Annals of Pure and Applied Mathematics Vol. 12, No. 2, 2016, 111-122 ISSN: 2279-087X (P), 2279-0888(online) Published on 20 September 2016 www.researchmathsci.org

Some Special Properties of I-rough Topological Spaces

Boby P. Mathew¹ and Sunil Jacob John²

¹Department of Mathematics, St. Thomas College, Pala Kottayam – 686574, India. Email: <u>bobynitc@gmail.com</u>

²Department of Mathematics, National Institute of Technology, Calicut Calicut – 673601, India. Email: <u>sunil@nitc.ac.in</u>

Received 5 September 2016; accepted 14 September 2016

Abstract. This paper extends some essential topological properties in general topological spaces in to the I-rough topological spaces, the topology of the rough universe. I-rough compactness and I-rough Hausdorffness are introduced and several properties are investigated. I-rough compactness of subsets of I-rough Hausdorff spaces are studied. Also the paper establishes I-rough connectedness in an I-rough topological space.

Keywords: I-rough topological spaces; I-rough continuous functions; I-rough compactness; I-rough Hausdorffness; I-rough connectedness

Mathematics Subject Classification (2010): 54A05, 54D05, 54D30, 54D70, 03Exx

1. Introduction

Rough set theory was introduced by Pawlak [6]. There are many approaches in rough sets. Some reviews can be seen in [12, 13]. Several applications of rough set models can be seen in [7, 8]. Iwinski [1] introduced the set oriented view of rough set in an algebraic method. A topology on a non-empty set is a collection of subsets of it, satisfying certain axioms [5, 11]. Mathew & Sunil [3] introduced I-rough topological spaces. The notion of I-rough continuous functions can be seen in [4]. Some related works in generalized topological spaces and fuzzy topological spaces can be seen in [2, 9, 10]. This paper is an attempt to strengthen the topology of the rough universe by extending the concepts of compactness, Hausdorffness and connectedness of general topological spaces in to I-rough topological spaces.

2. Preliminaries

Some of the basic definitions for our further study need to be quoted before introducing the new concepts. Let U be any non-empty set and let β be a complete sub-algebra of the Boolean algebra 2^U of subsets of U. Then the pair (U, β) is called a rough universe [1]. Let (U, β) be a given fixed rough universe. Let R be a relation on β defined by $A = (A_1, A_2) \in R$ iff $A_1, A_2 \in \beta$ and $A_1 \subseteq A_2$. The elements of R are called rough sets and the elements of β are called exact sets [1]. In order to distinguish this definition of rough sets from Pawlak's definition, this rough set is named as an I-rough set [12]. The

element $(X, X) \in R$ is identified with the element $X \in \beta$ and hence an exact set is a rough set in the sense of the above definition. But a rough set need not be exact. Set theoretic operators on the rough sets are defined component wise using ordinary set operations as follows [1]. Let $X = (X_1, X_2)$ and $Y = (Y_1, Y_2)$ be any two I-rough sets in the rough universe (U, β) . Then,

$$X \cup Y = (X_1 \cup Y_1, X_2 \cup Y_2)$$

$$X \cap Y = (X_1 \cap Y_1, X_2 \cap Y_2)$$

$$X \subseteq Y \text{ if } X \cap Y = X \text{ .That is } X \subseteq Y \text{ if } X_1 \subseteq Y_1 \text{ and } X_2 \subseteq Y_2$$

$$X - Y = (X_1 - Y_2, X_2 - Y_1).$$

Hence $X^C = (U, U) - (X_1, X_2) = (U - X_2, U - X_1) = (X_2^C, X_1^C)$

The above set operations on I-rough sets are named as I-rough union, I-rough intersection, I-rough inclusion, I-rough difference and I-rough complement respectively [3]. Let (U, β) be a fixed rough universe. Then a sub collection τ of R is an I-rough topology on (U, β) if the following 1, 2 and 3 hold [3].

- 1. $(\phi, \phi) \in \tau$ and $(U, U) \in \tau$
- 2. τ is closed under finite I-Rough intersection
- 3. τ is closed under arbitrary I-Rough union.

