Annals of Pure and Applied Mathematics

Vol. 12, No. 1, 2016, 85-94

ISSN: 2279-087X (P), 2279-0888(online)

Published on 3 August 2016 www.researchmathsci.org

Annals of Pure and Applied Mathematics

Injective Gamma Modules

Mehdi S. Abbas¹, Saad Abdulkadhim Al-Saadi² and Emad Allawi Shallal³

Department of Mathematics, College of Science, Al-Mustansiriyah University, Iraq,

¹E-mail: m.abass@uomustansiriyah.edu.iq ²E-mail: s.alsaadi@uomustansiriyah.edu.iq ³E-mail: emad_a_shallal@yahoo.com

Received 13 July 2016; accepted 27 July 2016

Abstract. In this paper we extend the concept of injectivity from the category of modules to that gamma modules. An R_{Γ} - module M is called injective if for any R_{Γ} -module B and B_{Γ} -submodule A of B, any B_{Γ} -homomorphism B from A to B can be extended to an B_{Γ} -homomorphism from B to B. We show that every gamma module can be embedding in injective gamma module.

Keywords: Gamma ring; Gamma module; gamma submodule; essential gamma submodule; divisible gamma module; injective gamma module; injective gamma hull.

AMS Mathematics Subject Classification (2010): 17D20

1. Introduction

The notion of Γ -ring was first introduced by N. Nobusawa[4] and then Barnes [2] generalized the definition of Nobusawa's gamma rings. Let R and Γ two additive abelian groups, R is called a Γ -ring (in the sense of Barnes), if there exists a mapping $: R \times \Gamma \times R \longrightarrow R$, $: (r, \gamma, s) \longmapsto r\gamma s$ such that $(a + b)\alpha c = a\alpha c + b\alpha c, a(\alpha + \beta)c = \alpha c$ $a\alpha c + a\beta c, a\alpha(b+c) = a\alpha c + b\alpha c$ and $(a\alpha b)\beta c = a\alpha(b\beta c)$ where $a, b, c \in R$ $\alpha, \beta \in \Gamma$ [2]. A subset A of Γ -ring R is said to be a **right(left) ideal** of R if A is an additive subgroup of R and $A\Gamma R \subseteq A(R\Gamma A \subseteq A)$, where $A\Gamma R = \{a\alpha r : a \in A, \alpha \in \Gamma, \alpha \in \Gamma, \alpha \in A\}$ $r \in \mathbb{R}$. If A is both right and left ideal, we say that A is an *ideal* of R [2]. An element 1 in Γ - ring R is **unity** if $1\gamma_0 r = r$ for each $r \in R$ and some $\gamma_0 \in \Gamma$, unities in Γ - rings differ from unities in rings are not necessarily unique [3]. Principle ideal Γ -domain is Γ - ring with unity and each ideal is principle. Let R be a Γ -ring and let M be an additive abelian group. Then M together with a mapping $: R \times \Gamma \times M \longrightarrow M$, $(r, \gamma, m) \mapsto r\gamma m$ such that $(r_1 + r_2)\alpha m = r_1\alpha m + r_2\alpha m$, $r\alpha(m_1 + m_2) = r\alpha m_1 + r_2\alpha m$ $r\alpha m_2$, $r(\alpha + \beta)m = r\alpha m + r\beta m$ and $(r_1 \alpha r_2)\beta m = r_1 \alpha (r_2 \beta m)$ for each $r_1 r_2 r_3 r_4 r_5 r_6$ $R, \alpha, \beta \in \Gamma$ and $m, m_1, m_2 \in M$, is called a *lef* $R_{\Gamma} - module$ [6]. An R_{Γ} -module M is unitary if there exists element, say 1 in R and $\gamma_o \in \Gamma$ such that $1\gamma_o m = m$ for every $m \in M$. Let M be an R_{Γ} -module, a nonempty subset N of M is said to be an R_{Γ} **submoule** of M (denoted by $N \leq M$) if N is a subgroup of M and $R\Gamma N \subseteq N$, where $R\Gamma N = \{r\alpha n : r \in R, \ \alpha \in \Gamma, \ n \in N\}$ [6]. If X is a nonempty subset of M, then the R_{Γ} – submodule of *M* generated by *X* is $\cap \{N \le M : X \subseteq N\}$ and denoted by $\langle X \rangle$, *X* is called the generator of $\langle X \rangle$ and $\langle X \rangle$ is finitely generated if $|X| < \infty$. In particular, if $X = \{x\}$,

 $\langle X \rangle$ is called the *cyclic* R_{Γ} – *submodule* of M generated by x, in general $\langle X \rangle = \{\sum_{i=1}^m n_i x_i + \sum_{j=1}^k r_j \gamma_j x_j : k, m \in \mathbb{N}, n_i \in \mathbb{Z}, \gamma_j \in \Gamma, r_j \in R, x_i, x_j \in X \}$ and if M is unitary, then $\langle X \rangle = \{\sum_{i=1}^n r_i \gamma_i x_i : n \in \mathbb{N}, \gamma_i \in \Gamma, r_i \in R, x_i \in X \}$ [1]. Let M and N two R_{Γ} –modules , A mapping $f: M \to N$ is called homomorphism of R_{Γ} – modules (or R_{Γ} – homomorphism) if f(x+y) = f(x) + f(y) and $f(r\gamma x) = r\gamma f(x)$ for each $x, y \in M, r \in R$ and $\gamma \in \Gamma$. An R_{Γ} – homomorphism is R_{Γ} – monomorphism if it is one-to-one and R_{Γ} –epimorphism if it is onto. Set of all R_{Γ} – homomorphism from M into N denote by $Hom_{R_{\Gamma}}(M,N)$ in particular if M=N denote by $End_{R_{\Gamma}}(M)$ [1]. $End_{R_{\Gamma}}(M)$ is a Γ – ring and if M is left R_{Γ} – module , then M is right $End_{R_{\Gamma}}(M)$ – module [1, proposition 5.6]. All modules in this paper are unitary left R_{Γ} –modules and $\gamma_o \in \Gamma$ denote to the element such that $1\gamma_o$ is the unity.

