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Abstract. In this paper we extend the concept of injectivity from the category of modules
to that gamma modules. An R — module M is called injective if for any R —module B
and R —submodule A of B, any R —homomorphism f from A to M can be extended to
an Ry —homomorphism from B to M. We show that every gamma module can be
embedding in injective gamma module.
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1. Introduction

The notion of [I'-ring was first introduced by N. Nobusawa[4] and then Barnes [2]
generalized the definition of Nobusawa’s gamma rings. Let R and I" two additive abelian
groups, R is called a I' —ring (in the sense of Barnes), if there exists a mapping
“RXITXR—>R, -(r,y,s) —ryssuch that (a + b)ac = aac + bac,a(a + )c =
aac + afc,aa(b + ¢) = aac + bac and (aab)Bc = aa(bBc) where a,b,c €R and
a,f €T [2]. A subset A of I' —ring R is said to be a right(left) ideal of R if A is an
additive subgroup of R and AR < A(R'A < A), where AR ={aar:a €A, a €T,
r € R}. If A'is both right and left ideal, we say that A is an ideal of R [2]. Anelement 1 in
I'—ring R is unity if 1y,r=1r for eachr € R and some y, € I', unities in I" — rings
differ from unities in rings are not necessarily unique [3]. Principle ideal I' —domain is
I' — ring with unity and each ideal is principle. Let R be a I" —ring and let M be an
additive abelian group. Then M together with a mapping * RXI'XM — M , -
(r,y,m) — rymsuch that (n, + nn,)am =ram+nr,am, ra(m, +m,) =ram; +
ram,, r(a +B)m =ram +rpfm and (rary)Bm =rnra(rBm) for eachr,n,r, €
R,a,f € I' and m,my,m, € M, is called a lef Rr —module [6]. An R —module M is
unitary if there exists element, say 1 in R and y, € I' such that 1y,m = m for every
mé€ M. Let M be an R —module , a nonempty subset N of M is said to be an Ry —
submoule of M (denoted by N < M) if N is a subgroup of M and RI'N € N, where
RN ={ran:r €R, a €', n € N}[6]. If X is a nonempty subset of M, then the R —
submodule of M generated by X is N {N < M:X < N} and denoted by (X), X is called
the generator of (X) and (X) is finitely generated if [X| < co. In particular , if X = {x},
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(X)is called the cyclic R — submodule of M generated by X, in general (X) =
2 nix; + Z?zlrjijj k,m€N,n; €Z,y; €I',7 €R, x;,x; € X} and if M is unitary,
then (X)={X nyix;:neNy,erneERx;€X} [1]. Let M and N two
Ry —modules , A mapping f:M — N is called homomorphism of R — modules (or
Rr — homomorphism) if f(x +y) = f(x) + f(y) and f(ryx) =ryf(x) for each
x,yEM,r€R and y € I'. An R — homomorphism is R — monomorpism if it is one-
to-one and R —epimorphism if it is onto. Set of all R — homomorphism from M into N
denote by Hompg.(M,N) in particular if M=N denote by Endg,.(M)[1]. Endg.(M) is a

I'—ring and if M is left Rr— module , then M is right Endpg.(M)- module [1,

proposition 5.6]. All modules in this paper are unitary left R —modules and y, € I’
denote to the element such that 1y, is the unity.

2. Basic structure of injective gamma modules :

An R-module A is called N — injective if for every submodule X of N , any
homomorphism f from X to A can be extended to a homomorphism from N to A [5]. In
this section we introduce the concept of injectivegamma module,many characterizations
and properties of injective gamma modules are given.

Definition 1.1. Let M and N be two R — modules. Then M is called N — injective
Ry — module if for any R — submodule A of N and for any R, — homomorphism
f+A— M there exists an R — homomorphism g: N — M such that gi = f where i is the
R — inclusion mapping.

Proposition 1.2. If M is N — injective R — module and A is R — submodule of N , then
M is A — injective and N/A — injective.