If τ be an I-rough topology on the rough universe (U,β) . Then the triple (U, β, τ) is called an I-rough topological space [3]. An I-rough set (A_1, A_2) is an Irough open set in an I-rough topological space (U, β, τ) if $(A_1, A_2) \in \tau$ and an I-rough set (A_1, A_2) is an I-rough closed set if its I-rough complement $A^C = (U - A_2, U - A_1)$ is A be any of U. I-rough open [3]. Let subset Then $\tau / A = \{G \cap A = (G_1 \cap A, G_2 \cap A) / G = (G_1, G_2) \in \tau\}$ is an I-rough topology on the rough universe $(A, \beta / A)$ induced by τ , where $\beta / A = \{X \cap A / X \in \beta\}$ is the complete sub-algebra β restricted to A. Then τ / A is called the relative I-rough topology on A or the subspace I-rough topology on A and $(A, \beta / A, \tau / A)$ is called an I-rough subspace of the I-rough topological space (U, β, τ) [3].

Let (X, β_1) and (Y, β_2) be any two rough universes and let $f: X \to Y$ be any function. Then the function f is an I- rough function if both f and f^{-1} maps exact sets on to exact sets. That is f is an I-rough function if $f(A) \in \beta_2$, $\forall A \in \beta_1$ and $f^{-1}(A) \in \beta_1$, $\forall A \in \beta_2$ [4]. Let (X, β_1, τ_1) and (Y, β_2, τ_2) are any two I-rough topological spaces and let $f: (X, \beta_1) \to (Y, \beta_2)$ be any I-rough function. Then f is an

I-rough continuous function if $f^{-1}(A) = (f^{-1}(A_1), f^{-1}(A_2)) \in \tau_1$ for every $A = (A_1, A_2) \in \tau_2$ [4]. An I-rough function $f: (X, \beta_1) \to (Y, \beta_2)$ is an I-rough embedding if f is one-one and both f and f^{-1} are I-rough continuous functions [4]. Also $f: (X, \beta_1) \to (Y, \beta_2)$ is an I-rough homeomorphism if f is one-one, onto and both f and f^{-1} are I-rough continuous functions [4].

3. I-rough compactness

In this section, the paper studies the compactness of the I-rough topological spaces. This is an attempt to generalize the concept of compactness in general topological space in to I-rough topological spaces.

Definition 3.1. A family $V = \{(A_{i_1}, A_{i_2}) : i \in I\}$ of I-rough subsets of a rough universe (X, β) is an I-rough covering of an I-rough set (E_1, E_2) if $(E_1, E_2) \subseteq \bigcup_{i \in I} (A_{i_1}, A_{i_2}) = (\bigcup_{i \in I} A_{i_1}, \bigcup_{i \in I} A_{i_2})$. The I-rough covering V is finite I-rough covering if V contains only finitely many I-rough sets. Also the family V of I-rough subsets of a rough universe (X, β) is an I-rough covering of (X, β) if X is the I-rough union of all members of V.

Definition 3.2. Let (X, β, τ) be an I-rough topological space. Then an I-rough covering V of I-rough subsets of a rough universe (X, β) is an I-rough open covering if all the members of V are I-rough open sets.

Definition 3.3. Let (X, β) be a rough universe and let $U = \{(A_{i_1}, A_{i_2}): i \in I\}$ and $V = \{(B_{i_1}, B_{i_2}): i \in J\}$ are any two I-rough covering of (X, β) . If for each $i \in I, (A_{i_1}, A_{i_2}) = (B_{j_1}, B_{j_2})$ for some $j \in J$, then the I-rough covering $U = \{(A_{i_1}, A_{i_2}): i \in I\}$ is an I-rough sub covering of the I-rough cover $V = \{(B_{i_1}, B_{i_2}): i \in J\}$.

Definition 3.4. An I-rough topological space (X, β, τ) is I-rough compact if for every I-rough open covering of (X, β) has a finite I-rough sub covering.

Definition 3.5. Let (X, β, τ) be an I-rough topological space and let Y be any subset of X. Then Y is I-rough compact if the relative I-rough subspace $(Y, \beta/Y, \tau/Y)$ is I-rough compact.

Remark 3.1. Next theorem relates the I-rough compactness of an I-rough subspace $(Y, \beta/Y, \tau/Y)$ of an I-rough topological space (X, β, τ) to the I-rough topology τ of (X, β, τ) .

Theorem 3.1. Let (X, β, τ) be an I-rough topological space and let Y be any subset of X. Then Y is I-rough compact iff for each I-rough open covering $\{(A_{i_1}, A_{i_2}): i \in I\}$ of Y such that for every $i \in I$, $(A_{i_1}, A_{i_2}) \in \tau$, there is a finite I-rough sub covering of Y.

