Common Fixed Point Theorems for Weakly Compatible Mapping Satisfying Generalized Contraction Principle in Complete G-Metric Spaces

N. Surender¹ and B. Krishna Reddy²

¹,²Department of Mathematics, University College of Science
Osmania University, Hyderabad
¹Email: surender_sri2002@yahoo.co.in; ²Email: bkrbkr_07@yahoo.com

Received 11 September 2015; accepted 28 September 2015

Abstract. In this paper, we study some common fixed point results for weakly compatible mapping satisfying Generalized Contraction Principle in G-metric space by using a control function.

Keywords: Common fixed point, weakly compatible, generalized weak contraction, Altering distance function, control function.

AMS Mathematics Subject Classification (2010): 54H25

1. Introduction

Some generalizations of the notion of a metric space have been proposed by some authors. Gahler [1,2] coined the term of 2-metric spaces. This is extended to D-metric space by Dhage (1992) [3, 4]. Dhage proved many fixed point theorems in D-metric space. In 2006, Mustafa in collaboration with Sims introduced a new notion of generalized metric space called G-metric space [5]. In fact, Mustafa et al. studied many fixed point results for a self mapping in G-metric spaces under certain conditions; see [5, 6, 7, 8, 9].

2. Definitions and preliminaries

Definition 2.1. (Altering Distance Function [see 10]) A mapping $f: [0, \infty) \to [0, \infty)$ is called an Altering Distance Function if the following properties are satisfied.

(a) f is continuous and non-decreasing.

(b) $f(t) = 0$ if and only if $t = 0$.

Definition 2.2. (Control Function [see 10]) A Control Function ϕ is defined as $\phi: R^+ \to R^+$ which is continuous at zero, monotonically increasing and $\phi(t) = 0$ if and only if $t = 0$.

Definition 2.3. [5] Let X be a non empty set, and let $G: X \times X \times X \to [0, \infty)$ be a function satisfying the following axioms

$(G1) \ G(x, y, z) = 0$ if $x = y = z$,
(G2) $G(x, x, y) > 0$ for all $x, y \in X$, with $x \neq y$.
(63) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$, with $y \neq z$.
(64) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \ldots$ (symmetry in all three variables)
(65) $G(x, y, z) \leq G(x, a, a) + G(a, y, x)$, for all $x, y, z, a \in X$ (rectangular inequality)

Then the function G is called a generalized metric, or more specially a G-metric on X, and the pair (X, G) is called a G-metric space.

Example 1.1. Let (X, d) be a usual metric space. Then (X, G_{δ}) and (X, G_{m}) are G-metric spaces, where

$$G_{\delta}(x, y, z) = d(x, y) + d(y, z) + d(x, z)$$

for all $x, y, z \in X$ and

$$G_{m}(x, y, z) = \max \{d(x, y), d(y, z), d(x, z)\}$$

for all $x, y, z \in X$.

Definition 2.4. [5] Let (X, G) and (X', G') be G-metric spaces and let $f: (X, G) \to (X', G')$ be a function, then f is said to be G-continuous at a point $a \in X$ if given $\varepsilon > 0$ there exist $\delta > 0$ such that $x, y \in X, G(a, x, y) < \delta$ implies that $G'(fa, fx, fy) < \varepsilon$. A function f is G-continuous on X if and only if it is G-continuous at all $a \in X$.

Definition 2.5. [5] Let (X, G) be a G-metric space, and let $\{x_n\}$ be a sequence of points of X, then we say that $\{x_n\}$ is G-convergent to x if $\lim_{n,m \to \infty} G(x, x_n, x_m) = 0$: that is, for any $\varepsilon > 0$, there exist $N \in N$ such that $G(x, x_n, x_m) < \varepsilon$ for all $n, m \geq N$. We call x the limit of the sequence $\{x_n\}$ and we write $x_n \to x$ as $n \to \infty$ or $\lim_{n \to \infty} x_n = x$.

Proposition 2.6. [5] Let (X, G) and (X', G') be metric spaces, then a function $f: X \to X'$ is said to be G-continuous at a point $x \in X$ if and only if it is G-sequentially continuous, that is, whenever $\{x_n\}$ is G-convergent to x, $\{fx_n\}$ is G'-convergent to $f(x)$.

Proposition 2.7. [5] Let (X, G) be a G-metric space. Then the following statements are equivalent

(a) $\{x_n\}$ is G-convergent to x.
(b) $G(x_n, x, x) \to 0$ as $n \to \infty$.
(c) $G(x_n, x, x) \to 0$ as $n \to \infty$.
(d) $G(x_n, x_m, x) \to 0$ as $n \to \infty$.