Proof.It is clear that M is A — injective R — module if A=N . Let X/A be an R —
submodule of N/A and f:X/A —» M is an R — homomorphism, let 7 : N - N/A be the
natural R — homomorphism and 7’ = =, , since M is N — injective then there exists an
R — homomorphism a: N - M such that a|, = fr’. Now a(4) = fr'(A) = f(0) = 0
, then A = kerm C kera, hence by [1,proposition 5.20] there exists 8: N/A — M such
that 6 = a and for any x € X we have 8(x + A) = 0n(x) = a(x) = fn'(x) = f(x +
A), thus 6 extends f and therefore M is N/A — injective.

In the following proposition the concept of N — injective can be reduced to elements
of N.

Proposition 1.3. If M and N are two R —modules , then M is N — injective if and only if
M is (a) — injective R — module for each a € N.

Proof. For any R —submodule A of an Ry —module N and a R —homomorphism f
from A to M, by Zorn's lemma there exists maximal element (4., f-) such that A < 4. and
fo extends of f to A.. If A. = N, then the proof is complete, if not there exists x € N — A-
,let L={reR:rI'x<c A.}, then L is an ideal of R, define an R —homomorphism
0:1y,x - M by 0(ry.x) = fo(ry.x) for each ry,x € Iy,x, by assumption 6 can extended
to an Ry — homomorphism A:(x) > M. Let ¢Y:C=A.+{x) > M by Y(a-+
X nyix) = fo(as) + A(XT riyix) for each a- € A and XY= ry;x € (x). Then ¢ is
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R — homomorphism which is contradiction with maximality of (4., f-), hence A. =N
and f- extends f to N, thus M is N — injective Rj- — module.

Proposition 1.4. An R — module M is (;¢; N;) —injective R — module if and only if
M is N; —injective R — module for eachi € I.

Proof.(=) by proposition(1.2). (<) Let =@;¢; N; , for any Rp—submodule A of an
R —module N and a R —homomorphism f from A to M, by Zorn's lemma there exists
maximal element (N., f-) such that N < N- and f- extends of f to N.. If No = N, then the
proof is complete, if not there exists x € N — N. , since M is N; — injective then M is
(x) — injective , thus fo can extended to an R — homomorphism ¢:C = A-+(x) > M
which is contradiction, thus M is N —injective R — module.

Lemma 1.5. Let {E;: 1 € A} be family of R — modules.Then [[;e4E; is N — injective
Ry — module if and only if E; is N — injective R — module for each 1 € A and each
R — module N.

Proof. Put E=[[,c4E; and denote the injections and projections by: ¢;: E; - E and
m;: E — E; respectively. Assume E; is injective R — module for each A € A, for any
R —submodule A of an R —module N and a R —homomorphism f from A to E , there
exists g, € Hompg.(N,Ej) such that g,i = m,f, define an R —homomorphism g: N —
E by g(b) = (g1(b))seq for each b € N and gi(a) = (g;t(a))leA = (nlf(a))/leA =
f(a) for each a € A, thus E is injective R — module. Conversely, if E is N — injective
Ry — module and for 2 € A, let A be an R —submodule of N and u:A — E; be an R —
homomorphism, since E is N — injective then there exists h € Homg.(N,E) such that
hi = @ u , define an Ry — homomorphism h':N — E; by h'(b) = myh(b) for each
b e N. Then h'(a) = myh(a) = myeu(a) = u(a) for each a € N. Thus E; is N —
injective R — module for each A € A.

Definition 1.6. An R — module M is called injective R — module if for any R —
submodule A of an R — module B and for any R — homomorphism f: A — M there
exists an R — homomorphism g: N — M such that gi = f where i is the R — inclusion
mapping. An R — module M s injective if it is N — injective for any R — module N.

The following proposition shows that in order M to be gamma injective R —module,
it's enough to be injective gamma relative to the I —ring R.

Proposition 1.7. Let M be an Rr— module. Then the following statements are

equivalent:

(a) M is injective R — module.

