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1. Introduction 

The notion of   -ring was first introduced by N. Nobusawa[4] and then Barnes [2] 
generalized the definition of Nobusawa’s gamma rings. Let   and   two additive abelian 

groups,   is called a        (in the sense of Barnes), if there exists a mapping 
         ,  (     )      such that  (   )          ,  (   )  
       ,  (   )           and  (   )     (   )  where          and 
      [2]. A subset A of    ring R is said to be a right(left) ideal of R if A is an 
additive subgroup of R and      (     ), where      *            
   +. If A is both right and left ideal, we say that A is an ideal of R [2]. An element 1 in 
   ring R is unity if        for each     and some     , unities in    rings 
differ from unities in rings are not necessarily unique [3]. Principle ideal   domain is 
   ring with unity and each ideal is principle. Let R be a   ring and let M  be an 
additive abelian group. Then M  together with a mapping           ,  
(     )      such that (     )            ,   (     )        
    ,  (   )             and (     )      (    ) for each         
        and          , is called a lef            [6]. An     module M is 
unitary if there exists element, say 1 in R and      such that        for every 
   . Let M be an     module , a nonempty subset N of M is said to be an    
         of M (denoted by    ) if N is a subgroup of M and      , where 
    *               + [6]. If X is a nonempty subset of M, then the     
submodule of   generated by X is  *       + and denoted by 〈 〉, X is called 
the generator of 〈 〉 and 〈 〉 is finitely generated if | |   . In particular , if   * +, 
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〈 〉 is called the cyclic     submodule of M generated by x, in general 〈 〉  
*∑     

 
    ∑       

 
                                + and if M is unitary, 

then 〈 〉  *∑             
                 + [1]. Let M and N two 

    modules , A mapping       is called homomorphism of     modules (or 
    homomorphism) if  (   )   ( )   ( ) and  (   )     ( ) for each 
          and    . An     homomorphism is     monomorpism if it is one-
to-one and    epimorphism if it is onto. Set of all     homomorphism from M into N 
denote by      

(   ) in particular if M=N denote by      
( )[1].      

( ) is a 

    ring and if M is left      module , then M is right       
( ) – module [1, 

proposition 5.6]. All modules in this paper are unitary left    modules and      
denote to the element such that     is the unity. 
 

2. Basic structure of injective gamma modules : 

An R-module A is called    injective if for every submodule X of N , any 
homomorphism      from X to A can be extended to a homomorphism from N to A [5]. In 
this section we introduce the concept of injectivegamma module,many characterizations 
and properties of  injective gamma modules are given. 

 

Definition 1.1. Let     and    be two     modules. Then M is called    injective 
     module if for any     submodule A of N and for any     homomorphism 
      there exists an     homomorphism       such that      where   is the 
    inclusion mapping. 
 

Proposition 1.2. If M is    injective     module and A is     submodule of N , then 
M is    injective and   ⁄   injective. 
Proof.It is clear that M is    injective     module if A=N . Let   ⁄  be an     
submodule of   ⁄  and     ⁄    is an     homomorphism, let       ⁄  be the 
natural     homomorphism and     |  , since M is    injective then there exists an 

    homomorphism       such that  |     . Now  ( )     ( )   ( )    

, then             , hence by [1,proposition 5.20] there exists     ⁄    such 
that      and for any     we have  (   )    ( )   ( )     ( )   (  
 ), thus   extends f  and therefore M is   ⁄   injective. 
 

     In the following proposition the concept of    injective can be reduced to elements 
of N.  
 

Proposition 1.3. If M and N are two    modules , then M is    injective if and only if 
M is  〈 〉   injective     module for each    . 
Proof. For any    submodule A of an    module N and a    homomorphism   

from A to M, by Zorn's lemma there exists maximal element (     ) such that      and 
   extends of f to   . If     , then the proof is complete, if not there exists         
, let   *          +, then L is an ideal of R, define an    homomorphism 
         by  (    )    (    ) for each          , by assumption   can extended 
to an      homomorphism   〈 〉   . Let        〈 〉    by  (   
∑      

 
   )    (  )  (∑      

 
   ) for each        and  ∑      

 
    〈 〉. Then   is 
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    homomorphism which is contradiction with maximality of (     ), hence      
and    extends  f  to N, thus M is    injective     module. 
 

