q-continuous. (iii) \(f^{-1} \) is q-continuous.

Therefore \(f \) is a q-homeomorphism.
6. Conclusion
In this paper, the idea of q-continuous function in quad topological spaces were introduced and studied. Also properties of q-open and q-closed sets were studied.

REFERENCES