Proposition 2.8. [5] Let (X, G) be a G-metric space. A sequence $\{x_n\}$ is called G-cauchy sequence if given $\varepsilon > 0$, there is $N \in N$ such that $G(x_n, x_m, x_l) < \varepsilon$ for all $n, m, l \geq N$; that is if $G(x_n, x_m, x_l) \to 0$ as $n, m, l \to \infty$.

Proposition 2.9. [5] In a G-metric space (X, G), the following two statements are equivalent.

(1) The sequence $\{x_n\}$ is G-cauchy.
(2) For every $\varepsilon > 0$, there exist $N \in N$ such that $G(x_n, x_m, x_l) < \varepsilon$ for all $n, m \geq N$.
Common Fixed Point Theorems for Weakly Compatible Mapping Satisfying …

Definition 2.10. [5] A G-metric space (X, G) is said to be G-complete (or a complete G-metric space) if every G-Cauchy sequence in (X, G) is G-convergent in (X, G).

Proposition 2.11. [5] Let (X, G) be a G-metric space. Then the function $G(x, y, z)$ is jointly continuous in all three of its variables.

Definition 2.12. [5] A G-metric space (X, G) is called a symmetric G-metric space if $G(x, y, z) = G(y, x, z)$ for all $x, y, z \in X$.

Proposition 2.13. [5] Every G-metric space (X, G) defines a metric space (X, d_G) by $d_G(x, y, z) = G(x, y, z)$ for all $x, y, z \in X$.

Note that, if (X, G) is a symmetric space G-metric space, then

$\frac{2}{3} G(x, y, z) \leq d_G(x, y, z) \leq 3 G(x, y, z)$

for all $x, y \in X$.

In general, these inequalities cannot be improved.

Proposition 2.14. [5] A G-metric space (X, G) is G-complete if and only if (X, d_G) is a complete metric space.

Definition 2.16. Two self maps T and f of a G-Metric Space (X, G) are said to be weakly compatible if $Tf(x) = fTx$ whenever $fx = Tx$ for all $x \in X$.

Definition 2.17. Let T and f be two self maps of a non empty subset M of a metric space X. The mapping T is called f-contraction mapping, if there exist a real number $0 \leq k < 1$ such that $G(Tx, Ty, Tz) \leq k G(fx, fy, fz)$ for all $x, y, z \in M$.

Definition 2.18. A mapping $T : X \rightarrow X$, where (X, G) is a G-metric space, is said to be a weak contraction if

$G(Tx, Ty, Tz) \leq G(x, y, z) - \Phi(G(x, y, z))$

where $x, y, z \in X$ and $\Phi: [0, \infty) \rightarrow [0, \infty)$ is continuous and non-decreasing function such that $\Phi(t) = 0$ if and only if $t = 0$.

Theorem 2.19. [11] Let (X, G) be a complete G-metric space and $T : X \rightarrow X$ be a mapping satisfying

$G(Tx, Ty, Tz) \leq G(x, y, z) - \Phi(G(x, y, z))$,

181
N. Surender and B. Krishna Reddy

for all \(x, y, z \in X \). If \(\emptyset \colon [0, \infty) \to [0, \infty) \) is a continuous and non decreasing function with
\(\emptyset(t) = 0 \) if and only if \(t = 0 \), then \(T \) has a unique fixed point in \(X \).

Definition 2.20. A self mapping \(T \) of a metric space \((X, G)\) is said to be \textbf{Weakly Contractive with respect to a self mapping} \(f \colon X \to X \) if for all \(x, y, z \in X \)
\[
G(Tx, Ty, Tz) \leq G(fx, fy, fz) - \emptyset(G(fx, fy, fz)).
\]
where \(\emptyset \colon [0, \infty) \to [0, \infty) \) is a continuous and non-decreasing function such that \(\emptyset \) is positive on \((0, \infty) \), \(\emptyset(0) = 0 \), \(\lim_{t \to \infty} \emptyset(t) = \infty \).

Note 2.1. If \(I \), the identity mapping, then the above definition is as follows. A self mapping \(T \) of a metric space \((X, G)\) is said to be Weakly Contractive with respect to a self mapping \(f \colon X \to X \) if for all \(x, y, z \in X \)
\[
G(Tx, Ty, Tz) \leq G(x, y, z) - \emptyset(G(x, y, z)).
\]
This is a \textbf{Weakly Contractive Mapping}.

Note 2.2. Combining the generalization of Contraction Principle and Weakly Contractive Mapping with respect to a self map in G-Metric Space we can obtain the following result.

