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Abstract. The influence of viscosity and viscoelasticity tive stability of a stratified
elastic-viscous fluid is examined for viscoelagtidymeric solutions in the simultaneous
presence of a variable horizontal magnetic figlflH (z) 00) and uniform horizontal

rotation (2 ,00). These solutions are known as Walters’ (m@iglfluid and their

rheology is approximated by the Walters’ (magtel fluid constitutive relations,
proposed by Walters'. The effects of coriolis fome the stability are chosen along the
direction of the magnetic field and transverse foatt of the gravitational
fieldg (0, 0,-g).Assuming the exponential stratifications in dgnsiiscosity and

viscoelasticity, the appropriate solution for tleese of free boundaries is obtained using a
linearized stability theory and normal mode analysethod. The dispersion relation is
obtained and the behaviour of growth rates withpees to kinematic viscosity and
kinematic viscoelasticity is examined numericallging Newton-Raphson method
through the software Fortran-90 and Mathcad. Intresh to the Newtonian fluids, the
system is found to be unstable, for stable stcatiifbns, for small wavelength
perturbations. It is found that the magnetic figtdbilizes the certain wave number band,
for unstable stratification in the presence of tiota and this wave number range
increases with the increase in magnetic field asstahses with the increase in kinematic
viscoelasticity implying thereby the stabilizingfesft of magnetic field and kinematic
viscoelasticity and the kinematic viscosity hagab#tizing effect on the system for the
low wave number range. These results are showrhigafy.
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1.Introduction

The stability derived from the character of theiligium of an incompressible heavy
fluid of variable density (i.e. of a heterogeneflugl) was investigated by Rayleigh [1].
He demonstrated that the system is stable or uesaaicording as the density decreases
everywhere or increases everywhere. An experimelalonstration of the development
of the Rayleigh—Taylor instability was performed Bgylor [2]. The effect of a vertical
magnetic field on the development of Rayleigh—Taylwstability was considered by
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Hide [3]. Reid [4] studied the effect of surfaceig®n and viscosity on the stability of
two superposed fluids. The Rayleigh—Taylor instgbibf a Newtonian fluid has been
studied by several authors accepting varying assamgp of hydrodynamics and
hydromagnetics and Chandrasekhar [5] in his cetebranonograph has given a detailed
account of these investigations. Bellman and Peaim[6] further investigated in detail
illustrating the combined effects of viscosity awdface tension. Gupta [7] again studied
the stability of a horizontal layer of a perfectignducting fluid with continuous density
and viscosity stratifications in the presence bbdzontal magnetic field. The Rayleigh—
Taylor instability problems arise in oceanogragimgnology and engineering.

Generally, the magnetic field has a stabilizingeffon the instability, but there
are a few exceptions also. For example, Kent [8] $tadied the effect of a horizontal
magnetic field which varies in the vertical direction the stability of parallel flows and
has shown that the system is unstable under cartaiditions, while in the absence of
magnetic field the system is known to be stablestéilar atmospheres and interiors, the
magnetic field may be (and quite often is) varisdohel may altogether alter the nature of
the instability. Coriolis force also plays an imgzont role on the stability of the system. In
all the above studies the fluid has been assumed Mewtonian.

With the growing importance of non—-Newtonian fliith modern technology
and industries, the investigations of such fluids desirable. Fredricksen [9] has given a
good review of non—Newtonian fluids whereas Josgl] has also considered the
stability of viscoelastic fluids. There are manysogdelastic fluids which cannot be
characterized either by Maxwell's constitutive tiglas or by Oldroyd’'s constitutive
relations. One of such viscoelastic fluids is WaltémodelB’) fluid. Walters’ [11] has
proposed a constitutive equation for such type la$teEo—viscous fluids. Many other
research workers have paid their attention towtrdsstudy of Walters’ (mods!) fluid.

The mixture of polymethyl methacrylate and pyrilat 25 ¢ containing 30.5 grams of
polymers per litre behaves very nearly as the W&l{gnodelB’) viscoelastic fluid and
which is proposed by Walters’ [12]. This class bfids is used in the manufacture of
parts of space cafts, aeroplane, tyres, belt camseyops, cushions, seats, foams,
plastics, engineering equipments etc. Sharma anmdalKy13] have studied the steady
flow and heat transfer of Walters’ fluid (modg) through a porous pipe of uniform
circular—cross section with small suction. Sharma &umar [14] have studied the
stability of two superposed Walters’ (mo&¢) viscoelastic fluid. The magnetic field
stabilizes the system. The viscoelasticity of thedmam has damping effects on the
growth rates but has enhancing effects for certiges of the wave-numbers. Shaeha
al. [15] have studied the stability of stratified Walt’ (modeB') fluid in the presence of
horizontal magnetic field and rotation in porousdmen. Anika and Hoque [16] have
studied the thermal buoyancy force effects on dgpes flow considering hall and ion-
slip current. Rahmaet al. [17] have studied the thermophoresis effect on Miftibced
convection on a fluid over a continuous lineetshing sheet in the presence of heat
generation and power-law temperature. Yadav andn&hfl8] have studied the effects
of porous medium on MHD fluid flow along a stretogicylinder.