2. Basic structure of injective gamma modules :

An R-module A is called N — injective if for every submodule X of N, any homomorphism f from X to A can be extended to a homomorphism from N to A [5]. In this section we introduce the concept of injective gamma module, many characterizations and properties of injective gamma modules are given.

Definition 1.1. Let M and N be two R_{Γ} — modules. Then M is called N — *injective* R_{Γ} — module if for any R_{Γ} — submodule A of N and for any R_{Γ} — homomorphism $f: A \to M$ there exists an R_{Γ} — homomorphism $g: N \to M$ such that gi = f where i is the R_{Γ} — inclusion mapping.

Proposition 1.2. If M is N – injective R_{Γ} – module and A is R_{Γ} – submodule of N, then M is A – injective and N/A – injective.

Proof.It is clear that M is A – injective R_{Γ} – module if A=N. Let X/A be an R_{Γ} – submodule of N/A and $f: X/A \to M$ is an R_{Γ} – homomorphism, let $\pi: N \to N/A$ be the natural R_{Γ} – homomorphism and $\pi' = \pi_{|_X}$, since M is N – injective then there exists an R_{Γ} – homomorphism $\alpha: N \to M$ such that $\alpha_{|_X} = f\pi'$. Now $\alpha(A) = f\pi'(A) = f(0) = 0$, then $A = ker\pi \subseteq ker\alpha$, hence by [1,proposition 5.20] there exists $\theta: N/A \to M$ such that $\theta\pi = \alpha$ and for any $x \in X$ we have $\theta(x + A) = \theta\pi(x) = \alpha(x) = f\pi'(x) = f(x + A)$, thus θ extends f and therefore M is N/A – injective.

In the following proposition the concept of N – injective can be reduced to elements of N.

Proposition 1.3. If M and N are two R_{Γ} -modules, then M is N - injective if and only if M is $\langle a \rangle$ - injective R_{Γ} - module for each $a \in N$.

Proof. For any R_{Γ} -submodule A of an R_{Γ} -module N and a R_{Γ} -homomorphism f from A to M, by Zorn's lemma there exists maximal element (A_{\circ}, f_{\circ}) such that $A \leq A_{\circ}$ and f_{\circ} extends of f to A_{\circ} . If $A_{\circ} = N$, then the proof is complete, if not there exists $x \in N - A_{\circ}$, let $L = \{r \in R: r\Gamma x \subseteq A_{\circ}\}$, then L is an ideal of R, define an R_{Γ} -homomorphism $\theta: I\gamma_{\circ}x \to M$ by $\theta(r\gamma_{\circ}x) = f_{\circ}(r\gamma_{\circ}x)$ for each $r\gamma_{\circ}x \in I\gamma_{\circ}x$, by assumption θ can extended to an R_{Γ} - homomorphism $\lambda: \langle x \rangle \to M$. Let $\psi: C = A_{\circ} + \langle x \rangle \to M$ by $\psi(a_{\circ} + \sum_{i=1}^{n} r_{i}\gamma_{i}x) = f_{\circ}(a_{\circ}) + \lambda(\sum_{i=1}^{n} r_{i}\gamma_{i}x)$ for each $a_{\circ} \in A_{\circ}$ and $\sum_{i=1}^{n} r_{i}\gamma_{i}x \in \langle x \rangle$. Then ψ is

 R_{Γ} – homomorphism which is contradiction with maximality of (A_{\circ}, f_{\circ}) , hence $A_{\circ} = N$ and f_{\circ} extends f to N, thus M is N – injective R_{Γ} – module.

Proposition 1.4. An R_{Γ} – module M is $\bigoplus_{i \in I} N_i$)—injective R_{Γ} – module if and only if M is N_i —injective R_{Γ} – module for each $i \in I$.

Proof.(\Rightarrow) by proposition(1.2). (\Leftarrow) Let $=\bigoplus_{i\in I} N_i$, for any R_Γ -submodule A of an R_Γ -module N and a R_Γ -homomorphism f from A to M, by Zorn's lemma there exists maximal element (N_\circ, f_\circ) such that $N \leq N_\circ$ and f_\circ extends of f to N_\circ . If $N_\circ = N$, then the proof is complete, if not there exists $x \in N - N_\circ$, since M is N_i injective then M is $\langle x \rangle$ injective, thus f_\circ can extended to an R_Γ -homomorphism $\psi: C = A_\circ + \langle x \rangle \to M$ which is contradiction, thus M is N-injective R_Γ -module.

Lemma 1.5. Let $\{E_{\lambda}: \lambda \in \Lambda\}$ be family of R_{Γ} — modules. Then $\prod_{\lambda \in \Lambda} E_{\lambda}$ is N — injective R_{Γ} — module if and only if E_{λ} is N — injective R_{Γ} — module for each $\lambda \in \Lambda$ and each R_{Γ} — module N.