Theorem 2.21. Let \((X, G)\) be a complete G-Metric Space and a self map \(T \colon X \to X \) be weakly contractive mapping with respect to a self mapping \(f \colon X \to X \) if for all \(x, y, z \in X \) and \(T \colon X \to X \) is satisfying
\[
\varphi(G(Tx, Ty, Tz)) \leq \varphi(G(fx, fy, fz)) - \emptyset(G(fx, fy, fz))
\]
where \(\emptyset \colon [0, \infty) \to [0, \infty) \), \(\varphi \colon [0, \infty) \to [0, \infty) \) are continuous and monotone non-decreasing functions with \(\varphi(t) = 0 = \emptyset(t) \) if and only if \(t = 0 \), then \(T \) has a unique fixed point.

Theorem 2.22. [see 12] Let \(T \) and \(f \) be self maps of a G - metric space \((X, G)\) satisfying
\[
\varphi(d(Tx, Ty)) \leq \varphi(M(x, y)) - \emptyset(M(x, y))
\]
for all \(x, y \in X \) where
\[
M(x, y) = \max \{d(fx, fy), d(fx, Tx), d(fy, Ty), \frac{1}{\xi}(d(fy, Tx) + d(fx, Ty))\}
\]
and \(\emptyset, \varphi \colon [0, \infty) \to [0, \infty) \) are both continuous monotone non-decreasing functions with
\[
\varphi(t) = 0 = \emptyset(t) \text{ if and only if } t = 0.
\]
If \(TX \) is complete metric space and \(TX \subset fx \), then \(T \) and \(f \) have coincidence point in \(X \). Further, if \(T \) and \(f \) are weakly compatible, then they have a unique common fixed point in \(X \).

Motivated by the above result, we address the same question on G -metric space for weakly compatible mappings satisfying a Generalized Contraction Principle condition given by (1), we establish a fixed point results in the third part of the paper. Our results are the following.

3. \textbf{Main results}

Theorem 3.1: let \(T \) and \(f \) be self maps of a complete G -metric space \((X, G)\) satisfying
\[
\varphi(G(Tx, Ty, Tz)) \leq \varphi(M(x, y, z)) - \emptyset(M(x, y, z))
\]
for all \(x, y, z \in X \) where
\[
M(x, y, z) = \max \{G(fx, fy, fz), G(fx, Tx, Tx), G(fy, Ty, Ty), G(fz, Tz, Tz),
\]
\[
\frac{1}{\xi} (G(fy, Tx, Tx) + G(fx, Ty, Ty)) + \frac{1}{\xi} (G(fz, Ty, Ty) + G(fy, Tz, Tz))
\]

182
Common Fixed Point Theorems for Weakly Compatible Mapping Satisfying …

\[(G(fx, Tx, Tz) + G(fz, Tx, Tx)) \]

(3)

and \(\emptyset, \phi: [0, \infty) \to [0, \infty) \) are both continuous monotone non-decreasing functions with \(\phi(t) = 0 = \emptyset(t) \) if and only if \(t = 0 \). If \(TX \) is complete metric space and \(TX \subset fX \), then \(T \) and \(f \) have coincidence point in \(X \). Further, if \(T \) and \(f \) are weakly compatible, then they have a unique common fixed point in \(X \).

Proof: let \(x_0 \) be an arbitrary point. Construct the sequence \(\{x_n\} \) such that

\[f x_n = T x_{n-1} \text{ for } n = 1, 2, 3, \ldots \ldots \ldots \]

(4)

this is possible since \(TX \subset fX \).

Now

\[\phi(G(Tx_n, Tx_{n+1}, Tx_{n+1})) \leq \phi(M(x_n, x_{n+1}, x_{n+1})) - \emptyset(M(x_n, x_{n+1}, x_{n+1})) \]

(5)

where

\[M(x_n, x_{n+1}, x_{n+1}) = \max \{ G(fx_n, x_{n+1}, f x_{n+1}), G(fx_n, Tx_n, Tx_n), G(f x_{n+1}, Tx_{n+1}, Tx_{n+1}) \} \]

\[\leq \frac{1}{3} G(fx_n, x_{n+1}, f x_{n+1}) + \frac{1}{3} G(fx_n, Tx_n, Tx_n) + \frac{1}{3} G(f x_{n+1}, Tx_{n+1}, Tx_{n+1}) \]

(6)

From (5) and (6), we have

\[\phi(G(Tx_n, Tx_{n+1}, Tx_{n+1})) \leq \phi(M(x_n, x_{n+1}, x_{n+1})) \leq \phi(G(Tx_n, Tx_{n+1}, Tx_{n+1})) \]

(7)

