Annals of Pure and Applied Mathematics

Vol. 10, No.2, 2015, 165-167

ISSN: 2279-087X (P), 2279-0888(online) Published on 13 September 2015

www.researchmathsci.org

Annals of
Pure and Applied
Mathematics

Quadratic form of Subgroups of a finite Abelian p-Group of Rank Two

Narender Kumar¹, Amit Sehgal², Sarita Sehgal³ and P.K. Sharma⁴

¹Govt. College for Women, Rohtak, Haryana, India-124001

²Govt. College, Birohar (Jhajjar), Haryana, India-124106

³Govt. College for Women Matanhail (Jhajjar), India-124106

⁴D.A.V. College, Jalandhar City, Punjab, India-144001

¹nkhooda1970@gmail.com

²amit_sehgal_iit@yahoo.com

³sehgalsarita7@gmail.com

⁴pksharma@davjalandhar.com

Received 23 August 2015; accepted 10 September 2015

Abstract. Formula for the number of subgroups of a finite abelian group of rank two is already determined. We can associate a quadratic from with finite abelian group of rank two. We prove this quadratic form is positive definite.

Keywords: subgroups, Euler's function, number of divisor, quadratic form, positive definite matrix.

AMS Mathematics Subject Classification (2010): 20K27, 15A63

1. Introduction

One of the famous problems in group theory is to find the number of subgroups of an abelian group. In [1], an explicit formula for the number of subgroups of a finite abelian group of rank two is indicated. The number f(m, n) distinct subgroups of group $Z_{p^m} \times Z_{p^n}$ with $m,n \in N \cup \{0\}$, can be associated with quadratic form. Our goal of our paper is to show that the quadratic form is positive definite

In [1], authors provides the formula for total number of subgroups of Group $Z_{p^m} \times Z_{p^n}$ are $\sum_{q \mid (p^m, p^n)} \tau\left(\frac{p^m}{q}\right) \tau\left(\frac{p^n}{q}\right) \varphi(q)$. For Simplification of $q \mid (p^m, p^n)$, one can say that q is some power of p (say p^r), then above result can be rewritten as $\sum_{r=0}^{\min\{m,n\}} \tau(p^{m-r}) \tau(p^{n-r}) \varphi(p^r)$.

2. Main results

Let us consider the matrix $A_n = (a_{ij}) \in M_{n+1}(N)$ defined by $a_{ij} = f(i,j) \forall i,j = 0,1,2,...,n$. Clearly, A_n is symmetric and so it induces quadratic form $\sum_{i,j=0}^{n} a_{ij} x^i y^j$. Now we compute the principal minors in the top left corner of A_n for this we have to find an explicit expression for det (A_k) for all k = 0,1,2,...,n.

Theorem 1. For each $0 \le k \le n$, the following equality hold

Narender Kumar, Amit Sehgal, Sarita Sehgal and P.K. Sharma

$$\det(A_k) = \prod_{i=0}^k \varphi(p^k).$$

Proof: Let $k \in \{0,1,2,...,n\}$ be fixed. Use of Theorem 1, the determinant $det(A_k)$ is

given by:
$$\det \left(\sum_{r=0}^{\min\{i,j\}} \tau(p^{i-r}) \tau(p^{j-r}) \varphi(p^r) \right)_{i,j=\overline{0,k}}$$

Hence, for a fixed $s \in \{0,1,2,...,k\}$, the line L_s of A_k is the following form: $L_s =$

$$\begin{array}{ll} (\tau(p^s)\tau(p^0)\varphi(1) & \sum_{r=0}^{\min\{s,1\}}\tau(p^{s-r})\,\tau(p^{1-r})\varphi(p^r) & \sum_{r=0}^{\min\{s,2\}}\tau(p^{s-r})\,\tau(p^{2-r})\varphi(p^r) \\ \dots & \dots \sum_{r=0}^{\min\{s,k\}}\tau(p^{s-r})\,\tau(p^{k-r})\varphi(p^r)). \end{array}$$

We shall apply transformations on the matrix A_k in order to put it into upper triangular matrix form. So, we consider consecutive transformations $L_t = L_t - (t+1)L_0$ for every $= \overline{1,k}$.