Proof. Put $E=\prod_{\lambda\in\Lambda}E_\lambda$ and denote the injections and projections by: $\phi_\lambda\colon E_\lambda\to E$ and $\pi_\lambda\colon E\to E_\lambda$ respectively. Assume E_λ is injective R_Γ — module for each $\lambda\in\Lambda$, for any R_Γ —submodule A of an R_Γ —module N and a R_Γ —homomorphism f from A to E, there exists $g_\lambda\in Hom_{R_\Gamma}(N,E_\lambda)$ such that $g_\lambda i=\pi_\lambda f$, define an R_Γ —homomorphism $g\colon N\to E$ by $g(b)=(g_\lambda(b))_{\lambda\in\Lambda}$ for each $b\in N$ and $gi(a)=(g_\lambda(a))_{\lambda\in\Lambda}=(\pi_\lambda f(a))_{\lambda\in\Lambda}=f(a)$ for each $a\in A$, thus E is injective R_Γ —module. Conversely, if E is N—injective R_Γ —module and for $\lambda\in\Lambda$, let A be an R_Γ —submodule of N and $\mu\colon A\to E_\lambda$ be an R_Γ —homomorphism, since E is N—injective then there exists $h\in Hom_{R_\Gamma}(N,E)$ such that $hi=\varphi_\lambda\mu$, define an R_Γ —homomorphism $h'\colon N\to E_\lambda$ by $h'(b)=\pi_\lambda h(b)$ for each hi=0 injective hi=0 for each hi=0 for

Definition 1.6. An R_{Γ} — module M is called *injective* R_{Γ} — module if for any R_{Γ} — submodule A of an R_{Γ} — module B and for any R_{Γ} — homomorphism $f: A \to M$ there exists an R_{Γ} — homomorphism $g: N \to M$ such that gi = f where i is the R_{Γ} — inclusion mapping. An R_{Γ} — module M is injective if it is N — injective for any R_{Γ} — module N.

The following proposition shows that in order M to be gamma injective R_{Γ} -module, it's enough to be injective gamma relative to the Γ -ring R.

Proposition 1.7. Let M be an R_{Γ} – module. Then the following statements are equivalent:

- (a) M is injective R_{Γ} module.
- (b) For any ideal I of Γ -ring R and R_{Γ} -homomorphism $f: I \to M$, there exists R_{Γ} -homomorphism $g: R \to M$ such that gi = f where i is inclusion mapping of I into R.
- (c) For any exact sequence $0 \to A \to B \to C \to 0$ of R_{Γ} modules, the sequence $0 \to Hom_{R_{\Gamma}}(C, M) \to Hom_{R_{\Gamma}}(B, M) \to Hom_{R_{\Gamma}}(A, M) \to 0$ is exact.

Proof. (a) \Longrightarrow (b) Clear.(b) \Longrightarrow (a) Let A be a R_{Γ} - submodule of an R_{Γ} - modules B and f is R_{Γ} - homomorphisms from A to M, let $\Omega = \{(A', f'): A \leq A' \leq B, f' \text{ extend of } f \text{ to } A'\}$, then by Zorn's lemma Ω has a maximal element $(A \circ , f \circ)$ say. If $A \circ \neq B$ then

there exists $x \in B - A_{\circ}$, let $C = A_{\circ} + R\gamma_{\circ}x$ which is R_{Γ} -submodule of B contains A_{\circ} properly, define an ideal $I = \{r \in R: r\gamma_{\circ}x \in A_{\circ}, \gamma_{\circ} \in \Gamma\}$. Define an R_{Γ} – homomorphism $\theta: I \to M$ by $\theta(r) = f_{\circ}(r\gamma_{\circ}x)$ for each $\in I$, by assumption there exists R_{Γ} – homomorphism $\lambda: R \to M$ such that $\lambda i = \theta$. Define $\psi: C = A_{\circ} + R\gamma_{\circ}x \to M$ by $\psi(a_{\circ} + r\gamma_{\circ}x) = f_{\circ}(a_{\circ}) + \lambda(r)$ for each $a_{\circ} \in A_{\circ}, r \in R$, then $(C, \psi) \in \Omega$ contradiction with maximal of $(A \circ , f \circ)$, thus $A \circ = B$ and $f \circ$ extends $f \circ B$. (a) \Leftrightarrow (c) Easy to show that to, if $0 \to A \xrightarrow{\theta} B$ exact (c) then equivalent the sequence $Hom_{R_{\Gamma}}(B,M) \stackrel{\Phi}{\to} Hom_{R_{\Gamma}}(A,M) \to 0$ is exact where $\Phi(g) = g\theta$, $\forall g \in Hom_{R_{\Gamma}}(B,M)$, for any R_{Γ} -submodule A of an R_{Γ} -module B and an R_{Γ} -homomorphism f from A to M, there exists $g \in Hom_{R_{\Gamma}}(B, M)$ such that $gi = f = \Phi(g)$.

Theorem(Bear's gamma condition) 1.8. Let M be unitary R_{Γ} — module. Then M is injective gamma module if and only if for each left ideal I of Γ —ring R and R_{Γ} —homomorphism $f: I \to M$ there is $m \in M$ such that $f(x) = x\gamma_{\circ}m$ for each $x \in I$, for some $\gamma_{\circ} \in \Gamma$.

