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Abstract. The first Zagreb index 1( )M G  of a graph G  is the sum of the square of the 

degrees of the vertices of a graph G  and the second Zagreb index 2( )M G  of a graph G  

is the sum of the products of the degrees of the pair of adjacent vertices of G . In this 
paper, the degree based topological indices 1( )M G  and 2( )M G  of rth -semi total point 

graphs of some graphs are obtained. 
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1. Introduction 
Throughout this paper, we consider only finite connected graphs without loops and 
multiple edges. Let G  be such a graph with vertex set ( )V G  and edge set ( )E G . The 

degree of a vertex ( )v V G∈  is the number of edges incident to v  and is denoted by 

( )Gd v . 

In theoretical chemistry, the physico-chemical properties of chemical compounds 
are often modeled by means of a molecular graph based structure descriptors, which are 
also referred to as topological indices. In 1972, Gutman and Trinajsti´c [2], introduced 
the degree based topological indices 1( )M G  and 2( )M G , called Zagreb indices.  

The first and second Zagreb indices are respectively defined as, 

                                                 
2

1
( )

( ) ( )G
v V G

M G d v
∈

= ∑                                                  (1.1) 

and 
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                                              2
( )

( ) ( ) ( )G G
uv E G

M G d u d v
∈

= ∑                                            (1.2) 

For more details and recent results on topological indices, we encourage the 
reader to consult the papers [3-19] and the references cited therein. 
 
2. Semi total point graphs 
In [1, 3], the semi-total point graph and the rth- semi total point graphs are defined as 
follows,  

Definition 2.1. [1] Let G  be a simple graph of order n. Then ( )R G be the graph 

obtained from G  by adding a new vertex corresponding to each edge of G  and by 
joining each new vertex to the end points, of the edge corresponding to it. It is called the 
semi total point graph. 

Definition 2.2. [2] Let G  be a simple graph of order n possessing m edges. The r th - semi 

total point graph of G, denoted by ( )rR G , is the graph obtained by adding r vertices to 
each edge of G and joining them to the end points of the respective edge. 
        Obviously this is equivalent to adding r triangles to each edge of G. The 

construction of ( )R G and ( )rR G  is illustrated by Figure 1. 

 
Figure 1: A graph G  and its semi total point graphs 

It is clear that, the semi total point graph of Definition 2.1 is the special case of 

( )rR G  for r = 1. In [2], S. R. Jog et al. obtained the characteristic polynomial, second 
stage spectrum and discussed some characteristic features of the r th- semi total point 
graphs of some graphs. 

In this paper, we have obtained the explicit formulae for first and second Zagreb 
indices of the r th- semi total point graphs of the graphs Path Pn, Cycle Cn, Star graph Sn, 
Complete graph Kn on n vertices and a Complete bipartite graph Ka,b. Also, in 
continuation to this the exact formulae for the first and second Zagreb indices of the k - 
regular graph, linegraph L(G) of a regular graph G and the corona product graph   
are presented. 
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  In this paper, for the sake of convenience, here onwards we use the notation 

( )rR G as just ( )R G . 
 
3. Main results 
In this section, we obtain the exact formulae for first and second Zagreb indices of r th -
semi total point graphs of some graphs. 

Let Pn be a path on n vertices. Then Pn has n − 1 edges. 

Theorem 3.1.     The first Zagreb index of R(Pn) is 
  M1(R(Pn)) = (4n − 6)(r + 1)2 + 4r(n − 1)                                      (3.1) 
Proof.  In R(Pn) there are n + (n − 1)r vertices, of which n − 2 vertices, each of degree 
2r+2, 2 vertices, each of degree r+1 and (n−1)r vertices, each of degree 2. 
Hence by Eqn.(1.1), we have, 
 M1(R(Pn)) = (n − 2)(2r + 2)2 + 2(r + 1)2 + (n − 1)r(2)2 
       = 4(n − 2)(r + 1)2 + 2(r + 1)2 + 4r(n − 1) 
       = (4n − 6)(r + 1)2 + 4r(n − 1)                                             

Theorem 3.2. For n > 2, the second Zagreb index of R(Pn) is 
  M2(R(Pn)) = 4(r + 1)[n(3r + 1) − 5r − 2]                                     (3.2) 
Proof. Let v1e1v2e2v3e3 . . . vn−1en−1vn be the path Pn on n vertices. In R(Pn), there are  (n − 
1) + (n − 1)2r = (n − 1)(2r + 1) edges. 