Proposition 1.4. An     module M is (      ) injective     module if and only if 
M is    injective     module for each    . 
Proof.( ) by proposition(1.2). ( ) Let         , for any    submodule A of an 
   module N and a    homomorphism    from A to M, by Zorn's lemma there exists 
maximal element (     ) such that      and    extends of     to   . If     , then the 
proof is complete, if not there exists         , since M is     injective then M is 
〈 〉   injective , thus    can extended to an     homomorphism        〈 〉    
which is contradiction, thus M  is   injective     module. 
 

Lemma 1.5. Let {      + be family of     modules.Then ∏       is    injective 
    module if and only if    is    injective     module for each     and each 
    module N. 
Proof. Put E=∏       and denote the injections and projections by:          and 
        respectively. Assume    is injective     module for each    , for any 

   submodule A of an    module N and a    homomorphism    from A to E , there 
exists         

(    ) such that        , define an    homomorphism     

  by  ( )  (  ( ))    for each     and   ( )  (  ( ))    (   ( ))    

 ( )  for each    , thus E is injective     module. Conversely, if E is    injective 
    module and for    , let  A be an    submodule of N  and        be an     
homomorphism, since E is    injective then there exists        

(   ) such that 

       , define an     homomorphism         by   ( )     ( ) for each 
   . Then   ( )     ( )       ( )   ( ) for each    . Thus    is    
injective     module for each    . 
 

Definition 1.6. An     module M is called injective     module if for any     
submodule A of an     module B and for any     homomorphism       there 
exists an     homomorphism       such that      where   is the     inclusion 

mapping. An     module M  is injective if it is     injective for any     module N. 
 

     The following proposition shows that in order M to be gamma injective    module, 
it's enough to be injective gamma relative to the   ring R. 
 

Proposition 1.7. Let M be an     module. Then the following statements are 
equivalent: 

(a) M  is injective     module. 
(b) For any ideal I of   ring R and    homomorphism        , there exists     

homomorphism       such that      where   is inclusion mapping of   into R. 

(c) For any exact sequence           of     modules, the sequence   
     

(   )       
(   )       

(   )    is exact. 

Proof. (a) (b) Clear.(b)  (a) Let A be a      submodule of an     modules B and    
is     homomorphisms from A to M, let   *(     )             extend of 
       +, then by Zorn's lemma   has a maximal element (     ) say. If      then 
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there exists        , let           which is     submodule of B contains     
properly , define an ideal   *                  +. Define an     
homomorphism       by  ( )    (    ) for each    , by assumption there 
exists     homomorphism       such that     . Define               

by  (       )    (  )  ( ) for each          , then (   )    contradiction 
with maximal of (     ), thus      and    extends     to B. (a) (c) Easy to show that 

(c) equivalent to, if     
 
   exact then the sequence 

     
(   )

 
      

(   )    is exact where  ( )     ,         
(   ), 

for any    submodule A of an    module B and an    homomorphism    from A to 

M, there exists         
(   ) such that       ( ) . 

 

Theorem(Bear's gamma condition) 1.8. Let M be unitary      module. Then M is 
injective gamma module if and only if for each left ideal I of    ring R and      
homomorphism       there is     such that  ( )       for each    , for 
some     . 
Proof. Suppose M is injective gamma module , I an ideal of     ring R and       is 

an     homomorphism, then there exists     homomorphism       extends   , 
put  ( )    then  ( )   (    )   (    )      ( )       . Conversely, for 
any ideal I of R and      homomorphism       , there exists     such that 
 ( )       for each    , for some      , define       by  ( )       for 
each     , it's clear that   is     homomorphism and   extends to   , hence M is 
injective     module. 

     An      submodule N of      module M is a direct summand if there exists an 
    submodule     of M such that       and      . 
 

Proposition 1.9. An     module M is injective if and only if it is a direct summand  of 
every extension of itself.  

Proof. Assume that M is injective and E is an extension of M, then there exists an     
homomorphism θ from E to M such that  |      ,for each     we have  ( )    

and  ( )   ( ( )) so  ( )   ( ( ))    hence  (   ( ))    then    ( )  

    ( ) so         ( ) hence         ( ) but      ( )   , then   
      ( ). Conversely, M can be embedded in E(M), then M is a direct summand of 
E(M) and by example(1.10) M  is injective. 
 

Examples and Remarks 1.10. 

1- Every injective R-module is injective     module. 

2- Let   be a ring,   *(  )      +,  and   *.
 