This implies

\[\phi(G(Tx_n, Tx_{n+1}, Tx_{n+1})) \leq \phi(G(Tx_n, Tx_n, Tx_n)) - \emptyset(G(Tx_n, Tx_n, Tx_n)) \]

\[\phi(G(Tx_n, Tx_{n+1}, Tx_{n+1})) \leq \phi(G(Tx_n, Tx_n, Tx_n)) \]

183
By monotone property of the function φ, we have
$$G(Tx_n, Tx_{n+1}, Tx_{n+1}) \leq G(Tx_{n-1}, Tx_{n}, Tx_{n}) \quad \text{for } n = 1, 2, 3 \ldots$$
Therefore the sequence $\{G(Tx_n, Tx_{n+1}, Tx_{n+1})\}$ is monotonic decreasing and continuous.

Therefore there exist a real number $r \geq 0$ such that
$$\lim_{n \to \infty} G(Tx_n, Tx_{n+1}, Tx_{n+1}) = r \quad (8)$$
Taking $n \to \infty$ in equation (7), we get
$$\varphi(r) \leq \varphi(r) - \varphi(r)$$
This is possible only when $r = 0$.

Therefore $\lim_{n \to \infty} G(Tx_n, Tx_{n+1}, Tx_{n+1}) = 0 \quad (9)$
Next, we claim that $\{Tx_n\}$ is a Cauchy sequence.

Assume that $\{Tx_n\}$ is not a Cauchy sequence, then there exist $\varepsilon > 0$ and subsequences $\{n(i)\}, \{m(i)\}$ such that $m(i) < n(i) < m(i + 1)$ along with
$$G(Tx_{m(i)}, Tx_{n(i)}, Tx_{n(i)}) \geq \varepsilon \quad \text{and} \quad G(Tx_{m(i)}, Tx_{n(i)-1}, Tx_{n(i)-1}) < \varepsilon \quad (10)$$
Then it follows that
$$\varepsilon \leq G(Tx_{m(i)}, Tx_{n(i)}, Tx_{n(i)}) \leq G(Tx_{m(i)}, Tx_{n(i)-1}, Tx_{n(i)-1}) + G(Tx_{n(i)-1}, Tx_{n(i)}, Tx_{n(i)})$$
$$\varepsilon \leq G(Tx_{m(i)}, Tx_{n(i)}, Tx_{n(i)}) \leq \varepsilon + G(Tx_{n(i)-1}, Tx_{n(i)}, Tx_{n(i)}) \quad (11)$$
Let $i \to \infty$ and using (9) in (11)
$$\varepsilon \leq \lim_{i \to \infty} G(Tx_{m(i)}, Tx_{n(i)}, Tx_{n(i)}) \leq \varepsilon + \lim_{i \to \infty} G(Tx_{n(i)-1}, Tx_{n(i)}, Tx_{n(i)})$$
$$\varepsilon \leq \lim_{i \to \infty} G(Tx_{m(i)}, Tx_{n(i)}, Tx_{n(i)}) \leq \varepsilon$$
Therefore $\lim_{i \to \infty} G(Tx_{m(i)}, Tx_{n(i)}, Tx_{n(i)}) = \varepsilon \quad (12)$

Now
$$G(Tx_{m(i)}, Tx_{n(i)}, Tx_{n(i)}) \leq G(Tx_{m(i)}, Tx_{m(i)-1}, Tx_{m(i)-1}) + G(Tx_{m(i)-1}, Tx_{n(i)-1}, Tx_{n(i)})$$
$$\quad + G(Tx_{n(i)-1}, Tx_{n(i)}, Tx_{n(i)})$$
$$G(Tx_{m(i)}, Tx_{n(i)}, Tx_{n(i)}) \leq 2 \quad (13)$$

(Lessing $i \to \infty$ in (13)
$$\varepsilon \leq 2(0) + \lim_{i \to \infty} G(Tx_{m(i)-1}, Tx_{n(i)-1}, Tx_{n(i)-1})$$
$$\varepsilon \leq \lim_{i \to \infty} G(Tx_{m(i)-1}, Tx_{n(i)-1}, Tx_{n(i)-1}) \quad (14)$$
Again
$$G(Tx_{m(i)-1}, Tx_{n(i)-1}, Tx_{n(i)-1}) \leq G(Tx_{m(i)-1}, Tx_{m(i)}, Tx_{m(i)})$$
$$\quad + G(Tx_{m(i)}, Tx_{n(i)-1}, Tx_{n(i)-1}) + G(Tx_{n(i)-1}, Tx_{n(i)}, Tx_{n(i)})$$
$$G(Tx_{m(i)-1}, Tx_{n(i)-1}, Tx_{n(i)-1}) \leq G(Tx_{m(i)-1}, Tx_{m(i)}, Tx_{m(i)})$$
$$\quad + G(Tx_{m(i)}, Tx_{n(i)-1}, Tx_{n(i)-1}) + 2 G(Tx_{n(i)-1}, Tx_{n(i)}, Tx_{n(i)}) \quad (15)$$
Common Fixed Point Theorems for Weakly Compatible Mapping Satisfying …