Among these (n − 1)(2r + 1) edges, there are 2 edges, namely, e1 and en−1 of Pn 
have the end vertices with degrees r + 1 and 2r + 2. The remaining n − 3 edges of Pn, 
namely, e2, e3, . . . , en−2, each have both the end vertices with degree 2r + 2. There are r 
edges, incident to each of the vertices v1 and vn (other than the edges of Pn), have the end 
vertices with degrees r + 1 and  2. Lastly, each of the remaining 2r + (n − 3)(2r) = 2r(n − 
2) edges of R(Pn), have the end vertices with degrees 2r + 2 and 2. Hence by Eqn.(1.2),  
we have, 
       M2(R(Pn)) = 2(r + 1)(2r + 2) + (n − 3)(2r + 2)(2r + 2) + 2r(r + 1)(2) 
      + 2r(n − 2)(2r + 2)(2) 
  = 4(r + 1)2 + 4(n − 3)(r + 1)2 + 4r(r + 1) + 8r(r + 1)(n − 2) 
  = 4(r + 1)[n(3r + 1) − 5r − 2]                                                  

Let Cn be a cycle graph on n vertices. Then Cn has n edges. 

Theorem 3.3. The first Zagreb index of R(Cn) is 
  M1(R(Cn)) = 4n(r2 + 3r + 1)                                  (3.3) 
Proof. In R(Cn) there are n + nr vertices, of which, each of the n vertices 
have degree 2r + 2 and each of the remaining nr vertices have degree 2. 
 Hence by Eqn.(1.1), 
      M1(R(Cn)) = n(2r + 2)2 + nr(2)2 
                      = 4n(r + 1)2 + 4nr 
           = 4n(r2 + 3r + 1)                                                                         

Theorem 3.4. The second Zagreb index of R(Cn) is 
                       M2(R(Cn)) = 4n(r + 1)(3r + 1)                                    (3.4) 
Proof. In R(Cn) there are n + n(2r) = n(2r + 1) edges, of which each of the n edges have 
end vertices of degree 2r + 2 and each of the remaining 2nr edges have the end vertices of 
degree 2r + 2 and 2.  Hence by Eqn.(1.2), we have, 
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        M2(R(Cn)) = n(2r + 2)(2r + 2) + 2nr(2r + 2)(2) 
               = 4n(r + 1)(3r + 1)                                                       

Let Sn is a star graph on n vertices. Then, Sn has n − 1 edges. 

Theorem 3.5. The first Zagreb index of R(Sn) is 
  M1(R(Sn)) = (n − 1)[4r + n(r + 1)2]                      (3.5) 
Proof. In R(Sn) there are (n−1)r+(n−1)+1 = (n−1)(r+1)+1 vertices, of which 1 vertex is of 
degree  (n−1)+(n−1)r = (n−1)(r+1), n−1 vertices, each of degree r + 1 and each of the 
remaining (n − 1)r vertices of degree 2. Hence by Eqn.(1.1), 
                      M1(R(Sn)) = (n − 1)2(r + 1)2 + (n − 1)(r + 1)2 + (n − 1)r(2)2 
                             = (n − 1)[4r + n(r + 1)2]                                           

