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1. Introduction 
The idea of introducting probabilistic notion into geometry was one of the great thoughts   
of Menger. In  1942, Menger [1] has introduced the theory of probabilistic metric space. 

 In 1966 , Sehgal [2] initiated the study of contraction mapping theorem in PM- 
space.     Altun and Turkoglu [3] proved two common fixed point theorems on complete 
PM- space with an implicit relation. Schweizer and Sklar [4] played major role in 
development of fixed point theory in PM - space .  

In 1972, Sehgal and   Bharucha- Reid [5] initiated the study of contraction  mappings 
in the development of fixed point theorems. Singh et. al. [6]  introduced the concept  of 
weakly commuting mapping in PM- space.  Kumar and Chugh [7] established some 
common   fixed point  theorem using the idea of reciprocal continuous of mappings. 

Recently Al- Thagafi and Shahzad [8] weakned the notion of weakly compatible   
maps  by introducing owc maps. Bouhadjera and Godet-thobie [9] introduced two new 
notions   subsequential continuity and subcompability  which are weaker than reciprocal 
continuity  and  compatibility  respectively. 
 
2. Preliminaries 
Definition 2.1[10]  A t-norm is a binary operation on the interval [0,1]  such that for all 
a,b,c,d ∈   [0,1]  the following conditions are satisfied  

     (i).  a* 1 =  a ; 
     (ii).  a*b = b*a; 
    (iii). a*b ≤  c*d ,  whenever  a	≤ c and  b	≤ d ; 
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     (iv).  a *(b*c) = (a*b)*c. 
 

Definition 2.2. [10] A mapping  F : R → R , is called a distribution if it is non- decreasing 
left  continuous with inf{ F(t) : t	∈R } = 1. 
 
Definition 2.3. [10]  A mapping t: [0,1] × [0,1]  → [0,1] is called a continuous t-norm if 
it is   satisfies the following conditions :  

(i)  t is commutative and associative ; 
(ii)  t (a,1) = a , for all  a	∈ [0,1] ;  
(iii)   t(a,b) ≤ t(c,d)  , for  a	≤ c and  b	≤ d . 

 
Definition 2.4.[10]  A  Probabilistic metric space  is an ordered pair (X, F) consisting of a 
non empty set X and a function F : X× X → L , where L is the collection of all 
distribution functions and the value of F at (u,v) ∈ X× X  is represented by Fu,v . The 
function Fu,v is    assumed to satisfy the following conditions; 

(i) Fu,v (x) = 1 , for all x> 0 if and only if u = v ,  
(ii)  Fu,v (0) = 0, 
(iii)  Fu,v = Fv,u, 
(iv) If Fu,v(x) = 1 and  Fv,w(y) = 1, then F u,w(x + y) = 1,for all u,v,w in X ,x,y > 0. 

 
Example 2.1. Let  X = [ 0,∞ ) and d be the usual metric on X and for each  t	∈ [0,1] , 
define 

               ��,	
�� = � �
���|��	|� , if	� > 0
0,													if	� = 0

�        

                
for all x,y ∈ X.  Clearly (X,F,t) be a Menger space , where t- norm is defined  by  t (c,d) =  
min{c,d} , for all  a,b ∈ [0,1].         

  
Definition 2.5. [10]  A  sequence {xn} in a Menger space (X,F,t) is said to be converges  
to a point x in X if and only if for each � > 0 and t > 0, there is an integer M(�) ∈ N such 
that    F             (�) > 1- t , for all  n, m  ≥   M(�). 
 
Definition 2.6. [10]  A Menger   PM-space  (X,F,t) is said to be complete if every 
Cauchy sequence in  X converges to a point  in X. 
 
Definition 2.7. [11]  Self  mappings P and S of a Menger space (X,F,t) are said to be 
compatible if F Psxn,SPxn (x) → 1, for all x > 0, whenever {xn} is a sequence in X  such 
that  PSxn, SPxn → u , for some u in X , as n→ ∞ . 

Definition 2.8. [12] Two maps  P and S  are said to be weakly compatible if they 
commute at a  coincidence  point. 
 
Definition 2.9. [13]  Two self maps  P and S of a Menger space (X,F,t) are said to be 
reciprocally  continuous if   PSxn →Pz  and   SPxn → Sz ,  Whenever {xn} is a sequence in 
X  such that   Pxn , Sxn  → z , for some z in X as  n → ∞ . 

  xn,xm 
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Definition 2.10. [14]  Two self maps  P and S of a Menger space (X,F,t) are said to be 
semi    compatible if  F              (x) →  1 , for all x > 0 , whenever {xn} is a sequence in X  
such that   Pxn, Sxn → �  for some u in X as  n → ∞ . 
 