Proof: Let (X, β, τ) be an I-rough topological spaces and let Y be any subset of X. Suppose Y is I-rough compact. Let $\{(A_{i_1}, A_{i_2}): i \in I\}$ be an I-rough open covering of Y using I-rough open sets of (X, β, τ) . Which implies that for every $i \in I$, $(A_{i_1}, A_{i_2}) \in \tau$. Then $(A_{i_1}, A_{i_2}) \cap (Y, Y) \in \tau/Y$ for every $i \in I$. Hence $\{(A_{i_1}, A_{i_2}) \cap (Y, Y): i \in I\}$ is an I-rough open covering of Y using I-rough open sets in the relative I-rough topology of $(Y, \beta/Y, \tau/Y)$. Since Y is I-rough compact, this I-rough covering has a finite I-rough open covering of Y. Let this finite I-rough sub covering be $\{(A_{j_1}, A_{j_2}) \cap (Y, Y): j = 1, 2, 3, \dots, n\}$. Then clearly $\{(A_{j_1}, A_{j_2}): j = 1, 2, 3, \dots, n\}$ covers Y. Hence for each I-rough open covering $\{(A_{i_1}, A_{i_2}): i \in I\}$ of Y such that for every $i \in I$, $(A_{i_1}, A_{i_2}) \in \tau$, there is a finite I-rough sub covering of Y.

Conversely suppose for each I-rough open covering $\{(A_{i_1}, A_{i_2}): i \in I\}$ of Y such that for every $i \in I$, $(A_{i_1}, A_{i_2}) \in \tau$, there is a finite I-rough sub covering of Y. Let $\{(A_{i_1}, A_{i_2}): i \in I\}$ be an I-rough open covering of Y using I-rough open sets in the relative I-rough topology on Y. That is for every $i \in I$, $(A_{i_1}, A_{i_2}) \in \tau/Y$. Hence $(A_{i_1}, A_{i_2}) = (G_{i_1}, G_{i_2}) \cap (Y, Y)$ where $(G_{i_1}, G_{i_2}) \in \tau$ for every $i \in I$. Thus $\{(G_{i_1}, G_{i_2}): i \in I\}$ is an I-rough open covering of Y using I-rough open sets in (X, β, τ) . Then by our supposition, there is a finite I-rough sub covering $\{(G_{j_1}, G_{j_2}): j = 1, 2, 3, \dots, n\}$ of Y. Then $\{(G_{j_1}, G_{j_2}) \cap (Y, Y): j = 1, 2, 3, \dots, n\}$ is a finite I-rough sub covering of Y. Hence Y is I-rough compact.

Definition 3.6. Let (X, β, τ) be an I-rough topological space and let (Y_1, Y_2) be any I-rough set of the rough universe (X, β) . Then (Y_1, Y_2) is I-rough compact set if for every I-rough open covering of (Y_1, Y_2) using I-rough open sets of (X, β, τ) has a finite I-rough sub covering.

Theorem 3.2. Let (X, β_1, τ_1) and (Y, β_2, τ_2) are any two I-rough topological spaces and let $f: (X, \beta_1) \rightarrow (Y, \beta_2)$ be any I-rough continuous function. Then if an I-rough set

 (A_1, A_2) of the rough universe (X, β_1) is I-rough compact subset of (X, β_1, τ_1) then $f(A_1, A_2)$ is an I-rough compact subset of (Y, β_2, τ_2) .

Proof: Let $f:(X,\beta_1) \to (Y,\beta_2)$ be any I-rough continuous function and let (A_1, A_2) be an I-rough set of the rough universe (X, β_1) is I-rough compact subset of (X, β_1, τ_1) . Let $\{(G_{i_1}, G_{i_2}): i \in I\}$ be an I-rough open covering of $f(A_1, A_2)$ using I-rough open sets in (Y, β_2, τ_2) . This implies that

$$f(A_{1}, A_{2}) = (f(A_{1}), f(A_{2})) \subseteq \bigcup_{i \in I} (G_{i_{1}}, G_{i_{2}}) = (\bigcup_{i \in I} G_{i_{1}}, \bigcup_{i \in I} G_{i_{2}}).$$