(b) For any ideal I of I" —ring R and R —homomorphism f:1 - M , there exists R —
homomorphism g: R — M such that gi = f where i is inclusion mapping of I into R.

(c) For any exact sequence 0 > A - B - C — 0 of R — modules, the sequence 0 —
Homg.(C,M) - Homg, (B,M) —» Homg.(A,M) - 0 is exact.

Proof. (a)=(b) Clear.(b) =(a) Let A be a R — submodule of an R — modules B and f

is Ry — homomorphisms from A to M, let Q ={(4",f'):A<A’'<B,f' extend of

f toA'}, then by Zorn's lemma Q has a maximal element (4.,f-) say. If A. # B then
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there exists x € B — A, let C = A- + Ry.x which is R —submodule of B contains A-
properly , define an ideal I ={r€eR:ry.x€ A.,y, €Il'}. Define an Rp-—
homomorphism 6:1 - M by 6(r) = fo-(ry.x) for each € , by assumption there
exists R — homomorphism A:R — M such that Ai = 8. Define y:C = A-+ Ry.x - M
by ¥ (a- + ry.x) = fo-(a-) + A(r) for each a. € A.,r € R, then (C, ) € 2 contradiction
with maximal of (4., /), thus A- = B and fo eextends f toB. (a)e(c) Easy to show that

(c) equivalent to, if 0-A—-B exact then the sequence
(o)
Homg,.(B,M) — Homg.(A,M) — 0 is exact where ®(g) = g6 , Vg € Homg.(B,M),

for any R —submodule A of an R —module B and an R —homomorphism f from A to
M, there exists g € Hompg (B, M) such that gi = f = ®(g) .

Theorem(Bear's gamma condition) 1.8. Let M be unitary Ry — module. Then M is
injective gamma module if and only if for each left ideal | of I'—ring R and R, —
homomorphism f:1 —» M there is m € M such that f(x) = xy,m for each x €I, for
somey,€T.
Proof. Suppose M is injective gamma module , | an ideal of I'—ring R and f:1 - M is
an Rp— homomorphism, then there exists R — homomorphism g:R — M extends f,
put g(1) =m then f(x) = f(xy.1) = glxy,1) = xy.g(1) = xy,m . Conversely, for
any ideal I of R and R, — homomorphism f:I — M, there exists m € M such that
f(x) = xy.m for each x €I, for some y, € I' , define g:R - M by g(r) = ry.m for
each r € R , it's clear that g is R — homomorphism and g extends to f, hence M is
injective R — module.

An Ry — submodule N of R,— module M is a direct summand if there exists an
R — submodule K of M suchthat M = N@Kand N N K = 0.

Proposition 1.9. An R — module M is injective if and only if it is a direct summand of
every extension of itself.

Proof. Assume that M is injective and E is an extension of M, then there exists an R —
homomorphism & from E to M such that 6, = idy, ,for each e € E we have 6(e) € M
and 8(e) = 6(0(e)) so 8(e) —6(6(e)) = 0 hence B(e—06(e)) =0 then e — B(e) €
ker(6) so e € M +ker(0) hence E =M +ker() but M nker(6) =0, then E =
M@ker(8). Conversely, M can be embedded in E(M), then M is a direct summand of
E(M) and by example(1.10) M is injective.

Examples and Remarks 1.10.
1- Every injective R-module is injective Rp — module.

2- LetQ bearing, R={(* Y):x,y€Q}, andI‘={()6):y € Q}. Define - : R X T X

R — Rby (x y) ()6) (a b)= (xya xyb),let I ={(0 x):x € Q} whichis a left
ideal of R, define an R — homomorphism f:I - R by f(0 x)= (x 0),if Ris
injective gamma R — module, then for each A €1 there exits B € R such that

f(A) =Ay.B , take A=(0 a)+#0 , ]/o:(](;) and B=(z y) , but Ay.B =

0 a) (g) (z y)=(0 0) # f(A) a contradiction.
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3- A direct summand of injective R;- — module is injective R — module, for any direct
summand N of R — module M, let A be R — submodule of an R — module B and
f is Rp— homomorphism from A to N, if m:M - N is the projection R, —
homomorphism, then f can extended to R — homomorphism A from B to M ,
define a:B —» N by a = A, so a(a) = wA(a) = 7(A(a)) = n(f (@) = f(a) for
eacha € A.