 
/     +. Define         

      by (     ) .
 
 
/ (     )= (        ) , let   *(  )    + which is a left 

ideal of R, define an     homomorphism       by  (  )  (  ), if R is 
injective gamma     module, then for each     there exits     such that 

 ( )       , take   (     )    ,    .
 
 
/ and   (     ) , but      

(     ).
 
 
/(     )= (    )   ( ) a contradiction.  
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3- A direct summand of injective     module is injective     module, for any direct 
summand N of      module M, let A be      submodule of an     module B and 
   is     homomorphism from A to N, if       is the projection     
homomorphism, then     can extended to     homomorphism   from B to M , 

define       by     , so  ( )    ( )   ( ( ))   ( ( ))   ( ) for 

each    . 
4- A     ring R is called simple    ring if the only non zero ideal is itself, by 

theorem(1.8) every     module over simple     ring is injective. In particular,    
is simple     ring, so every       module is injective. 

 

2. Divisiblegamma modules 

In this part we will introduce the concept of gamma divisible     module and discusses 
the relation between gamma divisible     module and injective gamma     module. 
 

Definition 2.1. Let R be a  -ring an element  (  )    is called     zero-divisor if 
there exists  (  )     (  )    such that      , that is,  (  )    is     zero-

divisor if for each     and for each  (  )    such that if        , then    . 
 

Definition 2.2.  Let M be an     module , an element     is called     divisible if 
for each      which is not     zero-divisor and for each   (  )   , there 
exists       such that        , M is called gamma  divisible      module (shortily 
    divisible) if each element in M is      divisible, that is , for each not      zero-

divisor      then  M=rΓM. An abelian  group is    divisible group if and only if  it is 
    divisible module. 
 

Examples 2.3. 

1-   as     module is    divisible. 
2- Let       ,      and R=Z, then M is not    divisible, since     (  )   

for any           and     . 

3- Let    ,     and   *.
 
 /       + , then for any .

 
 /   ,

 

 
     and 

   , we have .
 
 /  

 

 
   (

  

  
  

  

), thus M is    divisible. 

 

     Let M be an      module , annihilator of an element     denoted by     ( )= 
*         + which is ideal of R [1]. It's easy to proof the following lemmas: 

 
Lemma 2.4.  An     module M is    divisible if and only if for each      and a 

not     zero-divisor     such that     ( )      ( ), then there exists       
such that        . 
 

Lemma 2.5. Homomorphic image of    divisible is    divisible. 
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Corollary 2.6. If M is    divisible    module and N is    submodule, then   ⁄  
also    divisible. 
 

Lemma 2.7. Let {      + be family of    divisibles, then ∏       is  
   divisible if and only if    is    divisible for each    . 
 
     A generator set of an    module M is basis if each element     can be written in 

only one way as   ∑       
 
    where      and     , M is free if it has basis [6]. 

 

Lemma 2.8. Every      module is epimorphic image of free     module. 
Proof. Let Y be generator set for M , then         for each      by    

         ,   

   
( )        for each    . since    

( )          , then  ( )            

          
( ) and if ∑            

( )  ∑            
( ) , then ∑ (       

  )     
( )    and hence       ∑ (     )    

   

       ∑            

   

 , thus  

 ( )            has a basis {   
( )    + and so  ( ) is free [6], define an 

   homomorphism     ( )    by  (∑       
( ))  ∑       , since for each 

    ,   ∑           then     is    epimorphism. 
 
Lemma 2.9.  Every abelian group can be embedded in      divisible group. 

Proof. By lemma(2.8 ) M as abelian group is epimorphic image of a free     module F, 

so there exists an      epimorphism       ,by [1,proposition 5.20]     ( )⁄    

, hence there exists an     isomorphism       ( )⁄   , if Y is a basis for F , then 

            , let     ( )            , since        , then by lemma(2.5)  
is     divisible and F is a subgroup of D , hence by Corollary(2.6)  ̅      ( )⁄  is 

    divisible , then         ̅ is     monomorphism where        ( )⁄    ̅ 

inclusion map. 
 

Lemma 2.10. Every injective     module M is     divisible. 
Proof. Assume that    , for each non     zero-divisor     and  (  )   , let 
      , hence I is an ideal of R, define    homomorphism        by  (   )  
     for each    , since M is injective, then by theorem(1.8) there exists       such 

that  ( )      
  for each    , define an     submodule       

  of M and  
       by   (    

 )       ,   is well define, since   is not     zero-divisor and 
    homomorphism, hence         (    )   ( )   (    

 )       ,  thus M 
is a     divisible. 
 