Hence, $(A_1, A_2) \subseteq \bigcup_{i \in I} f^{-1}(G_{i_1}, G_{i_2})$. Thus $\{f^{-1}(G_{i_1}, G_{i_2}): i \in I\}$ be an I-rough covering of (A_1, A_2) . Since $f:(X, \beta_1) \to (Y, \beta_2)$ be an I-rough continuous function and $(G_{i_1}, G_{i_2}) \in \tau_2$ for every $i \in I$, clearly $f^{-1}(G_{i_1}, G_{i_2}) \in \tau_1$ for every $i \in I$. Hence $\{f^{-1}(G_{i_1}, G_{i_2}): i \in I\}$ be an I-rough open covering of (A_1, A_2) . Since (A_1, A_2) is I-rough compact set of (X, β_1, τ_1) , it has a finite I-rough sub covering $\{f^{-1}(G_{i_1}, G_{i_2}): i = 1, 2, 3, \dots n\}$ of (A_1, A_2) . That is $(A_1, A_2) \subseteq \bigcup_{i=1}^n f^{-1}(G_{i_1}, G_{i_2})$. Which implies that $f(A_1, A_2) = (f(A_1), f(A_2)) \subseteq \bigcup_{i=1}^n f^{-1}(G_{i_1}, G_{i_2})$. Since $\{(G_{i_1}, G_{i_2}): i \in I\}$ be an arbitrary I-rough open covering of $f(A_1, A_2)$ the theorem follows by theorem 3.1.

Theorem 3.3. Let (X, β_1, τ_1) and (Y, β_2, τ_2) are any two I-rough topological spaces, where (X, β_1, τ_1) is I-rough compact and $f: (X, \beta_1) \rightarrow (Y, \beta_2)$ be any I-rough continuous and onto function. Then (Y, β_2, τ_2) is I-rough compact.

Proof: Since $f:(X,\beta_1) \to (Y,\beta_2)$ is an onto function, clearly f(X, X) = (Y, Y). Then the proof follows from theorem 3.2.

Theorem 3.4. Let (X, β_1, τ_1) and (Y, β_2, τ_2) are I-rough homeomorphic I-rough topological spaces. Then (X, β_1, τ_1) is I-rough compact iff (Y, β_2, τ_2) is I-rough compact.

Proof: Proof follows directly from theorem 3.3 and the definition of I-rough homeomorphism.

Theorem 3.5. Let (X, β, τ) be an I-rough compact I-rough topological space then every I-rough closed subsets of (X, β, τ) are also I-rough compact.

Proof: Let (D_1, D_2) be any I-rough closed subset of the I-rough topological space (X, β, τ) where (X, β, τ) is I-rough compact. Let $\{(A_{i_1}, A_{i_2}): i \in I\}$ of (D_1, D_2) such that for every $i \in I$, $(A_{i_1}, A_{i_2}) \in \tau$. Since (D_1, D_2) is an I-rough closed subset of the I-

rough topological space (X, β, τ) implies $(X - D_2, X - D_1) \in \tau$. Now adjoin $(X - D_2, X - D_1)$ to $\{(A_{i_1}, A_{i_2}): i \in I\}$ to get an I-rough open covering of (X, β, τ) . But since (X, β, τ) is I-rough compact it has a finite I-rough sub covering $\{(A_{j_1}, A_{j_2}): j = 1, 2, 3, \dots, n\}$, which may or may not contains $(X - D_2, X - D_1)$. If it contains $(X - D_2, X - D_1)$, delete it from the finite I-rough sub covering to get a finite I-rough sub covering of $(X - D_2, X - D_1)$, delete it from the finite I-rough sub covering to get a finite I-rough sub covering of $(X - D_2, X - D_1)^C = (D_1, D_2)$. Since $\{(A_{i_1}, A_{i_2}): i \in I\}$ is arbitrary, the theorem follows by theorem 3.1.

Remark 3.2. Next theorem characterizes the I-rough compactness of an I-rough topological space in terms of its I-rough closed sets instead of I-rough open sets.

Theorem 3.6. An I-rough topological space (X, β, τ) is I-rough compact iff whenever a family $\{(F_{\alpha_1}, F_{\alpha_2}), \alpha \in I\}$ of I-rough closed sets of (X, β, τ) such that $(\bigcap_{\alpha \in I} F_{\alpha_1}, \bigcap_{\alpha \in I} F_{\alpha_2})$ $= (\phi, \phi)$ then there is a finite subset of indices $\{\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n\}$ such that $(\bigcap_{i=1}^n F_{\alpha_{i_1}}, \bigcap_{i=1}^n F_{\alpha_{i_2}}) = (\phi, \phi)$. **Proof:** Suppose that (X, β, τ) be an I-rough topological space which is I-rough compact. Let $\{(F_{\alpha_1}, F_{\alpha_2}), \alpha \in I\}$ be a family of I-rough closed sets of (X, β, τ) such that $(\bigcap_{\alpha \in I} F_{\alpha_1}, \bigcap_{\alpha \in I} F_{\alpha_2}) = (\phi, \phi)$. Then $\bigcup_{\alpha \in I} (F_{\alpha_1}, F_{\alpha_2})^c = (\bigcap_{\alpha \in I} F_{\alpha_1}, \bigcap_{\alpha \in I} F_{\alpha_2})^c = (\phi, \phi)^c =$ (X, X). Since each $(F_{\alpha_1}, F_{\alpha_2})$ is I-rough closed, $(F_{\alpha_1}, F_{\alpha_2})^c$ is I-rough open in