Keeping in mind the importance of non—Newdonifluids in modern
technology and their various applications memdh above, the present paper is
devoted to consider the stability of rotatingratified elastico—viscous Walters’
(modelB’) fluid in the presence of variable magneticdiahd rotation.
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2. Mathematical formulation of the problem
The initial stationary state whose stability we hwigo examine is that of an
incompressible, heterogeneous infinitely extendamgl conducting(a —>D) elastico—
viscous Walters’ (modd’) fluid of thicknessd bounded by the planez = 0,d and
of variable density, kinematic viscosity and videsécity, arranged in horizontal strata;
1
4o
zero. The fluid is acted on by gravity forgg(00-g), a uniform horizontal rotation
2(©00) and a variable horizontal magnetic fie( H,(z) ,00).The character of the

equilibrium of this stationary state is determifgdsupposing that the system is slightly
disturbed and then, following its further evolution

The equations expressing conservation ahemum, mass, incompressibility and
Maxwell's equations for the elastico—viscous WaltémodelB') fluid are

is

so that the free surface is almost horizontal &vedeiectrical conductivity; =

pB:+(vDD)V}‘DPWQ+(”_”'aatjmzv+2p(vx0)+ﬁl;r[(DXH)XH]’ @
Olv =0, @
%+(VDD),0=O, 3)
OlH =0, (4)
o =0 xH). ©

where 4, , the magnetic permeability, is assumed to be emtsEquation (3) represents
the fact that the density of a particle remainshamgied as we follow it with its motion.
Let 0o, Jp, v (u,v,w) and A (h h. ., h ) denote, respectively, the perturbations in

X1y Tz
density p(z), pressure p(z), velocity V(0,0,0) and horizontal magnetic field
H(H ,0,0). Then the equations (1)—(5) after perturbatiorthéncartesian form become

p6u+p(u6u +V6u +W6uj = —:5p+(,u—,u’aatJD2u ¢ He
X

d
[hZGZHO]+2pvQ:(6)

ot ox oy oz 47

ov ov  ov ov)_ 0 , 0 2, MH( 0 d

-+ Uu—+VvV—+wW— 1 [ =——Fp + - — |0vV+Z=2 “h-——h |- (7)
Pat p( ax  ay azj ay P (“ H atj ¥ zl,vr[axrL ame Zoua
pM+p PRI :—aép+(,u—,u’a]D2W

ot X oy 0z 0z ot

HeHofo 0, _h, 0, |_ (8)
" an (i)xhZ azhX HOOZHOJ 0P,
u oV ow_ 9)(
0x 0y 0z

0 00
—(dp)+w===0, (10)
at(p) 0z
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Ih+9h +9h =0, (11)
ox * oy 0z

0 0 0
—h, =—ju(H,+h )-uh,t——qw(H,+h )-uht, 12
at X ax{ ( 0 x) y} az{ ( 0 x) z} ( )
0 0 0
—h, = vh, —wh uh, -v(H,+h ), 13
oy = —{vh, —wn }- = {uh, -v(Ho+h,)} (13
0 0 0
—nh H,+h uh ;——1vh —wh, |, 14
5 = ol wlHo+h)-un}={vh, —wn (14

Ju 0 , 0 > M 0

u-_95; -y — |0%u+=2h, —H +20vQ, 15
Pat” "axPT (,u H atj am oz 0T P 15)

ov d , 0 s M H( 0 0

= ——0pt+| -y — |+ Zh -—h [-2puQ, (16)
Pat " oy P (,u H atj amr (ax Y ] P

ow_ 0 , 0 ) HUHy(0h, dh h, 0H,

—=——0p+| u—- ' — |0°w+== Z - X —_X -gop, 17

pat 0z P (,u H atj ar [ ox 0z H, oz 9P ()
Ju av ow _o, (18)
ox ay oz
0 0o _
—\do)+w—=0, 19
S (o) w (19)
ih +ih +ih =0, (20)
ox * oy ' oz °

0 0 0
—h =H,—u-w—H,, 21
gt kT oUW Mo 1)
0 0
—h, =H,—V, 22
ot ¥’ %ox (22)
ihz:HoiW' (23)
ot ox