4- AT — ring R is called simple I"— ring if the only non zero ideal is itself, by
theorem(1.8) every R — module over simple I — ring is injective. In particular, Z,
is simple Z — ring, so every Z,, — module is injective.

2. Divisiblegamma modules
In this part we will introduce the concept of gamma divisible R - — module and discusses
the relation between gamma divisible R - — module and injective gamma R — module.

Definition 2.1. Let R be a I'-ring an element r(+ 0) € R is called Ry — zero-divisor if
there exists y(# 0) € I',s(# 0) € R such that rys = 0, that is, (# 0) € R is R — zero-
divisor if for each s € R and for each y(# 0) € I" such that if rys = 0, thens = 0.

Definition 2.2. Let M be an R — module , an element a € M is called Ry — divisible if
for each r€ R which is not Rp— zero-divisor and for each y(# 0) € I, there
exists a’ € M such that a = rya’, M is called gamma divisible Ry — module (shortily
R — divisible) if each element in M is R — divisible, that is , for each not R — zero-
divisor r € R then M=rI'M. An abelian group is Ry —divisible group if and only if it is
Z , — divisible module.

Examples 2.3.
1- Q as Z, — module is R —divisible.
2- Let M =Z, ,I'=2Z and R=Z, then M is not R —divisible, since 1 # n.(2m).x
foranyn € Z,2m € 2Z and x € Z,.

3-Let=Q ,r=Z7and M={(;),x,yeQ} , then for any ();)EM%;&OeQand

xq

. xq

n # 0, we have (y) = Sn ba |- thus M is R —divisibe.
pn

Let M be an R, — module , annihilator of an element r € R denoted by Anng(r)=
{s € R:sI'r = 0} which is ideal of R [1]. It's easy to proof the following lemmas:

Lemma 2.4. An R —module M is R —divisible if and only if for each m € M and a
not R — zero-divisor r € R such that Anng(r) € Anng(m), then there exists m' € M
such that m = rI'm/.

Lemma 2.5. Homomorphic image of R —divisible is R —divisible.
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Corollary 2.6. If M is R —divisible R —module and N is R —submodule, then M /N
also R —divisible.

Lemma 2.7. Let {Mp;:1€A} be family of R —divisibles, then [[ caM; is
R —divisible if and only if M, is R —divisible for each A € A.

A generator set of an R —module M is basis if each element m € M can be written in
only one way as m = 2.7*; r;¥;x; Where r; € R and y; € I', M is free if it has basis [6].

Lemma 2.8. Every R — module is epimorphic image of free R — module.

Proof. Let Y be generator set for M , then R = Ry-x; for each x; € Y by ¢,;:R — Ry-x;,
@x,(r) = ryox; for each r € R. since ¢,,(1) = 1y-x; = x;, then R = @;¢;Ry-x; =
DiciRy-0x, (1) and if XYicpm;ye,, (1) = Xicpsivepy, (1) , then Xiep(m;—
Si)V@x,(1) =0 and hence m; —s; = Yy (m; — s;) € Ryex;j N Yy Ry-x; = 0, thus

i#j i#j

RM = @;¢;Ry-x; has a basis {@,,(1):i€l} and so RY) is free [6], define an
R —homomorphism ¥:R(M > M by ¥(Xry.e., (1)) = Xnyex; , since for each
meM ,m=),cny-x; then ¥ is R —epimorphism.

