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Abstract. The influence of viscosity and viscoelasticity on the stability of a stratified 
elastic-viscous fluid is examined for viscoelastic polymeric solutions in the simultaneous 
presence of a variable horizontal magnetic field ( )( ) 0,0,  0 zHH   and uniform horizontal 

rotation ( )0,0, ΩΩ . These solutions are known as Walters’ (modelB′ ) fluid and their 
rheology is approximated by the Walters’ (modelB′ ) fluid constitutive relations, 
proposed by Walters’. The effects of coriolis force on the stability are chosen along the 
direction of the magnetic field and transverse to that of the gravitational 
field ( )g−,0,0 g .Assuming  the  exponential stratifications in density, viscosity and 
viscoelasticity, the appropriate solution for the case of free boundaries is obtained using a 
linearized  stability theory and normal mode analysis method. The dispersion relation is 
obtained and the behaviour of growth rates with respect to kinematic viscosity and 
kinematic viscoelasticity is examined numerically using Newton-Raphson method 
through the software Fortran-90 and Mathcad. In contrast to the Newtonian fluids, the 
system is found to be unstable, for stable stratifications, for small wavelength 
perturbations. It is found that the magnetic field stabilizes the certain wave number band, 
for unstable stratification in the presence of rotation and this wave number range 
increases with the increase in magnetic field and decreases with the increase in kinematic 
viscoelasticity implying thereby the stabilizing effect of magnetic field and kinematic 
viscoelasticity and the kinematic viscosity has a stabilizing effect on the system for the 
low wave number range. These results are shown graphically. 

Keywords: Walters’ (modelB′ ) fluid; magnetic field; rotation; viscosity; viscoelasticity. 

AMS Mathematics Subject Classification (2010): 74Axx 

1.Introduction 
The stability derived from the character of the equilibrium of an incompressible heavy 
fluid of variable density (i.e. of a heterogeneous fluid) was investigated by Rayleigh [1]. 
He demonstrated that the system is stable or unstable according as the density decreases 
everywhere or increases everywhere. An experimental demonstration of the development 
of the Rayleigh–Taylor instability was performed by Taylor [2].  The effect of a vertical 
magnetic field on the development of Rayleigh–Taylor instability was considered by 
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Hide [3]. Reid [4] studied the effect of surface tension and viscosity on the stability of 
two superposed fluids. The Rayleigh–Taylor instability of a Newtonian fluid has been 
studied by several authors accepting varying assumptions of hydrodynamics and 
hydromagnetics and Chandrasekhar [5] in his celebrated monograph has given a detailed 
account of these investigations. Bellman and Pennington [6] further investigated in detail 
illustrating the combined effects of viscosity and surface tension. Gupta [7] again studied 
the stability of a horizontal layer of a perfectly conducting fluid with continuous density 
and viscosity stratifications in the presence of a horizontal magnetic field. The Rayleigh–
Taylor instability problems arise in oceanography, limnology and engineering.  

Generally, the magnetic field has a stabilizing effect on the instability, but there 
are a few exceptions also. For example, Kent [8] has studied the effect of a horizontal 
magnetic field which varies in the vertical direction on the stability of parallel flows and 
has shown that the system is unstable under certain conditions, while in the absence of 
magnetic field the system is known to be stable. In stellar atmospheres and interiors, the 
magnetic field may be (and quite often is) variable and may altogether alter the nature of 
the instability. Coriolis force also plays an important role on the stability of the system. In 
all the above studies the fluid has been assumed to be Newtonian.  
 With the growing importance of non–Newtonian fluids in modern technology 
and industries, the investigations of such fluids are desirable. Fredricksen [9] has given a 
good review of non–Newtonian fluids whereas Joseph [10] has also considered the 
stability of viscoelastic fluids. There are many viscoelastic fluids which cannot be 
characterized either by Maxwell’s constitutive relations or by Oldroyd’s constitutive 
relations. One of such viscoelastic fluids is Walters’ (modelB′ ) fluid. Walters’ [11] has 
proposed a constitutive equation for such type of elastico–viscous fluids. Many other 
research workers have paid their attention towards the study of Walters’ (modelB′ ) fluid. 