Proof. Suppose M is injective gamma module, I an ideal of Γ -ring R and $f\colon I\to M$ is an R_Γ -homomorphism, then there exists R_Γ -homomorphism $g\colon R\to M$ extends f, put g(1)=m then $f(x)=f(x\gamma_\circ 1)=g(x\gamma_\circ 1)=x\gamma_\circ g(1)=x\gamma_\circ m$. Conversely, for any ideal I of R and R_Γ -homomorphism $f\colon I\to M$, there exists $m\in M$ such that $f(x)=x\gamma_\circ m$ for each $x\in I$, for some $\gamma_\circ\in\Gamma$, define $g\colon R\to M$ by $g(r)=r\gamma_\circ m$ for each $r\in R$, it's clear that g is R_Γ -homomorphism and g extends to f, hence M is injective R_Γ -module.

An R_{Γ} – submodule N of R_{Γ} – module M is a direct summand if there exists an R_{Γ} – submodule K of M such that $M = N \oplus K$ and $N \cap K = 0$.

Proposition 1.9. An R_{Γ} – module M is injective if and only if it is a direct summand of every extension of itself.

Proof. Assume that M is injective and E is an extension of M, then there exists an R_{Γ} - homomorphism θ from E to M such that $\theta_{|M} = id_M$, for each $e \in E$ we have $\theta(e) \in M$ and $\theta(e) = \theta(\theta(e))$ so $\theta(e) - \theta(\theta(e)) = 0$ hence $\theta(e - \theta(e)) = 0$ then $e - \theta(e) \in \ker(\theta)$ so $e \in M + \ker(\theta)$ hence $E = M + \ker(\theta)$ but $M \cap \ker(\theta) = 0$, then $E = M \oplus \ker(\theta)$. Conversely, M can be embedded in E(M), then M is a direct summand of E(M) and by example (1.10) M is injective.

Examples and Remarks 1.10.

- 1- Every injective R-module is injective R_R module.
- 2- Let Q be a ring, $R = \{(x \ y) : x, y \in Q\}$, and $\Gamma = \{\binom{\gamma}{0} : \gamma \in Q\}$. Define $\cdot : R \times \Gamma \times R \to R$ by $(x \ y)\binom{\gamma}{0}(a \ b) = (x\gamma a \ x\gamma b)$, let $I = \{(0 \ x) : x \in Q\}$ which is a left ideal of R, define an R_{Γ} homomorphism $f: I \to R$ by $f(0 \ x) = (x \ 0)$, if R is injective gamma R_{Γ} module, then for each $A \in I$ there exits $B \in R$ such that $f(A) = A\gamma \cdot B$, take $A = (0 \ a) \neq 0$, $\gamma \cdot C = \binom{\gamma}{0}$ and $C = (x \ y)$, but $C = (x \ y) = (x \ y) = (x \ y)$.

Mehdi S. Abbas, SaadAbdulkadhim Al-Saadi and Emad Allawi Shallal

- 3- A direct summand of injective R_{Γ} module is injective R_{Γ} module, for any direct summand N of R_{Γ} module M, let A be R_{Γ} submodule of an R_{Γ} module B and f is R_{Γ} homomorphism from A to N, if $\pi: M \to N$ is the projection R_{Γ} homomorphism, then f can extended to R_{Γ} homomorphism λ from B to M, define $\alpha: B \to N$ by $\alpha = \pi \lambda$, so $\alpha(a) = \pi \lambda(a) = \pi(\lambda(a)) = \pi(f(a)) = f(a)$ for each $\alpha \in A$.
- 4- A Γ ring R is called simple Γ ring if the only non zero ideal is itself, by theorem(1.8) every R_{Γ} module over simple Γ ring is injective. In particular, Z_2 is simple Z ring, so every Z_{2Z} module is injective.

2. Divisible gamma modules

In this part we will introduce the concept of gamma divisible R_{Γ} – module and discusses the relation between gamma divisible R_{Γ} – module and injective gamma R_{Γ} – module.

Definition 2.1. Let R be a Γ -ring an element $r(\neq 0) \in R$ is called $R_{\Gamma} - zero-divisor$ if there exists $\gamma(\neq 0) \in \Gamma$, $s(\neq 0) \in R$ such that $r\gamma s = 0$, that is, $r(\neq 0) \in R$ is $R_{\Gamma} - zero-divisor$ if for each $s \in R$ and for each $\gamma(\neq 0) \in \Gamma$ such that if $r\gamma s = 0$, then s = 0.

Definition 2.2. Let M be an R_{Γ} - module, an element $\alpha \in M$ is called R_{Γ} - divisible if for each $r \in R$ which is not R_{Γ} - zero-divisor and for each $\gamma (\neq 0) \in \Gamma$, there exists $\alpha' \in M$ such that $\alpha = r\gamma \alpha'$, M is called **gamma** divisible R_{Γ} - module (shortily R_{Γ} - divisible) if each element in M is R_{Γ} - divisible, that is, for each not R_{Γ} - zero-divisor $r \in R$ then $M = r\Gamma M$. An abelian group is R_{Γ} - divisible group if and only if it is Z_{Z} - divisible module.

Examples 2.3.