 $(X, \beta, \tau). \text{ Hence } \bigcup_{\alpha \in I} (F_{\alpha_1}, F_{\alpha_2})^C \text{ is an I-rough open covering of } X, \text{ which is I-rough compact. Hence there is a finite I-rough sub covering } (F_{\alpha_{11}}, F_{\alpha_{12}})^C, (F_{\alpha_{21}}, F_{\alpha_{22}})^C, (F_{\alpha_{31}}, F_{\alpha_{32}})^C, \dots, (F_{\alpha_{n1}}, F_{\alpha_{n2}})^C, \text{ such that } \bigcup_{i=1}^n (F_{\alpha_{i1}}, F_{\alpha_{i2}})^C = (X, X). \text{ Then } (\prod_{i=1}^n (F_{\alpha_{i1}}, F_{\alpha_{i2}})^C)^C = (X, X)^C = (\phi, \phi). \text{ But } (\prod_{i=1}^n (F_{\alpha_{i1}}, F_{\alpha_{i2}})^C)^C = (\prod_{i=1}^n F_{\alpha_{i1}}, \prod_{i=1}^n F_{\alpha_{i2}})^C = (\phi, \phi).$

Conversely suppose that for each family $\{F_{\alpha_1}, F_{\alpha_2}\}, \alpha \in I\}$ of I-rough closed sets of (X, β, τ) such that $\left(\bigcap_{\alpha \in I} F_{\alpha_1}, \bigcap_{\alpha \in I} F_{\alpha_2}\right) = (\phi, \phi)$, there is a finite subset of indices

 $\{\alpha_{1}, \alpha_{2}, \alpha_{3}, ..., \alpha_{n}\} \text{ such that } \left(\bigcap_{i=1}^{n} F_{\alpha_{i1}}, \bigcap_{i=1}^{n} F_{\alpha_{i2}}\right) = (\phi, \phi). \text{ Let } \{(A_{\beta_{1}}, A_{\beta_{2}}), \beta \in J\} \text{ be any}$ $\text{I-rough open covering of } (X, \beta, \tau). \text{ Then } \bigcup_{\beta \in J} (A_{\beta_{1}}, A_{\beta_{2}}) = (X, X). \text{ Then } \{(A_{\beta_{1}}, A_{\beta_{2}})^{C}, \beta \in J\} \text{ be a family of I-rough closed sets such that}$ $\left(\bigcup_{\beta \in J} (A_{\beta_{1}}, A_{\beta_{2}})\right)^{C} = (X, X)^{C} = (\phi, \phi).$ $\text{ That is } \left(\bigcup_{\beta \in J} (A_{\beta_{1}}, A_{\beta_{2}})\right)^{C} = \bigcap_{\beta \in J} (A_{\beta_{1}}, A_{\beta_{2}})^{C} = \left(\bigcap_{\beta \in J} A_{\beta_{2}}^{C}, \bigcap_{\beta \in J} A_{\beta_{1}}^{C}\right) = (\phi, \phi).$ $\text{ Hence by our assumption there is a finite subset of indices } \{\beta_{1}, \beta_{2}, \beta_{3}, ..., \beta_{n}\} \text{ such that}$

$$\left(\bigcap_{i=1}^{n} A_{\beta_{i2}}^{C}, \bigcap_{i=1}^{n} A_{\beta_{i1}}^{C}\right) = (\phi, \phi). \text{ Then } \left(\bigcap_{i=1}^{n} A_{\beta_{i2}}^{C}, \bigcap_{i=1}^{n} A_{\beta_{i1}}^{C}\right)^{C} = (\phi, \phi)^{C} = (X, X). \text{ That is}$$
$$\left(\bigcap_{i=1}^{n} A_{\beta_{i2}}^{C}, \bigcap_{i=1}^{n} A_{\beta_{i1}}^{C}\right)^{C} = \left(\left(\bigcap_{i=1}^{n} A_{\beta_{i1}}^{C}\right)^{C}, \left(\bigcap_{i=1}^{n} A_{\beta_{i2}}^{C}\right)^{C}\right) = \left(\bigcup_{i=1}^{n} A_{\beta_{i1}}, \bigcup_{i=1}^{n} A_{\beta_{i2}}^{C}\right) = (X, X).$$

That is $\bigcup_{i=1}^{n} (A_{\beta_{i1}}, A_{\beta_{i2}}) = (X, X)$. Hence the I-rough open covering $\{(A_{\beta_{1}}, A_{\beta_{2}}), \beta \in J\}$

has a finite I-rough sub covering. Since the I-rough open covering is arbitrary (X, β, τ) is I-rough compact.