Analyzing the disturbances into normal modes, vek s®lutions whose dependence on
X, Y, 2 and timet is given by

f (2) expl ik, x+ik,y+nt), (24)
where f (z) is the some function of —only; k,, ky are the wave-numbers in the-

and y —directions, respectivelyk = (kx2 +k; )? is the resultant wave-number andis

the growth rate of the disturbance which is, inegah a complex constant.
Equations (15)—(23) using expression (24) become

pnu= —ikX(5p+(,u—,u'n)(D2 - kz)u +&hZ DH, +2povQ, (25)

an:—iky5p+(,u—,u'n)(D2—kz)v+'ueﬂ (ik,h, —ik,h,)+2pu0, (26)
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pnw=-Dop+(u-pn)(D? - kz)"‘”ﬂj;_f'o(ikxhz - Dh, —hXDHOJ -9, 27)
0

ik, u+ik,v+Dw=0, (28)
ndp+wDp =0, (29)
ik,h, +ik h, +Dh, =0, (30)
nh, =ik H,u-wDH,, (31)
nh, =ik, H,v, (32)
nh, =ik H,w, (33)

Now substituting the values di,, h, and h, from equations (31)-(33) in equations
(25)—(27), we get

pnu=—ikx(5p+(,u—,u’n)(D2—kz)u+i -

o (1K How
47T

]DHO +2pVQ2, (34)

pnv=-ik,op+(u-pun)(D?-k?)v+ i’;H ['kxt:o(z +ikyWnDH°J—2pu.Q, (35)

UH, {_ KZHowW D(ikaO u_ WDHOJ

_ _ 2 _ 2
pnw=-Ddp+(u ,u'n)(D k)w+ . . . n

_(ik,Hou wWDH, \DH, , (36)
[t 1OHe )0 g (g

where ¢, =ik,v-ik u, is thez—component of vorticity.

Multiplying equations (34) and (35) byik, andik,, respectively, and then adding we
get
png, = pu+un)(D?-Kk?)¢, - He o

or ;- 2nQ Dw , 713
n? —n(+un)(D? -k?)+kV,’

keHo J,+2QDw,
4mrn

2

where p = H , U = ﬁ and v? = HeHo (square of the Alfvén’s velocity).
Y P Amp

Substituting the value of, in equation (35), we get

. H 22 nDw ik
:—k 5 — D2_k2 _/ue 0 X
pnv=-ik,op+ (u ,un)( )v 47n (nz—n(,u—,u'n)(Dz—kz)+ka§]

ﬂenolk wD(H,)-20uQ" (38)
Multiplying equations (34) and (36) byik, and —ik , respectively, and then adding

and using (28), we obtain

250t A — 2_p2 nQ HeHo 39
mDw=—k25p+ olu—un)(D k)DW+[n ool K kx]( Ik, Zp]Dw( )
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Eliminating u,Vv and Jp from equations (35)—(39) using equations (29),eralittle
algebra, we get

n,O(U—dn)(D2 —k2) w-p (n2 +kf\/§)(D2 —kz)w—[nz(Dp)[H - —n(u—un)él(?;z —k2)+kx2V2J_NEkf4D]7('HOZ):|

Dw + gk?(Dp)w=0. (40)
Equation (40) is the general equation formulating éffect of variable magnetic field
and uniform rotation on the stability of stratifiddalters’ (modeB") fluid.

3. The case of exponentially varying stratification
In order to obtain the solution of the stabilityoplem of a layer of Walters’ (mode!)

fluid, we suppose that the density viscosityy and viscoelasticity 4’ vary
exponentially along the vertical direction i.e.

p=poe’, p=p e, i = e (41)
where p,, u,, ty, H, and B are constants and so the kinematic viscosity

U[;”;"o} the kinematic viscoelasticityu.(:ﬂ':%] and the Alfvén velocity
P P P P

v o[ HeHe yz: 4H2 ) are constant everywhere.
A am 4mp

Using the stratifications of the form (41), equat{@0) transforms to

(07 e w2 (1 42 ) (07 w2 (o V) V2 K2 Bl —i)
n2 (Uo _%n)z

(o, i)
-9k, ~ )] (07 —k2w-— 1[40 +VACA +KvZ) - g k2 + V2]
n* (v, ~v4n)
=0. (42)
Considering the case of two free boundaries, we hase
w=D?w=0 atz=0andz=d. (43)

The appropriate solution of equation (42) satigjyiime above boundary conditions is
mrn z (44)

w = A, sin

where m is an integer andd, is a constant.
Substituting the value ofv from equation (44) in equation (42) we obtain disfon
relation

| (a-oiL) e zuoLg(l—u;Lg)]mz[Lz i +[z<:v: - 9{2’31](1—U;L3)+ -t ﬁl(l—u;Ls)}

+n{voL3[2kaA2 -gfikzj-iv: @ /;l(l_ung)} + ka,f[kf vi-Bfgic e kf)} —0 (45)

3
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where L3{kz+nff2]
d

Equation (45) is biquadratic in and is the dispersion relation governing the ¢ffexd
uniform rotation, variable horizontal magnetic dighiscosity and viscoelasticity on the
stability of stratified Walters’ (modé@') fluid.