(Since \(G(x, y, z) \leq 2G(y, x, x) \))

Letting \(i \to \infty \) in (15)

\[
\lim_{i \to \infty} G(Tx_m(i-1), Tx_n(i-1), Tx_n(i-1)) \leq 0 + \varepsilon + 2(0)
\]

\[
\lim_{i \to \infty} G(Tx_m(i-1), Tx_n(i-1), Tx_n(i-1)) \leq \varepsilon
\]

(16)

From (14) & (16)

\[
\varepsilon \leq \lim_{i \to \infty} G(Tx_m(i-1), Tx_n(i-1), Tx_n(i-1)) \leq \varepsilon
\]

\[
\lim_{i \to \infty} G(Tx_m(i-1), Tx_n(i-1), Tx_n(i-1)) = \varepsilon
\]

(17)

Now using inequalities (2) and (10)

\[
\phi(\varepsilon) \leq \phi \left(G(Tx_m(i), Tx_n(i), Tx_n(i)) \right) \leq
\]

\[
\phi(M(x_m(i), x_n(i), x_n(i))) - \phi(M(x_m(i), x_n(i), x_n(i)))
\]

(18)

where

\[
M(x_m(i), x_n(i), x_n(i)) = \max \{ G(f x_m(i), f x_n(i), f x_n(i)), G(f x_m(i), Tx_m(i), Tx_m(i)), G(f x_n(i), Tx_n(i), Tx_n(i)), \}
\]

\[
\frac{1}{3} \{ G(Tx_n(i-1), Tx_m(i), Tx_m(i)) + G(Tx_n(i-1), Tx_n(i), Tx_n(i)), \}
\]

\[
\frac{1}{3} \{ G(Tx_n(i-1), Tx_m(i), Tx_m(i)) + G(Tx_n(i-1), Tx_n(i), Tx_n(i)), \}
\]

\[
\frac{1}{3} \{ G(Tx_n(i-1), Tx_m(i), Tx_m(i)) + G(Tx_n(i-1), Tx_m(i), Tx_m(i)) \}
\]

Taking \(i \to \infty \) on both sides in above equation, we obtain

\[
\lim_{i \to \infty} M(x_m(i), x_n(i), x_n(i)) = \max \{ \varepsilon, 0, 0, \leq \varepsilon \}
\]

Therefore

\[
\lim_{i \to \infty} M(x_m(i), x_n(i), x_n(i)) = \varepsilon
\]

(19)
Letting \(i \to \infty \) in (18) and using (19) in that, then we obtain
\[
\varphi(x) \leq \varphi(x) - \emptyset(x)
\]
which is a contradiction, has \(\varepsilon > 0 \). Thus \(\{Tx_n\} \) is a Cauchy Sequence in \(TX \) which in turn implies that \(\{fx_n\} \) is also Cauchy Sequence in \(X \). Since \(TX \) is complete, \(\{Tx_n\} \) converges to some \(v \in TX \).

Since \(TX \subset X \) and \(v = fu \) for some \(u \in X \), thus \(\{fx_n\} \) converges to \(fu \).

Now
\[
\lim_{n \to \infty} \varphi(G(Tx_n, Tu, Tu)) \leq \lim_{n \to \infty} [\varphi(M(x_n, u, u) - \emptyset(M(x_n, u, u))]
\]
where
\[
\lim_{n \to \infty} M(x_n, u, u) = \lim_{n \to \infty} \max \{G(x_n, fu, fu), G(fu, Tu, Tu) G(fu, Tu, Tu), \frac{1}{3} \{G(fu, Tu, Tu) + G(fu, Tu, Tu) + G(fu, Tu, Tu)\},
\]
\[
\frac{1}{3} \{G(v, Tu, Tu) + G(v, Tu, Tu) + G(v, Tu, Tu)\}, \frac{1}{3} \{G(v, Tu, Tu) + G(v, Tu, Tu) + G(v, Tu, Tu)\},
\]
\[
M(x_n, u, u) = \max \{0,0, G(v, Tu, Tu), G(v, Tu, Tu), \frac{1}{3} \{G(v, Tu, Tu) + G(v, Tu, Tu) + G(v, Tu, Tu)\},
\]
\[
\frac{1}{3} \{G(v, Tu, Tu) + G(v, Tu, Tu) + G(v, Tu, Tu)\}, \frac{1}{3} \{G(v, Tu, Tu) + G(v, Tu, Tu) + G(v, Tu, Tu)\}.
\]

Therefore \(M(x_n, u, u) = G(v, Tu, Tu) \).