Lemma 2.11. If R is principle ideal   domain and M is an     module, then M is 
injective      module if and only if M is a     divisible. 

Proof. Let        and     any    homomorphisms from I to M, since M is a     
divisible, then there exists     such that  ( )      for fixed    , define     
  by  ( )      for each    . 
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Ameri and Sadeghi [1] proved if M is    module, then      
(   ) is     module 

by              
(   )       

(   )  such that   (     )        where 

 (   )( )   (   ). For each             and         
(   ), another proved 

in next example and we will used this example in next lemma. 
 

Example 2.12. If M is a left     module , then      
(   ) is a left unitary      

module by            
(   )         

(   ) such that   (     )      

where (   )( )   (      ), for each              and          
(   ) where 

    is the identity element, for each                    and        
(   ) , then 

(   )(     )   ((     )     )    (       )   (       )  (   )(  )  
(   )(  ) and (   )(    )   ((    )     )   (  (       ))    (   )(  ), thus 
         

(   ), easy to verify that      
(   ) is     module with unitary    . 

 
Lemma 2.13. If M is     divisible , then      (   ) is injective    module.  

Proof. For any     submodule A of B and     homomorphism f from A to 

     (   ), define        
(   )     by  ( )  ( )( )  if we regarded   and   

only as     homomorphism, then there exists an    homomorphism       such 

that     | . Define a    homomorphism          (   )  by ( ( ))( )  

 (    )  for each         and    , then ( ( ))( )   (    )    (    )  

 ( (    )   ( (    ))( )  (    ( ))( ), by example(2.12) (    ( ))( )  

 ( )(       )   ( )( ) , so    | , therefore      (   ) is injective     

module. 
 

   The following our main result show that there is enough gamma injective     module. 
 

Theorem 2.14. Every     module M can be embedding in injective     module  
Proof. Assume M is an     module, then by lemma (2.9) M  as abelian group can be 
embedded in    divisible group   , so there exists an    monomorphism      
  , define an    monomorphism         

(   )       
(    ) by  ( )     

for each        (   )  Now define an    monomorphism          
(   ) 

by  , ( )-( )       , for each     where     , then           
(    )  is an 

   monomorphism , since    is    divisible , then by lemma(2.11)      
(    ) is 

injective     module. 
 

3. Essential extension    module 
In this part we extend the concept essential extension from category of    module to the 

category of      module and investigate their properties. 
 

Definition 3.1. Let N be an     submodule of an     module M , we say that N is an 
essential extension of M if every nonzero     submodule of M  has nonzero 
intersection with N. We also say that N essential     submodule (or large     

submodule) of M and write       , in this case    is essential extention of   . Any 
    module is always an essential extension of itself, this essential extension is called 
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trivial. Other essential extensions are called proper. The field of all rational numbers   
considered as a       module is an essential extension of Z. 
     In above definition to see     submodule N of     module M is essential , it is 
enough to show that any nonzero cyclic     submodule of M has nonzero intersection 
with N as shows in the following proposition: 
 
Proposition 3.2. An     submodule N of     module M is essential if and only if for 

each nonzero element m in M, there is              and              such that 
∑      (  )    

   . 
Proof. Assume that      and  (  )   , then there exists  (  )  〈 〉  , so 

  ∑      (  )    
   . Conversely, let W be nonzero     submodule of M and 

  (  )   , then there is              and              such that 
∑       (  )    

   , hence   〈  〉       . 
 
The proof of the following lemma similar to those on modules. 
 

Lemma 3.3. Let A,B and C be     modules with        , then: 
1-      if and only if        and       . 
2-       and          , then            . 
3- If       is an     homomorphism and     , then    ( )    . 

4- If {      + family of     modules and if for each    ,    has essential 
extension   , then        is essential extension of       . 