Theorem 3.6. The second Zagreb index of R(Sn) is 
            M2(R(Sn)) = (n − 1)(r + 1)(3nr + n − r − 1)                                 (3.6) 
Proof. In R(Sn) there are (n − 1)(2r + 1) edges, of which there are n − 1 edges with end 
vertices of degrees r +1 and (n−1)(r +1), (n−1)r edges with end vertices of degrees 2 and 
(n−1)(r +1), (n−1)r edges with end vertices of degrees 2 and  
(r + 1). Hence by Eqn.(1.2), 
 M2(R(Sn)) = (n − 1)(r + 1)(n − 1)(r + 1) + (n − 1)r(2)(n − 1)(r + 1)  
                                 + (n − 1)r(2)(r + 1) 
       = (n − 1)(r + 1)(3nr + n − r − 1)                                          

Let Kn be a complete graph on n vertices. Then, Kn has 
2

n 
 
 

edges. 

Theorem 3.7. The first Zagreb index of R(Kn) is 
  M1(R(Kn)) = n(n − 1)2(r + 1)2 + 2nr(n − 1)                    (3.7) 

Proof. In R(Kn) there are ( )1 2
2

n
n r n r

 
+ = − +    
 

 vertices, of which n vertices of 

degree  (n − 1) + (n − 1)r = (n − 1)(r + 1), 
2

n
r

 
 
 

 vertices, each of degree 2. 

 Hence by Eqn.(1.1), we have, 

 M1(R(Kn)) = n(n − 1)2(r + 1)2 +
2

n 
 
 

r(2)2 

        = n(n − 1)2(r + 1)2 + 2nr(n − 1)                                         

Theorem 3.8. For 3n ≥ , the second Zagreb index of R(Kn) is 

  M2(R(Kn)) = 
1

2
n(n − 1)2(r + 1)[(n − 1)(r + 1) + 4r]                   (3.8) 

Proof.  In R(Kn) there are ( 1)(2 1)
(2 )

2 2 2

n n n n r
r

    − ++ =   
   

 edges, of which there are 

2

n 
 
 

edges, each with degree of both the end vertices equal to (n −1) + (n − 1)r = (n − 1)(r 
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+ 1), (2 )
2

n
r

 
 
 

 edges, each with degree of end vertices (n − 1)(r + 1) and 2.  Hence by 

Eqn.(1.2), we have, 

                  2 2
2( ( )) ( 1) ( 1) (2 )( 1)( 2)(2)

2 2n

n n
M R K n r r n r

   
= − + + − +   
   

 

                                   2 2( 1) ( 1)
( 1) ( 1) (2 )( 1)( 1)(2)

2 2

n n n n
n r r n r

− −= − + + − +
   

                                          

= ]4)1)(1)[(1()1(
2

1 2 rrnrnn =+−+−                             

Let Ka,b be a complete bipartite graph. Ka,b has a + b vertices and ab edges. 

Theorem 3.9. The first Zagreb index of R(Ka,b) is 

  M1(R(Ka,b)) = ab(a + b)(r + 1)2 + 4abr                                  (3.9) 
Proof. In R(Ka,b) there are a+b+abr vertices, of which there are a vertices of degree b+br, 
b vertices of degree a+ar and each of the remaining abr vertices of degree 2. Hence by 
Eqn.(1.1), we have, 
  M1(R(Ka,b)) = a(b + br)2 + b(a + ar)2 + abr(2)2 
           = ab2(r + 1)2 + a2b(r + 1)2 + 4abr 
           = ab(a + b)(r + 1)2 + 4abr                                       

Theorem 3.10. The second Zagreb index of R(Ka,b) is 
                          M2(R(Ka,b)) = a2b2(r + 1)2 + 2abr(r + 1)(a + b)                               (3.10) 
Proof. In R(Ka,b) there are ab + ab(2r) = ab(2r + 1) edges, of which there are ab edges 
with end vertices with degrees b + br and a + ar, abr edges with end vertices of each edge 
are of degrees b + r and 2 and abr edges with end vertices of each edge are of degrees a+r 
and 2. Hence by Eqn.(1.2), we have, 
  M2(R(Ka,b)) = ab(b + br)(a + ar) + abr(b + br)(2) + abr(a + ar)(2) 
         = a2b2(r + 1)2 + 2ab2r(r + 1) + 2a2br(r + 1) 
         = a2b2(r + 1)2 + 2abr(r + 1)(a + b)                         