The mixture of polymethyl  methacrylate and pyridine at 250 c containing 30.5 grams of 
polymers per litre behaves very nearly as the Walters’ (modelB′ ) viscoelastic fluid and 
which is proposed by Walters’ [12]. This class of fluids is used in the manufacture of 
parts of space cafts, aeroplane, tyres, belt conveyors, rops, cushions, seats, foams, 
plastics, engineering equipments etc. Sharma and Kumar [13] have studied the steady 
flow and heat transfer of Walters’ fluid (modelB′ ) through a porous pipe of uniform 
circular–cross section with small suction. Sharma and Kumar [14] have studied the 
stability of two superposed Walters’ (modelB′ ) viscoelastic fluid. The magnetic field 
stabilizes the system. The viscoelasticity of the medium has damping effects on the 
growth rates but has enhancing effects for certain ranges of the wave-numbers. Sharma et 
al. [15] have studied the stability of stratified Walters’ (modelB′ ) fluid in the presence of 
horizontal magnetic field and rotation in porous medium. Anika and Hoque  [16] have 
studied the thermal buoyancy force effects on developed flow considering hall and  ion-
slip current. Rahman et al. [17] have studied the thermophoresis effect on MHD  forced 
convection  on  a fluid over a continuous  linear stretching sheet in the presence of heat 
generation and power-law temperature. Yadav and Sharma [18] have studied the effects 
of porous medium on MHD fluid flow along a stretching cylinder. 

Keeping  in  mind  the  importance  of  non–Newtonian  fluids  in  modern  
technology and  their various  applications  mentioned  above, the  present  paper is  
devoted  to consider the  stability of  rotating  stratified elastico–viscous  Walters’ 
(modelB′ ) fluid  in the presence of  variable magnetic field and rotation. 
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2. Mathematical formulation of the problem 
The initial stationary state whose stability we wish to examine is that of an 
incompressible, heterogeneous infinitely extending and conducting ( )→∝σ  elastico–

viscous Walters’ (modelB′ ) fluid of thickness d  bounded by the planes dz ,0= and   
of variable density, kinematic viscosity and viscoelasticity, arranged in horizontal strata; 

so that the free surface is almost horizontal and the electrical conductivity 
σπµ

η
e4

1=  is 

zero.  The fluid is acted on by gravity force ( )g−,0,0 g , a uniform horizontal rotation 

( )0,0, ΩΩ  and a  variable horizontal magnetic field ( )( ) 0,0,  0 zHH .The character of the 

equilibrium of this stationary state is determined by supposing that the system is slightly 
disturbed and then, following its further evolution. 
        The equations expressing conservation of momentum, mass, incompressibility and 
Maxwell’s equations for the elastico–viscous Walters’ (modelB′ ) fluid are 
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where eµ , the magnetic permeability, is assumed to be constant. Equation (3) represents 

the fact that the density of a particle remains unchanged as we follow it with its motion.   
Let ( ) ,,       , wvuδp,     vδρ  and ( ) ,,  zyx hhhh  denote, respectively, the perturbations in 

density ( )zρ , pressure ( )zp , velocity v ( )0,0,0  and horizontal magnetic field 

( )0 ,0 , HH . Then the equations (1)–(5) after perturbations in the cartesian form become  
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Analyzing the disturbances into normal modes, we seek solutions whose dependence on  
zyx  , ,  and time t  is given by 

( )ntyikxikzf yx ++ exp)( ,                       (24) 

where )(zf  is the some function of z–only; xk , yk  are the wave-numbers in the x– 

and y –directions, respectively, ( ) 2
1

22
yx kkk +=  is the resultant wave-number and n  is 

the growth rate of the disturbance which is, in general, a complex constant. 
Equations (15)–(23) using expression (24) become 
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Now substituting the values of yx hh    ,  and zh  from equations (31)–(33) in equations 
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where  uikvik yxz −=ζ ,  is  the z –component of vorticity. 

Multiplying equations (34) and (35) by yik−  and xik , respectively, and then adding we 
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Substituting the value of  zζ  in equation (35), we get 
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Multiplying equations (34) and (36) by xik−  and yik− , respectively, and then adding 

and using (28), we obtain 
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Eliminating  u ,v  and pδ from equations (35)–(39) using equations (29),  after little 
algebra, we get 
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Equation (40) is the general equation formulating the effect of variable magnetic field 
and uniform rotation on the stability of stratified Walters’ (modelB′ ) fluid. 
 
3. The case of exponentially varying stratifications 
In order to obtain the solution of the stability problem of a layer of Walters’ (modelB′ ) 
fluid, we suppose that the densityρ , viscosityµ  and viscoelasticity µ ′  vary 
exponentially along the vertical direction i.e.  
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Using the stratifications of the form (41), equation (40) transforms to 
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Considering the case of two free boundaries, we must have 
02 == wDw   at 0=z  and dz = .                                                                        (43)                                                

The appropriate solution of equation (42) satisfying the above boundary conditions is 
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where  m  is an integer and 0A  is a constant. 