 

Proposition 3.5. An      module M is injective if and only if M has no proper essential 
extensions.  
Proof. Assume that M is injective and E is a proper essential extension of M, then from 

Proposition(1.9) M is direct summand of E, hence there exists an     submodule N such 
that       contradiction. Conversely, by theorem(2.14) M can be embedded in 
injective     module  , define   *         + then      ,   partially 

order set with respect to inclusion, then by Zorn's lemma   has maximal member say N, 
we shall show that      . Assume       then       so 
(   )     ⁄⁄ , consider     ⁄    ⁄ , then            , since N 
maximal of   we have       and       therefore     (   )    
(   ), so there exists     (   ) and    , hence       ⁄  and     
    ⁄  but      , therefore    (  )     ⁄ (   )  ⁄ , so 
(   )  ⁄     ⁄ , since  (   )⁄  (   )  ⁄     ⁄  but M has no proper 
essential extension so (   )  ⁄    ⁄  hence      , thus M is injective. 
 

     The following lemma show that every essential extension of       module M 
contining in injective gamma extension of M. 
 

Proposition 3.6. Let M be an     module, E an essential extension of M and   an 
injective extension of M, then E can be embedding in  . 
Proof. Let        and        are inclusions, then there exists      
homomorphism       such that       , so          , since E essential 

extension of M, then        thus θ is     monomorphism. 
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Definition 3.7.  Let E be an extension     module of an     module M, then E is said 
to be a maximal essential extension of M  if: 

1- E  essential extension of M. 

2- If    is a proper extension of E, then    is not essential extension of M. 
 

Definition 3.8. Let   be an extension     module of an     module M, then   is said 
to be a minimal injective extension of M if: 

1-    is injective. 
2- If    is a proper     submodule of   which contains M, then    is not injective.  

 

Proposition 3.9. Let   be an     module and   be an injective extension     module 
of M, then   has an     submodule E which is maximal essential extension of M. 

Proof. Let   *          ++, then      ,   partially order set with 
respect to inclusion, then by Zorn's lemma   has maximal member say   , let K be an 
essential extention of   , then there exists an     monomorphism       which 
extends the inclusion map       , for each  (  )   ( ) , there exists     

 (  )   , so   〈  〉   , let   (  )    〈  〉, hence    ∑          , so 

(  )    (  )   (∑       )     ∑      (  )  ∑              , so      , so 
 ( )   , by maximality of    we have  ( )    , thus     . 
 

Proposition 3.10. Let M be an     module and E be an essential extension     
module of M, the following statements are equivalent : 

1- E is an essential injective extension of M. 
2- E is a maximal essential extension of M. 
3- E is a minimal injective extension of M. 

Proof. (1) (2) by proposition(3.6). (2) (3) Assume (2) then E has no proper essential 
extension and by proposition(3.5) E is injective.(3) (2) Assume (3) by proposition(3.9) 

E has an     submodule    which is maximal essential extension of M, so injective, 
hence     , then E is maximal essential extension. 
 

Definition 3.11. Any     module satisfying the conditions of proposition(3.10) is called 
an injective gamma hall (or injective  gamma  envelope) of M and we use  ( ) to stand 
for it. The injective hull always exist for any     module which is unique up to 
isomorphism as we show . 
 

Proposition 3.12. Every     module M has an injective gamma hull which is unique up 
to isomorphism. 

Proof. M can be embedded in injective     module   and by proposition(3.9)   has 
maximal essential extension    submodule E, by proposition(3.10) E=E(M). Now we 

shall prove the uniqueness of E up to isomorphism. Let   and    are two injective 
gamma hulls of M, then by proposition(3.6) there exists a     monomorphism     
  , so     ( )    , from injectivity of E and by proposition(1.9)      ( )   . 
Since     ( ), then       but    essential extension of M we have N=0, hence 
  ( )    , that means θ is     epimorphism, thus θ is     isomorphism. 
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Proposition 3.13.  An     module M is    injective     module if and only if   ( ) 
is     submodule of M  for every        

( ( )  ( )). 

Proof. Let X  be an     submodule of N and       is an    homomorphism, since 
E(M) is injective, then   extended to an    homomorphism      ( ) and by 

assumption  ( ) is an     submodule of M, hence       extends  , therefore M is 
N-injective     module. Conversely , for any        

( ( )  ( )), define 

  *     ( )   +, for each    ,     and    ,       and  (   )  
   ( )   , so   is an     submodule of N , since M is    injective , then  |  can 

extended to an    homomorphism      . We claim that   (   )( )   , let 
    and     such that   (   )( ) , then  ( )   ( )     , thus     

and so    ( )   ( )   ( )   ( )   , therefore   (   )( )    but M is 
essential in E(M), then (   )( )    , hence  ( )   ( ) is     submodule of M.  
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