By monotone increasing property of \(\varphi \) & \(\emptyset \), we have
\[
\varphi(G(v, Tu, Tu)) \leq \varphi(G(v, Tu, Tu)) - \emptyset(G(v, Tu, Tu))
\]
which is possible only when\(G(v, Tu, Tu) = 0 \).

Thus \(v = Tu = fu \) and \(u \) is the coincidence point of \(T \) and \(f \).

Since \(T \) and \(f \) are weekly compatible, they commute at their coincidence point.

Hence \(Tf u = fT u \) which implies \(Tv = f v \).

\[
(20)
\]

Now
\[
\varphi(G(Tu, Tv, Tv)) \leq \varphi(M(u, v, v)) - \emptyset(M(u, v, v)),
\]
where
\[
M(u, v, v) = \max \{G(v, v, f), G(fu, Tu, Tu), G(fu, Tu, Tu), G(v, Tu, Tu), G(v, Tu, Tu), \frac{1}{3} \{G(fu, Tu, Tu) + G(fu, Tu, Tu) + G(fu, Tu, Tu)\},
\]
\[
\frac{1}{3} \{G(fu, Tu, Tu) + G(fu, Tu, Tu) + G(fu, Tu, Tu)\}, \frac{1}{3} \{G(fu, Tu, Tu) + G(fu, Tu, Tu) + G(fu, Tu, Tu)\}.
\]

\[
M(u, v, v) = \max \{G(v, v, f), G(Tv, Tv, Tv), G(Tv, Tv, Tv), G(Tv, Tv, Tv), G(Tv, Tv, Tv), \frac{1}{3} \{G(Tv, v, v) + G(v, Tv, Tv)\}, \frac{1}{3} \{G(Tv, v, v) + G(v, Tv, Tv)\},
\]
\[
\frac{1}{3} \{G(Tv, v, v) + G(v, Tv, Tv)\}.
\]

\[
M(u, v, v) = \max \{G(v, v, f), 0,0,0, \frac{1}{3} \{G(Tv, v, v) + G(v, Tv, Tv)\}, 0,
\]
\[
\frac{1}{3} \{G(v, v, f) + G(Tv, v, v)\}.
\]

186
Common Fixed Point Theorems for Weakly Compatible Mappings Satisfying …

\[M(u,v,v) = \max\{G(v,Tv,v), \frac{1}{3}(G(Tv,v,v) + G(v,Tv,v))\} \]

\[M(u,v,v) = G(v,Tv,Tv). \]

(22)

Since \(\frac{1}{3}\{G(v,Tv,Tv) + G(Tv,v,v)\} \leq \frac{1}{3}\{2G(v,Tv,Tv) + G(v,Tv,Tv)\} \)

\[\frac{1}{3}\{G(v,Tv,Tv) + G(Tv,v,v)\} \leq G(v,Tv,Tv). \]

Hence by using (22) in (23), we get

\[\varphi(G(v,Tv,Tv) = \varphi(G(Tv,Tv,Tv) \leq \varphi(G(v,Tv,Tv)) - \varphi(G(Tv,Tv,Tv)) \]

\[\varphi(G(v,Tv,Tv) \leq \varphi(G(v,Tv,Tv)) - \varphi(G(v,Tv,Tv)) \]

This implies \(\varphi(G(v,Tv,Tv) \leq 0 \)

which is possible only when \(G(v,Tv,Tv) = 0 \).

Therefore \(v = Tv \).

Thus \(v = Tv = f v. \) (from (20))

Hence \(v \) is the common fixed point of \(T \) and \(f \).

Uniqueness:

Let \(v \) and \(w \) be two fixed points of \(T \) and \(f \).

That is \(v = Tv = f v \) and \(w = Tw = f w \).