4. I-rough Hausdorff spaces

This section introduces the Hausdorff property in I-rough topological spaces and studies the I-rough compactness of subsets of I-rough Hausdorff spaces.

Definition 4.1. An I-rough topological space (X, β, τ) is I-rough Hausdorff space if for any two distinct points x, y in X, there exist $(U_1, U_2), (V_1, V_2) \in \tau$, such that $x \in (U_1, U_2), y \in (V_1, V_2)$ and $(U_1, U_2) \cap (V_1, V_2) = (U_1 \cap V_1, U_2 \cap V_2) = (\phi, \phi)$.

Theorem 4.1. Let (X, β, τ) be an I-rough Hausdorff space and $x \in X$. Let (F_1, F_2) be an I-rough set of the I-rough universe (X, β) , which is an I-rough compact subset not containing x. Then there exist I-rough open sets (U_1, U_2) and (V_1, V_2) such that $x \in (U_1, U_2)$, $(F_1, F_2) \subset (V_1, V_2)$ and $(U_1, U_2) \cap (V_1, V_2) = (U_1 \cap V_1, U_2 \cap V_2) = (\phi, \phi)$. **Proof:** Since (F_1, F_2) is I-rough compact subset not containing x, for each $y \in (F_1, F_2)$, there exist I-rough open sets (U_{y_1}, U_{y_2}) and (V_{y_1}, V_{y_2}) such that $x \in (U_{y_1}, U_{y_2})$, $y \in (V_{y_1}, V_{y_2})$ and $(U_{y_1}, U_{y_2}) \cap (V_{y_1}, V_{y_2}) = (U_{y_1} \cap V_{y_1}, U_{y_2} \cap V_{y_2}) = (\phi, \phi)$. Then the

family $\{(V_{y_1}, V_{y_2}): y \in (F_1, F_2)\}$ is an I-rough open covering of (F_1, F_2) . Since (F_1, F_2) is I-rough compact, there is a finite I-rough sub cover for (F_1, F_2) say $\{(V_{y_11}, V_{y_12}), (V_{y_21}, V_{y_22}), ..., (V_{y_n1}, V_{y_n2})\}$. Let $(U_1, U_2) = \bigcap_{i=1}^n (U_{y_i1}, U_{y_i2})$ and

 $(V_1, V_2) = \bigcup_{i=1}^n (V_{y_i 1}, V_{y_i 2})$. Then clearly (U_1, U_2) and (V_1, V_2) are I-rough open sets and $x \in (U_1, U_2), (F_1, F_2) \subset (V_1, V_2)$ and $(U_1, U_2) \cap (V_1, V_2) = (U_1 \cap V_1, U_2 \cap V_2) = (\phi, \phi)$.

Theorem 4.2. Let (X, β, τ) be an I-rough Hausdorff space and (Y_1, Y_2) be an I-rough compact subset of the rough universe (X, β) . Then (Y_1, Y_2) is I-rough closed.

Proof: Let (Y_1, Y_2) be an I-rough compact subset of an I-rough Hausdorff space (X, β, τ) . Then by theorem 4.1, for any $x \in (X, X) - (Y_1, Y_2)$ there exist I-rough open sets (U_1, U_2) and (V_1, V_2) such that $x \in (U_1, U_2)$, $(Y_1, Y_2) \subset (V_1, V_2)$ and $(U_1, U_2) \cap (V_1, V_2) = (U_1 \cap V_1, U_2 \cap V_2) = (\phi, \phi)$. In particular $(U_1, U_2) \cap (Y_1, Y_2) = (\phi, \phi)$, and $(U_1, U_2) \subseteq (X - Y_2, X - Y_1)$. That is $x \in (U_1, U_2) \subset (X - Y_2, X - Y_1)$. Thus $(X, X) - (Y_1, Y_2)$ is I-rough neighbourhood of each of its points. Hence $(X, X) - (Y_1, Y_2)$ is I-rough open and then (Y_1, Y_2) is I-rough closed.

Theorem 4.3. Let (X, β, τ) be an I-rough compact Hausdorff space. Then an I-rough set (Y_1, Y_2) of the rough universe (X, β) is I-rough compact iff (Y_1, Y_2) is I-rough closed. **Proof**: Proof follows from theorem 3.5 and theorem 4.2.