- 1- Q as Z_Z module is R_T –divisible.
- 2- Let $M=Z_2$, $\Gamma=2Z$ and R=Z, then M is not R_{Γ} -divisible, since $1 \neq n.(2m).x$ for any $n \in Z$, $2m \in 2Z$ and $x \in Z_2$.
- 3- Let = Q, $\Gamma = Z$ and $M = \{ \begin{pmatrix} x \\ y \end{pmatrix}, x, y \in Q \}$, then for any $\begin{pmatrix} x \\ y \end{pmatrix} \in M, \frac{p}{q} \neq 0 \in Q$ and $n \neq 0$, we have $\begin{pmatrix} x \\ y \end{pmatrix} = \frac{p}{q}.n.\begin{pmatrix} \frac{xq}{pn} \\ \frac{yq}{pn} \end{pmatrix}$, thus M is R_{Γ} —divisible.

Let M be an R_{Γ} – module, annihilator of an element $r \in R$ denoted by $Ann_R(r) = \{s \in R: s\Gamma r = 0\}$ which is ideal of R [1]. It's easy to proof the following lemmas:

Lemma 2.4. An R_{Γ} -module M is R_{Γ} -divisible if and only if for each $m \in M$ and a not R_{Γ} - zero-divisor $r \in R$ such that $Ann_R(r) \subseteq Ann_R(m)$, then there exists $m' \in M$ such that $m = r\Gamma m'$.

Lemma 2.5. Homomorphic image of R_{Γ} –divisible is R_{Γ} –divisible.

Corollary 2.6. If M is R_{Γ} -divisible R_{Γ} -module and N is R_{Γ} -submodule, then M/N also R_{Γ} -divisible.

Lemma 2.7. Let $\{M_{\lambda}: \lambda \in \Lambda\}$ be family of R_{Γ} -divisibles, then $\prod_{\lambda \in \Lambda} M_{\lambda}$ is R_{Γ} -divisible if and only if M_{λ} is R_{Γ} -divisible for each $\lambda \in \Lambda$.

A generator set of an R_{Γ} -module M is basis if each element $m \in M$ can be written in only one way as $m = \sum_{i=1}^{n} r_i \gamma_i x_i$ where $r_i \in R$ and $\gamma_i \in \Gamma$, M is free if it has basis [6].

Lemma 2.8. Every R_{Γ} – module is epimorphic image of free R_{Γ} – module.

Proof. Let Y be generator set for M, then $R \cong R\gamma \circ x_i$ for each $x_i \in Y$ by $\varphi_{x_i} \colon R \to R\gamma \circ x_i$, $\varphi_{x_i}(r) = r\gamma \circ x_i$ for each $r \in R$. since $\varphi_{x_i}(1) = 1\gamma \circ x_i = x_i$, then $R^{(Y)} = \bigoplus_{i \in I} R\gamma \circ x_i = \bigoplus_{i \in I} R\gamma \circ \varphi_{x_i}(1)$ and if $\sum_{i \in I'} m_i \gamma \circ \varphi_{x_i}(1) = \sum_{i \in I'} s_i \gamma \circ \varphi_{x_i}(1)$, then $\sum_{i \in I'} (m_i - s_i) \gamma \circ \varphi_{x_i}(1) = 0$ and hence $m_j - s_j = \sum_{i \in I'} (m_i - s_i) \in R\gamma \circ x_j \cap \sum_{i \in I'} R\gamma \circ x_i = 0$, thus $i \neq j$ and so $i \neq j$ and $i \neq j$ and i

Lemma 2.9. Every abelian group can be embedded in Z_Z – divisible group.

Proof. By lemma(2.8) M as abelian group is epimorphic image of a free Z_Z – module F, so there exists an Z_Z – epimorphism $\varphi \colon F \to M$,by [1,proposition 5.20] $F/_{Ker(\varphi)} \cong M$, hence there exists an Z_Z – isomorphism $\beta \colon F/_{Ker(\varphi)} \to M$, if Y is a basis for F, then $F = \bigoplus_{b \in Y} Z.1.b$, let $D = Q^{(Y)} = \bigoplus_{b \in Y} Q.Z.b$, since $Q.Z.b \cong Q$, then by lemma(2.5)Q is Z_Z – divisible and F is a subgroup of D, hence by Corollary(2.6) $\overline{D} = D/Ker(\varphi)$ is Z_Z – divisible, then $i\beta^{-1} \colon M \to \overline{D}$ is Z_Z – monomorphism where $i \colon F/_{Ker(\varphi)} \to \overline{D}$ inclusion map.

Lemma 2.10. Every injective R_{Γ} – module M is R_{Γ} – divisible.

Proof. Assume that $a \in M$, for each non R_{Γ} – zero-divisor $r \in R$ and $\gamma \neq 0 \in \Gamma$, let $I = R\gamma r$, hence I is an ideal of R, define R_{Γ} – homomorphism $f: I \to M$ by $f(s\gamma r) = s\gamma \circ a$ for each $r \in R$, since M is injective, then by theorem(1.8) there exists $a' \in M$ such that $f(x) = x\gamma \circ a'$ for each $x \in I$, define an R_{Γ} – submodule $N = R\gamma \circ a'$ of M and $g: N \to M$ by $g(s\gamma \circ a') = s\gamma a'$, g is well define, since r is not R_{Γ} – zero-divisor and R_{Γ} – homomorphism, hence $a = 1\gamma \circ a = f(1\gamma \circ r) = f(r) = g(r\gamma \circ a') = s\gamma a'$, thus M is a R_{Γ} – divisible.