By using inequality (4), we have

\[\varphi(G(Tv,Tw,Tw) \leq \varphi(M(v,w,w)) - \varphi(M(v,w,w)) \]

(23)

where

\[M(v,w,w) = \max\{G(v,fw,fw), G(fw,Tv,Tw), G(fw,Tw,Tw), G(fw,Tw,Tw), \]

\[\frac{1}{3}\{G(fw,Tv,Tw) + G(fw,Tw,Tw)\}, \frac{1}{3}\{G(fw,Tw,Tw) + G(fw,Tw,Tw)\} \]

\[\frac{1}{3}\{G(fw,Tw,Tw) + G(fw,Tw,Tw)\} \]

\[M(v,w,w) = \max\{G(v,w,w), 0, 0, 0, \frac{1}{3}\{G(w,v,w) + G(v,w,w)\}, 0\} \]

(24)

\[M(v,w,w) = \max\{G(v,w,w), 0, 0, 0, 0, G(w,v,v) + G(v,w,w)\} \]

\[M(v,w,w) = G(v,w,w). \]

Since \(\frac{1}{3}\{G(w,v,v) + G(v,w,w)\} \leq \frac{1}{3}\{2G(v,w,w) + G(v,w,w)\} \)

\[\frac{1}{3}\{G(w,v,v) + G(v,w,w)\} \leq G(v,w,w). \]

Hence by using (24) in (23), we get

\[\varphi(v,w,w) = \varphi(G(Tv,Tw,Tw) \leq \varphi(G(v,w,w)) - \varphi(G(v,w,w)) \]

\[\varphi(v,w,w) \leq \varphi(G(v,w,w)) - \varphi(G(v,w,w)) \]

\[\varphi(G(v,w,w) \leq 0 \]

This is possible only when \(G(v,w,w) = 0 \).

Therefore \(v = w \)

This proves the uniqueness of the common fixed point of \(T \) and \(f \).

Example 3.1. Let \(X = [0,1] \) and \(d(x,y) = |x - y| \). Define

\(G(x,y,z) = |x - y| + |y - z| + |z - x| \), then \((X,G) \) is a complete \(G \)-metric space.

Consider two self mappings \(T \) and \(f \) of \(X \) by \(Tx = \frac{x}{2} \) and \(fx = x \) for all \(x \in X \).
Let \(\varphi: [0, \infty) \rightarrow [0, \infty) \) be defined by
\[
\varphi(t) = \begin{cases}
 t + \frac{t^2}{2} & \text{if } 0 \leq t \leq 1 \\
 0 & \text{if } t > 1
\end{cases}
\] (25)
and \(\emptyset: [0, \infty) \rightarrow [0, \infty) \) defined by
\[
\emptyset(t) = \begin{cases}
 \frac{3t^2}{8} & \text{if } 0 \leq t \leq 1 \\
 0 & \text{if } t > 1
\end{cases}
\] (26)

Now to verify inequality (2), LHS of (2)
\[
\varphi(G(Tx, Ty, Tz)) = \varphi(|Tx - Ty| + |Ty - Tz| + |Tz - Tx|)
\]
\[
\varphi(G(Tx, Ty, Tz)) = \varphi \left(\frac{|x-y|}{2} + \frac{|y-z|}{2} + \frac{|z-x|}{2} \right),
\]
\[
\varphi(G(Tx, Ty, Tz)) = \varphi \left(\frac{|x-y|}{2} + \frac{|y-z|}{2} + \frac{|z-x|}{2} \right),
\]
\[
\varphi(G(Tx, Ty, Tz)) = \varphi \left(\frac{G(x, y, z)}{2} \right),
\]
\[
\varphi(G(Tx, Ty, Tz)) = \frac{G(x, y, z)}{2} + \frac{(G(x, y, z))^2}{8}.
\] (27)

Now to verify inequality (2), RHS of (2) is
\[
\varphi(M(x, y, z)) - \emptyset(M(x, y, z)),
\] (28)

where
\[
M(x, y, z) = \max \{ G(fx, fy, fz), G(fx, Tx, Tx), G(fy, Ty, Ty), G(fz, Tz, Tz),
\]
\[
\frac{1}{3} \left(G(fy, Tx, Tx) + G(fx, Ty, Ty) \right), \frac{1}{3} \left(G(fz, Ty, Ty) + G(fy, Tz, Tz) \right), \frac{1}{3} \left(G(fx, Tz, Tz) + G(fz, Tz, Tx) \right) \}
\]
\[
M(x, y, z) = \max \{ G(x, y, z), G \left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2} \right), G \left(\frac{y}{2}, \frac{x}{2}, \frac{z}{2} \right), G \left(\frac{z}{2}, \frac{y}{2}, \frac{x}{2} \right) \} +
\]
\[
G \left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2} \right)
\]
\[
\frac{1}{3} \left(G \left(z, \frac{y}{2}, \frac{z}{2} \right) + G \left(\frac{z}{2}, \frac{z}{2}, \frac{z}{2} \right) \right), \frac{1}{3} \left(G \left(\frac{z}{2}, \frac{y}{2}, \frac{z}{2} \right) + G \left(\frac{z}{2}, \frac{z}{2}, \frac{z}{2} \right) \right) \}.
\]