Lemma 2.9. Every abelian group can be embedded in Z, — divisible group.
Proof. By lemma(2.8 ) M as abelian group is epimorphic image of a free Z, — module F,
so there exists an Z,— epimorphism ¢: F = M by [1,proposition 5.20] F / Ker(¢p) = M

, hence there exists an Z, — isomorphism ﬁ:F/Ker(q)) — M, if Y is a basis for F , then

F =®peyZ.1.b ,let D=Q) =@peyQ.Z. b, since Q. Z.b = Q, then by lemma(2.5)Q
is Z, — divisible and F is a subgroup of D , hence by Corollary(2.6) D = D/Ker(¢) is

Z,— divisible , then iB~1:M — D is Z; — monomorphism where i: F/Ker(q)) - D
inclusion map.

Lemma 2.10. Every injective R — module M is R — divisible.

Proof. Assume that a € M, for each non R — zero-divisor r € R and y(# 0) € I, let
[ = Ryr , hence | is an ideal of R, defineR; — homomorphism f:1 - M by f(syr) =
sy-afor each r € R, since M is injective, then by theorem(1.8) there exists a’ € M such
that f(x) = xy.a’ for each x €I, define an R, — submodule N = Ry-a’ of M and
g:N—-M by g(sy.a’)=sya', g is well define, since r is not R — zero-divisor and
R — homomorphism, hence a = ly.a = f(lyer) = f(r) = g(ry.a’) = sya’ , thus M
is a R — divisible.

Lemma 2.11. If R is principle ideal I' —domain and M is an R — module, then M is
injective R — module if and only if M is a R — divisible.

Proof. Let I =rI'R and f any R, —homomorphisms from | to M, since M is a R —
divisible, then there exists m € M such that f(r) = rym for fixedy € I', define g:R —
M by g(s) = sym for each s € R.
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Ameri and Sadeghi [1] proved if M is R —module, then Homg,.(R,M) is R —module
by -+ RXT x Homg.(R,M) - Homg (R,M) such that -(r,y, f) — ryf where
(ryf)(s) = f(rys). For each s,r € R,y €I' and f € Homg.(R,M), another proved
in next example and we will used this example in next lemma.

Example 2.12. If M is a left R — module , then Homg,.(R, M) is a left unitary R —
module by -: R X I'X Homg.(R,M) — Homg.(R,M) such that - (r,y,f)— ryf
where (ryf) (s) = f (sy.ry1), for eachs,r € R,y,y. €' and f € Homg.(M,N) where
1y, is the identity element, for each r,s,7, 7 € R,y,B € ' and f € Homg.(R,M) , then
v +1) = f((1 + 1)yeryl) = fGy.ryD+ flry.ryD) = Gy () +

(ry) () and (ryf) (sBry) = £ (sBr2)y.rvD) = f(sB(r2y.ry1)) = sB(ryf)(r2), thus
ryf € Hompg.(R, M), easy to verify that Homg.(R, M) is R — module with unitary 1y..

Lemma2.13. If M is R — divisible , then Hom,, (R,M) is injective R —module.

Proof. For any R,— submodule A of B and R,— homomorphism f from A to
Hom, (R,M), define ¢: Hom, (R,M) —» M by @(h) = (h)(1) if we regarded f and ¢
only as Z, — homomorphism, then there exists an Z, —homomorphism 6: B — M such
that ¢f = 6),. Define a Rp —homomorphism g:B — Hom, (R,M) by (g(b))(r) =
6(ry-b) for each r €R,y, € r'and b € B, then (g(a))(r) = 8(ry.a) = of (ry.a) =
o(f(ry.a) = (fry.a)(D) = (rr.f(@)(D), by example(212) (ry.f(@)(D) =
f@Qy.ry.1) = f(@)(r) , sO f = gja, therefore Hom, (R,M) is injective Rp—
module.

The following our main result show that there is enough gamma injective R — module.