Theorem 4.4. Let $f:(X,\beta_1) \to (Y,\beta_2)$ be an I-rough continuous function from an Irough compact topological space (X,β_1,τ_1) on to an I-rough Hausdorff topological space (Y,β_2,τ_2) . Then an I-rough set (A_1,A_2) of the rough universe (Y,β) is I-rough closed in (Y,β_2,τ_2) iff $f^{-1}(A_1,A_2)$ is I-rough closed in (X,β_1,τ_1) .

Proof: First suppose that the I-rough set (A_1, A_2) of the rough universe (Y, β) is I-rough closed in (Y, β_2, τ_2) . Since $f: (X, \beta_1) \rightarrow (Y, \beta_2)$ be an I-rough continuous function, clearly $f^{-1}(A_1, A_2)$ is I-rough closed in (X, β_1, τ_1) . Conversely suppose $f^{-1}(A_1, A_2)$ is I-rough closed in the I-rough compact topological space (X, β_1, τ_1) . Then by theorem 3.5, $f^{-1}(A_1, A_2)$ is I-rough compact. Then by theorem 3.2, $f(f^{-1}(A_1, A_2)) = (A_1, A_2)$ is I-rough compact subset of (Y, β_2, τ_2) . Then being an I-rough compact I-rough set of an I-rough Hausdorff topological space (Y, β_2, τ_2) , (A_1, A_2) is I-rough closed in (Y, β_2, τ_2) by theorem 4.3.

Theorem 4.5. Let $f:(X,\beta_1) \to (Y,\beta_2)$ be an I-rough continuous function from an I-rough compact topological space (X,β_1,τ_1) on to an I-rough Hausdorff topological space (Y,β_2,τ_2) . Then $f:(X,\beta_1) \to (Y,\beta_2)$ is I-rough closed mapping.

Proof: Let (A_1, A_2) be any I-rough closed subset of (X, β_1, τ_1) . Then by theorem 3.5, (A_1, A_2) is I-rough compact subset of (X, β_1, τ_1) . Then by theorem 3.2, $f(A_1, A_2)$ is an I-rough compact subset of (Y, β_2, τ_2) . Now since (Y, β_2, τ_2) is I-rough Hausdorff, $f(A_1, A_2)$ is I-rough closed by theorem 4.3. Hence $f: (X, \beta_1) \rightarrow (Y, \beta_2)$ maps I-rough closed sets in to I-rough closed sets and hence it is an I-rough closed mapping.

Theorem 4.6. Let $f:(X,\beta_1) \to (Y,\beta_2)$ be an I-rough continuous bijective function from an I-rough compact topological space (X,β_1,τ_1) on to an I-rough Hausdorff topological space (Y,β_2,τ_2) . Then $f:(X,\beta_1) \to (Y,\beta_2)$ is an I-rough homeomorphism.

Proof: Let $f:(X,\beta_1) \to (Y,\beta_2)$ be an I-rough continuous bijective function where (X,β_1,τ_1) is an I-rough compact topological space and (Y,β_2,τ_2) is an I-rough Hausdorff topological space. Let (G_1,G_2) be an I-rough open subset of (X,β_1,τ_1) . Then $(G_1,G_2)^C = (X,X) - (G_1,G_2)$ is I-rough closed in (X,β_1,τ_1) . Then since $f:(X,\beta_1) \to (Y,\beta_2)$ is a bijective I-rough function, $f((G_1,G_2)^C) = f((X,X) - (G_1,G_2)) = (Y,Y) - f(G_1,G_2) = (f(G_1,G_2))^C$ is I-rough closed in (Y,β_2,τ_2) by theorem 4.5. So $f(G_1,G_2)$ is I-rough open in (Y,β_2,τ_2) . Hence $f:(X,\beta_1) \to (Y,\beta_2)$ is an I-rough open function. Thus $f:(X,\beta_1) \to (Y,\beta_2)$ is I-rough continuous, I-rough open bijective function and hence an I-rough homeomorphism.

Corollary 4.1. Every I-rough continuous, one-one I-rough function from an I-rough compact topological space in to an I-rough Hausdorff topological space is an I-rough embedding.

Proof: Proof follows from theorem 4.6 and definition of I-rough embedding.

Theorem 4.7. Let (U, β, τ) be an I-rough topological space and let (X_1, X_2) and (Y_1, Y_2) are any two I-rough compact subsets of (U, β, τ) . Then $(X_1, X_2) \cup (Y_1, Y_2)$ is again an I-rough compact subset of (U, β, τ) .