M(x, y, z) = \max \{ |x - y| + |y - z| + |z - x|, |x|, |y|, |z|, \frac{2}{3} \left(|x - y| + |y - z| + |z - x| \right) \}
\]
\[
M(x, y, z) = \max \{ |x - y| + |y - z| + |z - x| \} \text{ for all } x, y, z \in X,
\]
\[
M(x, y, z) = G(x, y, z) \text{ for all } x, y, z \in X.
\] (29)

Substitute (29) in (28), we obtain RHS of (2) is
\[
\varphi(G(x, y, z)) - \emptyset(G(x, y, z)),
\]

From (24) and (25), we obtain RHS of (2) is
\[
G(x, y, z) + \frac{(G(x, y, z))^2}{2} - \frac{3(G(x, y, z))^2}{8},
\]
\[
\text{RHS of (2) is } = G(x, y, z) + \frac{(G(x, y, z))^2}{8}.
\] (30)

From (26) and (29), we obtain
\[
\frac{G(x, y, z)}{2} + \frac{(G(x, y, z))^2}{8} \leq G(x, y, z) + \frac{(G(x, y, z))^2}{8}.
\]
Common Fixed Point Theorems for Weakly Compatible Mappi ng Satisfying …

This implies LHS \(\leq \) RHS and inequality (2) is verified. Now, it is easy to see that
\[
TX = \left[0, \frac{1}{2}\right] \subset fX = [0,1].
\]
Moreover, \(T \) and \(f \) are weakly compatible in \(X \). Hence all the conditions of theorem 3.1 are satisfied. It may be noted that \(0 \) is unique common fixed point of \(T \) and \(f \).

Theorem 3.2. let \(T \) and \(f \) be self maps of a \(G \)-metric space \((X, G)\) satisfying
\[
\varphi(G(Tx,Ty,Tz)) \leq k \varphi(M(x,y,z)) \text{ for all } x, y, z \in X
\]
where
\[
M(x, y, z) = \max \{G(fx, fy, fz), G(fx, Tx, Tx), G(fy, Ty, Ty), G(fz, Tz, Tz),
\]
\[
\frac{1}{3}(G(fy, Tx, Tx) + G(fx, Ty, Ty)) + \frac{1}{3}(G(fz, Ty, Ty) + G(fy, Tz, Tz)),
\]
\[
G(fy, Tz, Tz)\}
\]
and \(\varphi: [0, \infty) \to [0, \infty) \) is continuous monotone non-decreasing function with \(\varphi(t) = 0 \) if and only if \(t = 0 \). If \(TX \) is complete metric space and \(TX \subset fX \), then \(T \) and \(f \) have coincidence point in \(X \). Further, if \(T \) and \(f \) are weakly compatible, then they have a unique common fixed point in \(X \).

Proof: By taking \(\varphi(t) = (1 - k) \varphi(t) \) in theorem 3.1 then condition (2) reduced to the condition (32), and the proof follows the theorem (3.1).

Theorem 3.3. let \(T \) and \(f \) be self maps of a \(G \)-metric space \((X, G)\) satisfying
\[
G(Tx,Ty,Tz) \leq G(fx, fy, fz) - \varnothing(G(fx, fy, fz)) \text{ for all } x, y, z \in X
\]
and \(\varnothing: [0, \infty) \to [0, \infty) \) is continuous monotone non-decreasing function with \(\varnothing(t) = 0 \) if and only if \(t = 0 \). If \(TX \) is complete metric space and \(TX \subset fX \), then \(T \) and \(f \) have coincidence point in \(X \). Further, if \(T \) and \(f \) are weakly compatible, then they have a unique common fixed point in \(X \).

Proof: By taking \(\varphi(t) = t \) and \(M(x, y, z) = G(fx, fy, fz) \) in theorem 3.1, then condition (2) reduced to the condition (33), and the proof follows the theorem (3.1).

Theorem 3.4. Let \((X, G)\) be a complete \(G \)- metric space and \(T: X \to X \) be a mapping satisfying
\[
G(Tx,Ty,Tz) \leq G(x, y, z) - \varnothing(G(x, y, z)),
\]
for all \(x, y, z \in X \). If \(\varnothing: [0, \infty) \to [0, \infty) \) is a continuous and non decreasing function with \(\varnothing(t) = 0 \) if and only if \(t = 0 \), then \(T \) has a unique fixed point in \(X \).

Proof: By taking \(\varphi(t) = t \), \(M(x, y, z) = G(fx, fy, fz) \) and \(f = I, \text{(the identity function)} \) in theorem 3.1, then condition (2) reduced to the condition (34), and the proof follows the theorem (3.1).

REFERENCES