Substituting the value of w  from equation (44) in equation (42) we obtain dispersion 
relation 
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Equation (45) is biquadratic in n  and is the dispersion relation governing the effects of 
uniform rotation, variable horizontal magnetic field, viscosity and viscoelasticity on the 
stability of stratified Walters’ (modelB′ ) fluid. 
 
4. Results and discussions 
(a) Case of stable stratifications (i.e. <1β 0 ). Equation (45) does not admit any positive 
real root or complex root with positive real part using Routh–Hurwitz criterion; therefore, 
the system is always stable for disturbances of all wave-number.  
 (b) Case of unstable stratifications (i.e. >1β 0 ). If >1β 0 ,  g
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constant term in the equation (45) is negative and therefore has at least one root with 
positive real part using Routh–Hurwitz criterion; so the system is unstable for all wave-
numbers satisfying the inequality  
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admit of any positive real root or complex root with positive real part, therefore, the 
system is stable. The system is clearly unstable in the absence of magnetic field, rotation 
and for non–viscoelastic fluid. 
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For >1β 0 , the constant term in the equation (45) is negative and therefore has at least 
one root with positive real part   therefore the system is clearly unstable. The magnetic 
field, therefore, stabilizes potentially unstable stratifications for small wave-length 
perturbations  
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dmVgd
k

A

A βπθβ −−
> .                                                                        (48) 

Also, it is clear that the wave-number range, for which the potentially unstable system 
gets stabilized, increases with the increase in magnetic field and decreases with the 
increase in kinematic viscoelasticity. All long wave-length perturbations satisfying 
equation (48) remain unstable and are not stabilized by magnetic field.  
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The behaviour of growth rates with respect to kinematic viscosity 0υ , kinematic 

viscoelasticity 0υ ′  and square of the Alfvén velocity 2
AV  satisfying equation (45) has been 

examined numerically using Newton–Raphson method through the software Mathcad. 
Figure (1) shows the variation of growth rate rn  (positive real value of n ) with respect 

to the wave-number k  for fixed permissible values of   ,cm 6   ,1   ,2 11 === dmβ 1=Ω  

revolution/minute, 10 =′υ , 55  ,45cos  ,cm/s980 202 === Ax Vkkg  for three values of 

=′0υ 2, 3 and 4 respectively. These values are the permissible values for the respective 

parameters and are in good agreement with the corresponding values used by 
Chandrasekhar [5] while describing various hydrodynamic and hydromagnetic stability 
problems. The graph shows that for fixed wave-numbers, the growth rate increases for  
certain wave number with the increase in kinematic viscoelasticity 0υ ′ , which indicates 

the destabilizing effect of viscoelasticity whereas the growth rate decreases for certain 
wave numbers  implying thereby the stabilizing effect of kinematic viscoelasticity on the 
system.   
    Figure (2) shows the variation of growth rate rn  (positive real value of n ) with respect 

to the wave-numberk for fixed permissible values of   ,cm 6   ,1   ,2 11 === dmβ 1=Ω  

revolution/minute, 10 =′υ , 55  ,45cos  ,cm/s980 202 === Ax Vkkg  for three values of 

=0υ 2, 4 and 6 respectively. The graph shows that for fixed wave-numbers, the growth 

rate increases for certain wave number with the increase in kinematic viscosity 0υ  which 

indicates the destabilizing influence of kinematic viscosity, whereas the growth rate 
decreases for certain wave numbers, implying thereby the stabilizing effect of kinematic 
viscosity on the system.  
       Figure (3) shows the variation of growth rate rn  (positive real value of n ) with 

respect to wave-numberk for fixed permissible values of ,cm 6  ,1  ,2 11 === dmβ 1=Ω  

revolution/minute, =0υ 4, 2 0 =′υ , 02 45cos  ,cm/s 980 kkg x ==   for two values of  

=2
AV 15 and 55 respectively. The graph shows that for fixed wave-numbers, the growth 

rate increases with the increase in the square of the Alfvén velocity 2
AV  for certain wave 

number which indicates the destabilizing influence of the square of the Alfvén velocity, 
whereas growth rate decreases for certain wave numbers, implying thereby the stabilizing 
effect of the square of the Alfvén velocity on the system.     
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Figure 1: The variation of  rn with wave-number k  for three values of 4,3,20 =′υ .    
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Figure 2: The variation of  

rn with wave-number k  for three values of  6 ,4 ,20 =υ .    
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Figure 3: The variation of  

rn  with wave-number k  for two values of 55 ,152 =AV .  
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