Lemma 2.1. [15]  Let  (X,F,*)  be a Menger space with continuous t- norm * , if there 
exists a  constant  h ∈ (0,1) such that  Fx,y (ht) ≥ Fx,y (t) , for  all x,y  ∈ X , and t > 0 then x 
= y . 
 
Example 1.1. Let M = [2, 20]  and d be usual metric on M. Define  mappings P, S : M	→ 
M  
 by         
 
                             Pv  =              and     Sv =        

                   
 
It is noted that P and S are reciprocally continuous mappings but they are not continuous. 
 
Lemma 2.2. [15] Let {xn} be a sequence in a Menger space (X,F,t), where t is continuous 
and  satisfies  t(x,y) ≥ x, for all  x ∈ [0,1] . If there exists a constant  k ∈ (0,1)  such that  
      F un,un+1  ( kx) ≥ F un-1,un  (x) , n= 1,2,3… 
      then { xn} is a Cauchy sequence in X. 
 
3. Main result 
Theorem 3.1.  Let   P, Q, S and T be self mappings on a complete  Menger space   
(X,F,t) with   continuous   t-norm   t(c,c) ≥ �,	  for some c ∈ [0,1]  satisfying : 
     (3.1)  P(X) ⊆ T(X) , Q(X)  ⊆ S(X) , 
     (3.2) (Q,T ) is weak compatible , 
     (3.3) For all x,y ∈ X , and h > 1 , 
              FPx,Qy (hx) ≥ � ![ Fsx,Ty (x), { FSx,Px(x). FQy,Ty(x) }, FPx,Sx(x) ] 
If (P,S) is semi compatible pairs of reciprocal continuous maps then P,Q,S  and T  have a  
unique common fixed point . 
Proof: Let  x0 ∈	X , be any  arbitrary point.Then we can constract two sequences {xn } 
and {yn} in  X such that    y2n = Px2n+1 = Tx2n ,    and      y2n+1 = Qx2n+2= Sx2n+1  ,                   
for n =  0,1,2,… 

First , we will  prove that {yn}  is a Cauchy sequence in X. 
   Now, by inequality (3.3) , we have  
   F                    (hx)  =  F                     (hx) 
                         ≥ � ! [ F (x) , { F                   (x) .  F                 (x)},  
                                          F (x) ]  
                                   ≥ � ! [ F (x) , { F  (x)  . F (x) }, 
                                        F (x) ] 
     F  (hx)  ≥  F  (x)  
     Similarly , we get  
      F   (hx)  ≥ F                (x)    
       

2, if v = 2  

3, if v > 2 

2, if v = 2 

6, if v >2 

 

y2n+1, y2n+2 Sx2n+1, Tx2n+2 

Sx2n+1,Px2n+1 Qx2n+2,Tx2n+2 

Px2n+1, Sx2n+1 
y2n+1,y2n+2 y2n+1,y2n 

y2n+1,y2n+2 

y2n,y2n+1 

y2n+1, y2n+2 

y2n,y2n+1 y2n+2,y2n+3 

PSxn,Tu 

y2n+1,y2n+2 
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     In general, we have  
     F             (hx)    ≥  F           (x)  
  