Theorem 2.14. Every R — module M can be embedding in injective R — module
Proof. Assume M is an R — module, then by lemma (2.9) M as abelian group can be
embedded in Z, —divisible group M’, so there exists an Ry —monomorphism a:M —
M', define an Rp —monomorphism B:Homg,(R,M) — Homz,(R,M") by f(f) = af
for each f € Homg, (R,M). Now define an R —monomorphism ¢:M — Homz, (R, M)
by [¢(e)](r) =ry.e, for each r € R where y, € I', then Bp: M —» Homz,(R,M") is an
R —monomorphism , since M' is Z, —divisible , then by lemma(2.11) Homz,(R,M") is
injective R — module.

3. Essential extension Ry —module
In this part we extend the concept essential extension from category of R — module to the
category of R — module and investigate their properties.

Definition 3.1. Let N be an R — submodule of an R — module M , we say that N is an
essential extension of M if every nonzero Rp— submodule of M has nonzero
intersection with N. We also say that N essential Ry — submodule (or large Ry —
submodule) of M and write N <, M , in this case M is essential extention of N. Any
R — module is always an essential extension of itself, this essential extension is called
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trivial. Other essential extensions are called proper. The field of all rational numbers Q
considered as a Z, — module is an essential extension of Z.

In above definition to see R — submodule N of R — module M is essential , it is
enough to show that any nonzero cyclic R — submodule of M has nonzero intersection
with N as shows in the following proposition:

Proposition 3.2. An R — submodule N of R — module M is essential if and only if for
each nonzero element m in M, there is r;, 1y, ...,1, € R and y4, ¥, ..., ¥n € I’ such that
Yi=1Tiyim(# 0) € N.

Proof. Assume that N <, M and m(# 0) € M, then there exists x(# 0) € (m)N N, so
x =X nnyim(#0) € N. Conversely, let W be nonzero R — submodule of M and
w,(#0) e W, then there s n,r,...,7m€R and yq,¥2,..,¥n € such that
Die1hiYiwe(#0) € N, hence 0 #(w)NN S W NN.

The proof of the following lemma similar to those on modules.

Lemma 3.3. Let A,B and C be R — modules with A < B < C , then:
1- A<,Cifandonlyif A<,B andB <, C .
2- A<,B<CandA'<,B' <C,then AnNA'"<,BnB.
3- If f:C - Bis an R — homomorphism and 4 <, B, then f~1(4) <, C.
4-  If {A,: 1 € A} family of R — modules and if for each € A , A, has essential
extension By, then @ ;¢4 B; is essential extension of @ ¢4 A;.

Proposition 3.5. An R — module M is injective if and only if M has no proper essential
extensions.

Proof. Assume that M is injective and E is a proper essential extension of M, then from
Proposition(1.9) M is direct summand of E, hence there exists an R — submodule N such
that E =M @ N contradiction. Conversely, by theorem(2.14) M can be embedded in
injective R — module @, define 2 ={S < Q:SNM = 0} then 0 € 2 # ¢, 2 partially
order set with respect to inclusion, then by Zorn's lemma 2 has maximal member say N,
we shall show that Q =M+ N. Assume Q#M+N then M+N S Q so
(M+N)/N < Q/N, consider 0+ X/N & Q/N, then NcXandN # X, since N
maximal of 2 we have MNX #0and M NX € N therefore NS N+ (M nX)=Xn
(M + N),sothereexistsee XN (M+N)ande & N,hencee+ NeX/Nande + N €
M+N/N but e+N=#N, therefore e+ N(#0)eX/Nn(M+N)/N, so
(M+N)/N <, Q/N, since M/(M nN)=(M+N)/N <., Q/N but M has no proper
essential extension so (M + N)/N = Q/N hence Q = M @ N, thus M is injective.

The following lemma show that every essential extension of Ry — module M
contining in injective gamma extension of M.

Proposition 3.6. Let M be an R — module, E an essential extension of M and Q an
injective extension of M, then E can be embedding in Q.

Proof. Let i;:M —-E and i,:M — Q are inclusions, then there exists Ry —
homomorphism 6: E - Q such that 6i; =i, so M N kerf =0 , since E essential
extension of M, then ker6 = 0 thus 6 is R — monomorphism.
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Definition 3.7. Let E be an extension R — module of an R — module M, then E is said
to be a maximal essential extension of M if:

1- E essential extension of M.