For the special case a = b, we have the following Corollary: 

Corollary 3.11. Let Ka,a be the complete bipartite graph on 2a vertices. Then 
    M1(R(Ka,a)) = 2a2[a(r + 1)2 + 2r] 
    M2(R(Ka,a)) = a3(r + 1)[a(r + 1) + 4r]                                           (3.11) 

Let G be a k- regular graph of order n. Then G has 
2

nk
 edges. It is easy to see 

that, R(G) have (2 )
2 2

nk n
n r kr+ = +  vertices and (2 ) (2 1)

2 2 2

nk nk nk
r r+ = +  edges. 

In the following Theorems 3.12 and 3.13, we present the direct formulae for the 
first and second Zagreb indices of R(G). 

Theorem 3.12. The first Zagreb index of R(G) is 
                          M1(R(G)) = nk2(r + 1)2 + 2nrk                                                         (3.12) 
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Proof. Among (2 )
2

n
kr+  vertices of R(G) there are, n vertices, each of degree  

kr + k = k(r + 1) and 
2

nk
r  vertices, each with degree 2. Hence by Eqn.(1.1), 

                         M1(R(G)) = nk2(r + 1)2 + 2(2)
2

nk
r  

                                                  = nk2(r + 1)2 + 2nrk                                        

Theorem 3.13. The second Zagreb index of R(G) is 

              [ ]
2

2( ( )) ( 1) ( 1) 4
2

nk
M R G r k r r= + + +                               (3.13) 

Proof. Among 
2

nk
(2r + 1) edges of R(G) there are 

2

nk
 edges with end vertices, each of 

degree kr +k and 
2

nk
(2r) = nkr edges, each with end vertices of degree  

kr + k and 2. Hence by Eqn.(1.2), we have, 

  2( ( )) ( )( ) (2)( )
2

nk
M R G kr k kr k nkr kr k= + + + +  

          
3

2 2( 1) 2 ( 1)
2

nk
r nk r r= + + +  

                     [ ]
2

( 1) ( 1) 4
2

nk
r k r r= + + +

                                            

  

Let G be a graph of order n. Then the line graph of G will be denoted by L(G). 
For basic properties of line graphs, we refer to [20].  

It is known about the line graphs that, the line graph of a regular graph is a 
regular graph [12]. In particular, the line graph of a regular graph of order n and of degree 
k, is a regular graph with order n1 and regularity k1, where, 

                                   
1

1
;

2
n nk=

    
      k1 = 2k – 2 = 2(k - 1)                              (3.14) 

Further, it is easy to notice that the semi total point graph R(L(G)) of a line graph 

L(G)  have, (( 1) 1)
2

nk
k r− +  vertices and 

( 1)
(2 1)

2

nk k
r

− + edges. 

Therefore, we have the following corollaries. 

Corollary 3.14. Let G be a k-regular graph of order n, then the first Zagreb index of 
R(L(G)) is 
  M1(R(L(G))) = 2nk(k − 1)[(k − 1)(r + 1)2 + r]                              (3.15) 
From (3.14) and (3.12), the proof of the Corollary 3.14 is straight forward.  

Corollary 3.15. Let G be a k-regular graph of order n, then the second Zagreb index of 
R(L(G)) is 
  M2(R(L(G))) = 2nk(k − 1)2(r + 1)[(k − 1)(r + 1) + 2r]                       (3.16) 
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From (3.14) and (3.13), the proof of the Corollary 3.15 is straight forward. 
 
Corona product of two graphs: Let G and H be two graphs. The corona product G º H 
is obtained by taking one copy of G and |V (G)| copies of H, and by joining each vertex 
of the ith copy of H to the ith vertex of G.  
 Let G be a k-regular graph of order n and   be the complement of complete 

graph Kt of order t. Then tG Ko has nt(r + 1) + ( 2)
2

n
kr +  vertices and 

(2 ) (2 ) ( 2 )(1 2 )
2 2 2

nk nk n
r nt nt r k t r+ + + = + +  edges. 