Lemma 2.11. If R is principle ideal Γ -domain and M is an R_{Γ} - module, then M is injective R_{Γ} - module if and only if M is a R_{Γ} - divisible.

Proof. Let $I = r\Gamma R$ and f any R_{Γ} —homomorphisms from I to M, since M is a R_{Γ} —divisible, then there exists $m \in M$ such that $f(r) = r\gamma m$ for fixed $\gamma \in \Gamma$, define $g: R \to M$ by $g(s) = s\gamma m$ for each $s \in R$.

Ameri and Sadeghi [1] proved if M is R_{Γ} —module, then $Hom_{R_{\Gamma}}(R,M)$ is R_{Γ} —module by $: R \times \Gamma \times Hom_{R_{\Gamma}}(R,M) \to Hom_{R_{\Gamma}}(R,M)$ such that $: (r,\gamma,f) \mapsto r\gamma f$ where $(r\gamma f)(s) = f(r\gamma s)$. For each $s,r \in R,\gamma \in \Gamma$ and $f \in Hom_{R_{\Gamma}}(R,M)$, another proved in next example and we will used this example in next lemma.

Example 2.12. If M is a left R_{Γ} — module , then $Hom_{R_{\Gamma}}(R,M)$ is a left unitary R_{Γ} — module by $: R \times \Gamma \times Hom_{R_{\Gamma}}(R,M) \to Hom_{R_{\Gamma}}(R,M)$ such that $: (r,\gamma,f) \mapsto r\gamma f$ where $(r\gamma f)(s) = f(s\gamma_{\circ}r\gamma 1)$, for each $s,r \in R,\gamma,\gamma_{\circ} \in \Gamma$ and $f \in Hom_{R_{\Gamma}}(M,N)$ where $1\gamma_{\circ}$ is the identity element, for each $r,s,r_1,r_2 \in R,\gamma,\beta \in \Gamma$ and $f \in Hom_{R_{\Gamma}}(R,M)$, then $(r\gamma f)(r_1+r_2)=f\left((r_1+r_2)\gamma_{\circ}r\gamma 1\right)=f(r_1\gamma_{\circ}r\gamma 1)+f(r_2\gamma_{\circ}r\gamma 1)=(r\gamma f)(r_1)+(r\gamma f)(r_2)$ and $(r\gamma f)(s\beta r_2)=f((s\beta r_2)\gamma_{\circ}r\gamma 1)=f(s\beta (r_2\gamma_{\circ}r\gamma 1))=s\beta (r\gamma f)(r_2)$, thus $r\gamma f \in Hom_{R_{\Gamma}}(R,M)$, easy to verify that $Hom_{R_{\Gamma}}(R,M)$ is R_{Γ} — module with unitary $1\gamma_{\circ}$.

Lemma 2.13. If M is R_{Γ} — divisible, then $Hom_{Z_{Z}}(R,M)$ is injective R_{Γ} —module. **Proof.** For any R_{Γ} — submodule A of B and R_{Γ} — homomorphism f from A to $Hom_{Z_{Z}}(R,M)$, define φ : $Hom_{Z_{Z}}(R,M) \to M$ by $\varphi(h) = (h)(1)$ if we regarded f and φ only as Z_{Z} — homomorphism, then there exists an Z_{Z} —homomorphism θ : $B \to M$ such that $\varphi f = \theta_{|A}$. Define a R_{Γ} —homomorphism $g: B \to Hom_{Z_{Z}}(R,M)$ by $(g(b))(r) = \theta(r\gamma \circ b)$ for each $r \in R$, $\gamma \circ \in \Gamma$ and $b \in B$, then $(g(a))(r) = \theta(r\gamma \circ a) = \varphi f(r\gamma \circ a) = \varphi(f(r\gamma \circ a))(1) = (r\gamma \circ f(a))(1)$, by example(2.12) $(r\gamma \circ f(a))(1) = f(a)(1\gamma \circ r\gamma \circ 1) = f(a)(r)$, so $f = g_{|A}$, therefore $Hom_{Z_{Z}}(R,M)$ is injective R_{Γ} — module.

The following our main result show that there is enough gamma injective R_{Γ} – module.

Theorem 2.14. Every R_{Γ} — module M can be embedding in injective R_{Γ} — module **Proof.** Assume M is an R_{Γ} — module, then by lemma (2.9) M as abelian group can be embedded in Z_Z —divisible group M', so there exists an R_{Γ} —monomorphism $\alpha: M \to M'$, define an R_{Γ} —monomorphism $\beta: Hom_{Z_Z}(R,M) \to Hom_{Z_Z}(R,M')$ by $\beta(f) = \alpha f$ for each $f \in Hom_{Z_Z}(R,M)$. Now define an R_{Γ} —monomorphism $\varphi: M \to Hom_{Z_Z}(R,M)$ by $[\varphi(e)](r) = r\gamma_{\circ}e$, for each $r \in R$ where $\gamma_{\circ} \in \Gamma$, then $\beta \varphi: M \to Hom_{Z_Z}(R,M')$ is an R_{Γ} —monomorphism, since M' is Z_Z —divisible, then by lemma(2.11) $Hom_{Z_Z}(R,M')$ is injective R_{Γ} — module.

3. Essential extension R_{Γ} -module

In this part we extend the concept essential extension from category of R – module to the category of R_{Γ} – module and investigate their properties.