4. Results and discussions

(a) Case of stable stratificationsi(e. g, < 0). Equation (45) does not admit any positive
real root or complex root with positive real pastng Routh—Hurwitz criterion; therefore,
the system is always stable for disturbances afalle-number.

(b) Case of unstable stratificationsi(e. B, >0). If g, >0, kVi(._B\_B ., the
1 :81 1 < g
k? L,

3

constant term in the equation (45) is negative tedefore has at least one root with

positive real part using Routh—Hurwitz criterio; the system is unstable for all wave-

numbers satisfying the inequality

(> < Bdgsec 0-V2(min® - pd?) (46)
VZ2d?

where @ is the angle betweek, andki.e. (k, = kcosd).

2
If B,>0, (unstable stratifications), & andy2 >A,equaﬁon (45) does not
-1
UL

admit of any positive real root or complex root lwjpositive real part, therefore, the
system is stable. The system is clearly unstabtbérabsence of magnetic field, rotation
and for non-viscoelastic fluid.

n“[ (1-u,Ly) 2] +1°[ 2 0,L5(1-0pL) |+ nz[ L ug—%ﬁ(l— v'L)
+LiV§ kfﬁl(l-uaLe)} n {vo g%} =0 (47)

Forg, >0, the constant term in the equation (45) is negatind therefore has at least

one root with positive real part therefore thetsgn is clearly unstable. The magnetic

field, therefore, stabilizes potentially unstablgatifications for small wave-length

perturbations

(2 » Bid’gsed 0-VZi(mr? - pd?) (48)
V/d?

Also, it is clear that the wave-number range, fdiiok the potentially unstable system

gets stabilized, increases with the increase innetag field and decreases with the

increase in kinematic viscoelasticity. All long veakength perturbations satisfying

equation (48) remain unstable and are not stabilzemagnetic field.
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The behaviour of growth rates with respect to kiagonviscosityy,, kinematic

viscoelasticityv, and square of the Alfvén velocity? satisfying equation (45) has been
examined numerically using Newton—-Raphson methodutih the software Mathcad
Figure (1) shows the variation of growth ratg (positive real value oh) with respect
to the wave-numbek for fixed permissible values @ =2, m =1, d = 6cm, Q=1
revolution/minute, U(’) =1, g =980cm/s’, k, =kcos45’, vV =55 for three values of

Uy =2, 3 and 4 respectively. These values are the psitofé values for the respective

parameters and are in good agreement with the spmmeling values used by
Chandrasekhar [5] while describing various hydradyit and hydromagnetic stability
problems. The graph shows that for fixed wave-nus\biae growth rate increases for

certain wave number with the increase in kinemvit'scoelasticityug, which indicates

the destabilizing effect of viscoelasticity wherahe growth rate decreases for certain
wave numbers implying thereby the stabilizing efffef kinematic viscoelasticity on the
system.

Figure (2) shows the variation of growth rate (positive real value ofi) with respect
to the wave-numbdcfor fixed permissible values @ =2, m =1 d=6cm, o=1
revolution/minutey, =1, g =980cm/s?, k, = kcos4s®, V2 =55 for three values of
U, =2, 4 and 6 respectively. The graph shows thatit@dfwave-numbers, the growth

rate increases for certain wave number with theegme in kinematic viscosity, which

indicates the destabilizing influence of kinematiscosity, whereas the growth rate
decreases for certain wave numbers, implying thetieb stabilizing effect of kinematic
viscosity on the system.

Figure (3) shows the variation of growtherat, (positive real value of) with
respect to wave-numbkifor fixed permissible values gf, =2, m =1, d = 6cm Q=1
revolution/minutey, =4, Uy =2, g=980cm/s’, k, =kcos45’ for two values of
V7 =15 and 55 respectively. The graph shows that f@dfiwave-numbers, the growth

rate increases with the increase in the squarbeoAtfvén velocityy2 for certain wave

number which indicates the destabilizing influenéehe square of the Alfvén velocity,
whereas growth rate decreases for certain wave agninplying thereby the stabilizing
effect of the square of the Alfvén velocity on gystem.
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Figure 3: The variation of n, with wave-numbek for two values of;? =15 55.
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