Then by Lemma 2.2 , {yn} is a Cauchy sequence and it  convergent  to some point  z in 
X. 
 Hence the subsequences convergent  as follows  : 
    {Px2n} →	z , {Sx2n} → z , {Qx2n+1} 	→z  and    {Tx2n+1} → z.  
Now , since P and S are reciprocal continuous and semi- compatible then we have  
limn→∞ PSx2n = 
  Pz ,   limn→∞ SPx2n = Sz , and  limn→∞ M( PSx2n, Sz,t) = 1 .   Therefore we get Pz = Sz . 
Now we will show that  Pz = z .    
By inequality (3.3) , putting  x = z , y = x2n+1 ,  we get  
      F             (hx)    ≥Min [ F            (x) , { F Sz,Pz (x)  . F                    (x) }, FPz,Sz (x) ] 
Taking  limit n→∞ , we get 
FPz,z (hx )		≥   Min [ Fsz,z (x) , { FSz,Pz (x) . F z,z(x) }, FPz,Sz(x) ] 
Since  Pz =Sz , then we get 
FPz,z (hx)  ≥ Min [ FPz,z (x) , { FPz,Pz (x) . Fz,z (x) }, FPz,Pz  (x) ] 
FPz,z(hx)  ≥ FPz,z(x)   ,   then by Lemma 2.1, then we get  z = Pz. 
Since,  Pz =Sz ,  combining  both we get       z = pz = Sz. 
Now ,  P(X)  ⊆ T(X) ,  therefore there exists a point   u	∈  X  such that    z= Pz = Tu. 
Putting  x= x2n , y = u in inequality (3.3) , we get  
  F             (hx)    ≥    Min [ F           (x) , { F              (x) . FQu,Tu (x) }, F            (x) ] 
Letting  n→∞ , we get 
Fz, Qu (hx)  ≥ Min [ Fz, Tu (x) , { Fz,z (x) . FQu,z (x) } , Fz,z (x) ] 
FZ,Qu  (hx)  ≥   Fz,Tu (x) 
Then, by Lemma 2.1, we get         Qu =  Tu . 
Since  z = Pz = Tu  and  we proved that  Qu =  Tu , combining both we get     z = Qu = 
Tu. 
Weak compatibility of  (Q,T) gives   TQu = QTu   i.e. Qz = Tz . 
Now , we will prove that  Qz = Pz . 
Again  assuming  Qz ≠  Pz ,  By inequality (3.3),   putting  x = z , y = z , we get  
F Pz,Qz (hx)  ≥ Min [ FSz,Tz (x) , { FSz,Pz (x) . F Qz,Tz (x) } , FPz,Sz (x) ] 
FPz,Qz (hx)  ≥ Min [ FPz,Qz  (x) , { FPz,Pz (x) . FQz,Qz (x) } , FPz,Pz (x) ] 
FPz,Qz (hx)  ≥   FPz,Qz  (x), 
which is a contradiction , thus  we get Pz = Qz.   Since Pz =Sz = z , and  Qz = Tz  
Hence finally  we get     z = Pz = Qz = Sz = Tz.   i.e.  z is a common fixed point of  P,Q, 
S and T. 
 
Uniqueness:  Let w be another common fixed point  of  P,Q,S  and T, then  
                        w = Pw = Qw = Sw = Tw . 
Putting  x = z and y = w , in inequality (3.3) , we get  FPz, Qw (hx)  ≥ Min [ FSz,Tw  (x), { 
FSz,Pz (x) . F Qw,Tw (x) } , FPz,Sz (x) ] 
F z,w (hx)    ≥ Min [ Fz,w (x) , { Fz,z (x) . F w,w (x) } , Fz,z (x) ] 
Fz,w (hx)    ≥  F z,w (x)  
Hence , from Lemma 2.1 , we get  z = w . 
Therefore  z is a unique common fixed point of P,Q,S  and T . 

  

Pz, Qx2n+1 
Sz, Tx2n+1 Qx2n+1,Tx2n+1 

Px2n, Qu Sx2n,Tu   Sx2n ,Px2n    Px2n , Sx2n  

yn+1,yn yn,yn-1     
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By setting  P = Q  in theorem 3.1 ,we can drive a corollary  for three mappings 
 
Corollary 3.2.   Let P, S and T be self maps of a complete  Menger space (X,F,t) , where  
t is continuous t-norm,   satisfying  following  conditions : 
   1.   The pair  (P,T )  is weak  compatible, 
   2.  For all x,y ∈ X  and h > 1, 
       FPx,Py (hx)    ≥ Min [ FSx,Ty (x) , { FSx,Px (x) . FPy,Ty (x) }, FPx,Sx (x) ]  
 
If  (P,S) is semi compatible pairs of reciprocally continuous maps  Then , P,S and T have 
a unique common fixed point  in X. 
On taking  P = Q  and S = T , we get another corollary  
 
Corollary 3.3.    Let P and S  be self maps of a complete  Menger space (X,F,t) , where  t 
is  continuous  t-norm,    satisfying  following  conditions : 
   1.  For all x,y ∈ X  and h > 1, 
       FPx,Py (hx)    ≥ Min [ FSx,Sy (x) , { FSx,Px (x) . FPy,Sy (x) }, FPx,Sx (x) ]  
     If  (P,S) is semi compatible pairs of reciprocally continuous maps  and weak 
compatible. Then, P   and S have a unique  common fixed point  in X. 
 
Acknowledgement.  Authors thankful to the referees for their valuable comments for the 
improvement of the paper. 
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