One obtains that

$$L_{0} = (\tau(p^{0})\tau(p^{0})\varphi(1) \quad \tau(p^{1})\tau(p^{0})\varphi(1) \quad \tau(p^{2})\tau(p^{0})\varphi(1) \dots \quad \tau(p^{k})\tau(p^{0})\varphi(1))$$

$$L_{s} = (0 \quad \tau(p^{0})\tau(p^{0})\varphi(p) \quad \sum_{r=1}^{\min\{s,2\}} \tau(p^{s-r}) \tau(p^{2-r})\varphi(p^{r}) \dots$$

 $\sum_{r=1}^{\min\{s,k\}} \tau(p^{s-r}) \tau(p^{k-r}) \varphi(p^r)) \forall s=1,2,...,k.$

Now we apply consecutive transformations $L_t = L_t - (t)L_1$ for every $t = \overline{2, k}$. One obtains that

$$L_{0} = (\tau(p^{0})\tau(p^{0})\varphi(1) \quad \tau(p^{1})\tau(p^{0})\varphi(1) \quad \tau(p^{2})\tau(p^{0})\varphi(1) \dots \quad \tau(p^{k})\tau(p^{0})\varphi(1))$$

$$L_{1} = (0 \qquad \qquad \tau(p^{0})\tau(p^{0})\varphi(p) \quad \tau(p^{1})\tau(p^{0})\varphi(p) \dots \quad \tau(p^{k-1})\tau(p^{0})\varphi(p))$$

$$L_{s} = (0 \qquad \qquad 0 \qquad \qquad \tau(p^{s-2})\tau(p^{0})\varphi(p^{s}) \dots$$

$$\sum_{r=2}^{\min\{s,k\}} \tau(p^{s-r}) \, \tau(p^{k-r}) \varphi(p^r)) \, \forall \text{ s=2,...,k.}$$

So, after k steps of above algorithm continue this process, we get

$$\begin{array}{lllll} L_0 = (\tau(p^0)\tau(p^0)\varphi(1) & \tau(p^1)\tau(p^0)\varphi(1) & \tau(p^2)\tau(p^0)\varphi(1) & \dots & \tau\bigl(p^k\bigr)\tau(p^0)\varphi(1)) \\ L_1 = (0 & \tau(p^0)\tau(p^0)\varphi(p) & \tau(p^1)\tau(p^0)\varphi(p) & \dots & \tau\bigl(p^{k-1}\bigr)\tau(p^0)\varphi(p)) \\ L_2 = (0 & 0 & \tau(p^0)\tau(p^0)\varphi(p^2) & \dots & \tau\bigl(p^{k-2}\bigr)\tau(p^0)\varphi(p^2) \end{array})$$

$$L_k = (0 \qquad 0 \qquad 0 \qquad \dots \quad \tau(p^0)\tau(p^0)\varphi(p^k))$$

Hence

$$\det(A_k) =$$

$$\begin{bmatrix} \tau(p^0)\tau(p^0)\varphi(1) & \tau(p^1)\tau(p^0)\varphi(1) & \tau(p^2)\tau(p^0)\varphi(1) & \dots & \tau(p^k)\tau(p^0)\varphi(1) \\ 0 & \tau(p^0)\tau(p^0)\varphi(p) & \tau(p^1)\tau(p^0)\varphi(p) & \dots & \tau(p^{k-1})\tau(p^0)\varphi(p) \\ 0 & 0 & \tau(p^0)\tau(p^0)\varphi(p^2) & \dots & \tau(p^{k-2})\tau(p^0)\varphi(p^2) \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \tau(p^0)\tau(p^0)\varphi(p^k) \end{bmatrix}$$

 $=\prod_{i=0}^k \varphi(p^k).$

Now, the following two corollaries are obvious from Theorem 1.

Corollary 1. The quadratic form $\sum_{i,j=0}^{n} f(i,j)x^{i}y^{j}$ induced by the matrix A_{k} is positive definite, for all $k \in \mathbb{N}$.

Corollary 2. For each $k \in \mathbb{N}$, all eigenvalues of the matrix A_k are positive.

REFERENCES

- 1. A.Sehgal and Y.Kumar, On number of subgroups of finite abelian $Z_m \otimes Z_n$, International Journal of Algebra, 7(19) (2013) 915-923.
- 2. A.Sehgal, S.Sehgal, and P.K.Sharma, The number of subgroup of a finite abelian p-group of rank two, *Journal for Algebra and Number Theory Academia*, 5(1) (2015) 23-31.
- 3. L.Bentea and M.Tarnauceanu, A note on the number of fuzzy subgroups of finite groups, *An. Stiint. Univ. Al. I. Cuza Ias, Ser. Noua, Mat.*, 54(1) (2008) 209-220.