Definition 3.1. Let N be an R_{Γ} – submodule of an R_{Γ} – module M, we say that N is an *essential extension* of M if every nonzero R_{Γ} – submodule of M has nonzero intersection with N. We also say that N *essential* R_{Γ} – *submodule* (or *large* R_{Γ} – *submodule*) of M and write $N \leq_e M$, in this case M is essential extention of N. Any R_{Γ} – module is always an essential extension of itself, this essential extension is called

trivial. Other essential extensions are called *proper*. The field of all rational numbers Q considered as a Z_Z – module is an essential extension of Z.

In above definition to see R_{Γ} – submodule N of R_{Γ} – module M is essential, it is enough to show that any nonzero cyclic R_{Γ} – submodule of M has nonzero intersection with N as shows in the following proposition:

Proposition 3.2. An R_{Γ} — submodule N of R_{Γ} — module M is essential if and only if for each nonzero element m in M, there is $r_1, r_2, ..., r_n \in R$ and $\gamma_1, \gamma_2, ..., \gamma_n \in \Gamma$ such that $\sum_{i=1}^n r_i \gamma_i m (\neq 0) \in N$.

Proof. Assume that $N \leq_e M$ and $m(\neq 0) \in M$, then there exists $x(\neq 0) \in \langle m \rangle \cap N$, so $x = \sum_{i=1}^n r_i \gamma_i m(\neq 0) \in N$. Conversely, let W be nonzero R_{Γ} – submodule of M and $w_{\circ}(\neq 0) \in W$, then there is $r_1, r_2, ..., r_n \in R$ and $\gamma_1, \gamma_2, ..., \gamma_n \in \Gamma$ such that $\sum_{i=1}^n r_i \gamma_i w_{\circ}(\neq 0) \in N$, hence $0 \neq \langle w_{\circ} \rangle \cap N \subseteq W \cap N$.

The proof of the following lemma similar to those on modules.

Lemma 3.3. Let A,B and C be R_{Γ} – modules with $A \leq B \leq C$, then:

- 1- $A \leq_e C$ if and only if $A \leq_e B$ and $B \leq_e C$.
- 2- $A \leq_e B \leq C$ and $A' \leq_e B' \leq C$, then $A \cap A' \leq_e B \cap B'$.
- 3- If $f: C \to B$ is an R_{Γ} homomorphism and $A \leq_e B$, then $f^{-1}(A) \leq_e C$.
- 4- If $\{A_{\lambda}: \lambda \in \Lambda\}$ family of R_{Γ} modules and if for each $\in \Lambda$, A_{λ} has essential extension B_{λ} , then $\bigoplus_{\lambda \in \Lambda} B_{\lambda}$ is essential extension of $\bigoplus_{\lambda \in \Lambda} A_{\lambda}$.

Proposition 3.5. An R_{Γ} – module M is injective if and only if M has no proper essential extensions.

Proof. Assume that M is injective and E is a proper essential extension of M, then from Proposition(1.9) M is direct summand of E, hence there exists an R_{Γ} — submodule N such that $E = M \oplus N$ contradiction. Conversely, by theorem(2.14) M can be embedded in injective R_{Γ} — module Q, define $\Omega = \{S \leq Q : S \cap M = 0\}$ then $0 \in \Omega \neq \phi$, Ω partially order set with respect to inclusion, then by Zorn's lemma Ω has maximal member say N, we shall show that Q = M + N. Assume $Q \neq M + N$ then $M + N \subsetneq Q$ so $(M + N)/N \subsetneq Q/N$, consider $0 \neq X/N \subsetneq Q/N$, then $N \subset X$ and $N \neq X$, since N maximal of Ω we have $M \cap X \neq 0$ and $M \cap X \not\subseteq N$ therefore $N \subsetneq N + (M \cap X) = X \cap (M + N)$, so there exists $e \in X \cap (M + N)$ and $e \notin N$, hence $e + N \in X/N$ and $e + N \in M + N/N$ but $e + N \neq N$, therefore $e + N \neq N \cap (M + N)/N$, so $(M + N)/N \leq_e Q/N$, since $M/(M \cap N) \cong (M + N)/N \leq_e Q/N$ but M has no proper essential extension so (M + N)/N = Q/N hence $Q = M \oplus N$, thus M is injective.

The following lemma show that every essential extension of R_{Γ} – module M contining in injective gamma extension of M.

Proposition 3.6. Let M be an R_{Γ} – module, E an essential extension of M and Q an injective extension of M, then E can be embedding in Q.

Proof. Let $i_1: M \to E$ and $i_2: M \to Q$ are inclusions, then there exists R_{Γ} - homomorphism $\theta: E \to Q$ such that $\theta i_1 = i_2$, so $M \cap ker\theta = 0$, since E essential extension of M, then $ker\theta = 0$ thus θ is R_{Γ} - monomorphism.

Mehdi S. Abbas, SaadAbdulkadhim Al-Saadi and Emad Allawi Shallal

Definition 3.7. Let E be an extension R_{Γ} – module of an R_{Γ} – module M, then E is said to be a *maximal essential extension* of M if:

- 1- E essential extension of M.
- 2- If E' is a proper extension of E, then E' is not essential extension of M.

Definition 3.8. Let Q be an extension R_{Γ} — module of an R_{Γ} — module M, then Q is said to be a *minimal injective extension* of M if:

- 1- Q is injective.
- 2- If Q' is a proper R_{Γ} submodule of Q which contains M, then Q' is not injective.