2- If E' is a proper extension of E, then E’ is not essential extension of M.

Definition 3.8. Let Q be an extension R — module of an R — module M, then Q is said
to be a minimal injective extension of M if:

1- @ is injective.

2- If Q' is a proper R — submodule of Q which contains M, then Q' is not injective.

Proposition 3.9. Let M be an R —module and Q be an injective extension R — module
of M, then Q has an R — submodule E which is maximal essential extension of M.

Proof. Let 2 ={N <Q:M <, N < Q}}, then M € 02 # ¢, 2 partially order set with
respect to inclusion, then by Zorn's lemma 2 has maximal member say N’, let K be an
essential extention of N', then there exists an R — monomorphism 8: K — Q which
extends the inclusion map i: N’ — Q, for each L(# 0) < 6(K) , there exists 0 # x =

O(x.)EL, SO MN(x,)#0, let m,(#0) € MN{x.), hence m, =Y "¥iXs SO
(0 #)m, = 0(m.) = 0 ;e 1iVix.) = DieTiVif(x.) = Ly riVix EL,soM N L # 0,50
0(K) € 12, by maximality of N’ we have 8(K) = N',thus K = N'.

Proposition 3.10. Let M be an R — module and E be an essential extension R —
module of M, the following statements are equivalent :

1- E is an essential injective extension of M.

2- E is a maximal essential extension of M.

3- E is a minimal injective extension of M.
Proof. (1)&(2) by proposition(3.6). (2)=(3) Assume (2) then E has no proper essential
extension and by proposition(3.5) E is injective.(3)=(2) Assume (3) by proposition(3.9)
E has an Ry — submodule E" which is maximal essential extension of M, so injective,
hence E = E’, then E is maximal essential extension.

Definition 3.11. Any R — module satisfying the conditions of proposition(3.10) is called
an injective gamma hall (or injective gamma envelope) of M and we use E (M) to stand
for it. The injective hull always exist for any R — module which is unique up to
isomorphism as we show .

Proposition 3.12. Every R — module M has an injective gamma hull which is unique up
to isomorphism.

Proof. M can be embedded in injective R — module Q and by proposition(3.9) Q has
maximal essential extension R —submodule E, by proposition(3.10) E=E(M). Now we
shall prove the uniqueness of E up to isomorphism. Let E and E; are two injective
gamma hulls of M, then by proposition(3.6) there exists a R— monomorphism 6: E —
E;, so E = Im(6) < E,, from injectivity of E and by proposition(1.9) E; = Im(6) @ N.
Since M < Im(6), then M N N = 0 but E; essential extension of M we have N=0, hence
Im(0) = E;, that means 8 is R — epimorphism, thus & is R — isomorphism.
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Proposition 3.13. An R — module M is N — injective R — module if and only if f(N)
is R — submodule of M for every f € Homg.(E(N), E(M)).

Proof. Let X be an R — submodule of N and f: X — M is an R —homomorphism, since
E(M) is injective, then f extended to an Ry —homomorphism ¢: N — E(M) and by
assumption ¢ (N) is an R — submodule of M, hence ¢: N = M extends f, therefore M is
N-injective Rr— module. Conversely , for any f € Homg.(E(N),E(M)), define
X={a€eN:f(a) e M}, for each reR, ye and a € X, rya € N and f(rya) =
ryf(a) € M, so X is an R — submodule of N, since M is N — injective , then £}, can
extended to an R —homomorphism g: N - M. We claim that M n (g — ) (4) = 0, let
m€eM and a € A such that m = (9 — f)(a) , then f(a) = gla) —me M, thus a € X
and so m = g(a) — f(a) = f(a) — f(a) =0, therefore M N (g — f)(A) =0 but M is
essential in E(M), then (g — /) (4) = 0, hence g(4) = f(A) is R — submodule of M.
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