Now we proceed to find M1 and M2 for ( )tR G Ko  

Theorem 3.16. The first Zagreb index of ( )tR G Ko is 

  ( )( )1 tM R G Ko = n(r + 1)2[(k + t)2 + t] + 2nr(k + 2t)                      (3.17) 

Proof. Among nt(r + 1) + ( 2)
2

n
kr + vertices of ( )tR G Ko , there are n vertices, each of 

degree  k + t + (k + t)r = (k + t)(r + 1), nt vertices, each of  degree r + 1, 
2

nk
r and ntr 

vertices, each of degree 2. Hence by Eqn.(1.1), we have, 

( )( )1 tM R G Ko = n(k + t)2(r + 1)2 + nt(r + 1)2 + 
2

nk
 r(2)2 + ntr(2)2 

    = n(r + 1)2[(k + t)2 + t] + 2nr(k + 2t)                                   

Theorem 3.17. The second Zagreb index of ( )tR G Ko is 

( )( )2 tM R G Ko  = 
2

nk
 (k + t)2(r + 1)2 + 2nkr(k + t)(r + 1) + nt(k + t)(r + 1)2 

         + 2ntr(r + 1)(k + t + 1)                                 (3.18)  

Proof. In ( )tR G Ko , there are 
2

nk
+ 

2

nk
(2r) + nt +nt(2r) = 

2

n
 (k+2t)(1+2r) edges. 

Among these edges, there are 
2

nk
 edges, with the degree of each of the end vertices 

(k+kr)+tr+t = (k+t)(r+1), nkr edges with degree of the end vertices (k+t)(r+1) and 2, nt 
edges with degree of the end vertices (k+t)(r+1)  and (r + 1), ntr edges with degree of the 
end vertices (k + t)(r + 1) and 2 and the remaining ntr edges with degree of the end 
vertices (r + 1) and 2. Hence by Eqn.(1.2), we have, 

( )( )2 tM R G Ko = 
2

nk
 (k + t)2(r + 1)2 + nkr(k + t)(r + 1)(2) 

                                + nt(k + t)(r + 1)(r + 1) + ntr(k + t)(r + 1)(2) 
          + ntr(r + 1)(2) 
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     = 
2

nk
 (k + t)2nkr(k + t)(r + 1) + nt(k + t)(r + 1)2 

         + 2ntr(r + 1)(k + t + 1)                                                   
Remarks: 
(1) For a = 1 and b = n − 1, formula (3.9) reduces to (3.5) and (3.10) reduces to (3.6). 
(2) For k = 2, formula (3.12) reduces to (3.3) and (3.13) reduces to (3.4). 
(3) For k = n − 1, formula (3.12) reduces to (3.7) and (3.13) reduces to (3.8).  
(4) For n = 2a and k = a, formulae (3.12) and (3.13) coincide with the formulae in  
Corollary 3.11 and  are as given below: 
 M1(R(G)) = M1(R(Ka,a)) = 2a2[a(r + 1)2 + 2r] 
 M2(R(G)) = M2(R(Ka,a)) = a3(r + 1)[a(r + 1) + 4r]                                           (3.19) 
(5) For n = 3, formulae (3.1) and (3.2) coincide with formulae (3.5) and (3.6)  
      coincide. And are as given below: 
 M1(R(P3)) = M1(R(S3)) = 6(r + 1)2 + 8r 
 M2(R(P3)) = M2(R(S3)) = 4(r + 1)(4r + 1)                   (3.20) 
(6) As ( )n nL C C≅  , therefore for 2K = , formula (3.15) reduces to (3.3) and  

      (3.16) reduces to (3.4). 
(7) For 0t = , formula (3.17) reduces to (3.12) and (3.18) reduces to (3.13).    
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