Proposition 3.9. Let M be an R_{Γ} -module and Q be an injective extension R_{Γ} - module of M, then Q has an R_{Γ} - submodule E which is maximal essential extension of M. **Proof.** Let $\Omega = \{N \leq Q : M \leq_e N \leq Q\}\}$, then $M \in \Omega \neq \emptyset$, Ω partially order set with respect to inclusion, then by Zorn's lemma Ω has maximal member say N', let K be an essential extention of N', then there exists an R_{Γ} - monomorphism $\theta : K \to Q$ which extends the inclusion map $i : N' \to Q$, for each $L(\neq 0) \leq \theta(K)$, there exists $0 \neq x = \theta(x_\circ) \in L$, so $M \cap \langle x_\circ \rangle \neq 0$, let $m_\circ (\neq 0) \in M \cap \langle x_\circ \rangle$, hence $m_\circ = \sum_{i \in I} r_i \gamma_i x_\circ$, so $0 \neq 0$, by maximality of $0 \neq 0$, we have $0 \neq 0$. The $0 \neq 0$ in $0 \neq 0$, we have $0 \neq 0$.

Proposition 3.10. Let M be an R_{Γ} – module and E be an essential extension R_{Γ} – module of M, the following statements are equivalent:

- 1- E is an essential injective extension of M.
- 2- E is a maximal essential extension of M.
- 3- E is a minimal injective extension of M.

Proof. (1) \Leftrightarrow (2) by proposition(3.6). (2) \Rightarrow (3) Assume (2) then *E* has no proper essential extension and by proposition(3.5) *E* is injective.(3) \Rightarrow (2) Assume (3) by proposition(3.9) *E* has an R_{Γ} – submodule *E'* which is maximal essential extension of *M*, so injective, hence E = E', then *E* is maximal essential extension.

Definition 3.11. Any R_{Γ} — module satisfying the conditions of proposition(3.10) is called an *injective gamma hall* (or *injective gamma envelope*) of M and we use E(M) to stand for it. The injective hull always exist for any R_{Γ} — module which is unique up to isomorphism as we show.

Proposition 3.12. Every R_{Γ} – module M has an injective gamma hull which is unique up to isomorphism.

Proof. M can be embedded in injective R_{Γ} — module Q and by proposition(3.9) Q has maximal essential extension R_{Γ} —submodule E, by proposition(3.10) E=E(M). Now we shall prove the uniqueness of E up to isomorphism. Let E and E_1 are two injective gamma hulls of M, then by proposition(3.6) there exists a R_{Γ} — monomorphism $\theta : E \to E_1$, so $E = Im(\theta) \subseteq E_1$, from injectivity of E and by proposition(1.9) $E_1 = Im(\theta) \oplus N$. Since $M \subseteq Im(\theta)$, then $M \cap N = 0$ but E_1 essential extension of M we have N=0, hence $Im(\theta) \cong E_1$, that means θ is R_{Γ} — epimorphism, thus θ is R_{Γ} — isomorphism.

Proposition 3.13. An R_{Γ} – module M is N – injective R_{Γ} – module if and only if f(N) is R_{Γ} – submodule of M for every $f \in Hom_{R_{\Gamma}}(E(N), E(M))$.

Proof. Let X be an R_{Γ} – submodule of N and $f: X \to M$ is an R_{Γ} –homomorphism, since E(M) is injective, then f extended to an R_{Γ} –homomorphism $\varphi: N \to E(M)$ and by assumption $\varphi(N)$ is an R_{Γ} – submodule of M, hence $\varphi: N \to M$ extends f, therefore M is N-injective R_{Γ} – module. Conversely , for any $f \in Hom_{R_{\Gamma}}(E(N), E(M))$, define $X = \{a \in N: f(a) \in M\}$, for each $r \in R$, $\gamma \in \Gamma$ and $a \in X$, $r\gamma a \in N$ and $f(r\gamma a) = r\gamma f(a) \in M$, so X is an R_{Γ} – submodule of N, since M is N – injective , then $f_{|_{X}}$ can extended to an R_{Γ} –homomorphism $g: N \to M$. We claim that $M \cap (g - f)(A) = 0$, let $m \in M$ and $a \in A$ such that m = (g - f)(a), then $f(a) = g(a) - m \in M$, thus $a \in X$ and so m = g(a) - f(a) = f(a) - f(a) = 0, therefore $M \cap (g - f)(A) = 0$ but M is essential in E(M), then (g - f)(A) = 0, hence g(A) = f(A) is R_{Γ} – submodule of M.

REFERENCES

- 1. R.Ameri and R.Sadeghi, Gamma Modules, Ratio Mathematica, 20 (2010) 127-147.
- 2. W. E. Barnes, On The Γ-Ring of Nobusawa, *Pacific Journal of Mathematics*, 18(3) (1966) 411-422.
- 3. S.Kyuno, A gamma ring with the right and left unities, *Math. Japon.* 24(1979) 191-193.
- 4. N.Nobusawa, On a Generalization of the ring theory, *Osaka Journal Math.*, 1(1964) 81-89.
- 5. D.W.Sharpe and P.V.Vamos, Injective modules, the Cambridge University Press, 1972.
- 6. M.S.Uddin and A.C.Paul, Free R_{Γ} modules, *Asian J. of Information Technology*, 5(11) (2006) 1262-1268.