Proof: Let $\{(A_{i_1}, A_{i_2}): i \in I\}$ be an arbitrary I-rough open covering of $(X_1, X_2) \cup (Y_1, Y_2)$ using I-rough open sets of (U, β, τ) . Then clearly $\{(A_{i_1}, A_{i_2}): i \in I\}$ is an I-rough open covering of (X_1, X_2) and (Y_1, Y_2) using I-rough open sets of (U, β, τ) . Since (X_1, X_2) and (Y_1, Y_2) are I-rough compact subspaces of (U, β, τ) , there exist finite I-rough open sub covers $\{(A_{i_1}, A_{i_2}): k = 1, 2, 3, \dots, n\}$ covers (X_1, X_2) and

$$\{(A_{j_1}, A_{j_2}): j = 1, 2, 3, \dots, m\}$$

covers (Y_1, Y_2) , by theorem 3.1. Then clearly the union of these two sub collections covers $(X_1, X_2) \cup (Y_1, Y_2)$. Hence the union of these two sub collections is a finite I-rough open sub covering of $\{(A_{i_1}, A_{i_2}): i \in I\}$. Since $\{(A_{i_1}, A_{i_2}): i \in I\}$ is arbitrary I-rough open covering, $(X_1, X_2) \cup (Y_1, Y_2)$ is I-rough compact.

Theorem 4.8. Finite I-rough union of I-rough compact subspaces of an I-rough topological space is again I-rough compact.

Proof: The argument in theorem 4.7 is valid for a finite number of I-rough compact subspaces of an I-rough topological space.

Theorem 4.9. Arbitrary I-rough intersection of I-rough compact subsets of an I-rough Hausdorff topological space is again I-rough compact.

Proof: Let (U, β, τ) be an I-rough topological spaces and let $Y_i = (Y_{i_1}, Y_{i_2})$ where $i \in I$ be any I-rough compact subsets of (U, β, τ) . Then by theorem 4.3, each $Y_i = (Y_{i_1}, Y_{i_2})$, where $i \in I$ is I-rough closed in (U, β, τ) . Let $(Y_1, Y_2) = \bigcap_{i=1}^{n} (Y_{i_1}, Y_{i_2})$. Being arbitrary I-

rough intersection of I-rough closed subsets of an I-rough topological spaces, (Y_1, Y_2) is again I-rough closed. That is (Y_1, Y_2) is an I-rough closed subset of an I-rough Hausdorff topological space (U, β, τ) . Then by theorem 4.3, (Y_1, Y_2) is I-rough compact.

Remark 4.1. The I-rough Hausdorff property in theorem 4.9 is very important. Since I-rough intersection of I-rough compact subspaces of an I-rough topological space need not be I-rough compact in general. Consider the following example.

Example 4.1. Let N be the set of natural numbers and let $x, y \notin N$ be any two real numbers. Let $U = N \cup \{x, y\}$. Let $\beta = P(U)$. Also let τ be the collection of I-rough sets of the rough universe (U, β) obtained by adding the following four I-rough sets to the discrete I-rough topology on N such as $(N, N \cup \{x\})$, $(N, N \cup \{y\})$, $(N, N \cup \{x, y\})$, $(N \cup \{x, y\}, N \cup \{x, y\})$. Then clearly τ is an I-rough topology on the rough universe (U, β) . Let $A = (N, N \cup \{x\})$. Note that the only I-rough open sets containing $A = (N, N \cup \{x\})$ are $(N, N \cup \{x\})$, $(N, N \cup \{x, y\})$,

 $(N \cup \{x, y\}, N \cup \{x, y\})$. Hence any I-rough open covering of A has a finite I-rough open sub covering. Hence $A = (N, N \cup \{x\})$ is I-rough compact. Similarly $B = (N, N \cup \{y\})$ is also I-rough compact. But $A \cap B = (N, N)$ is not I-rough compact, since $\{(n, N), n \in N\}$ is an I-rough open covering of $A \cap B = (N, N)$ which does not have any finite I-rough open sub covering. Also note that $A^{C} = (N, N \cup \{x\})^{C} = ((N \cup \{x\})^{C}, N^{C}) = (\phi, \{x\})$ and $B^{C} = (N, N \cup \{y\})^{C} = ((N \cup \{y\})^{C}, N^{C}) = (\phi, \{y\})$

are not I-rough open in (U, β, τ) . Hence A and B are not I-rough closed in (U, β, τ) . Hence by theorem 4.3, the I-rough topological space (U, β, τ) is not I-rough Hausdorff.

5. I-rough connectedness

This section generalizes the connectedness property in general topological spaces in to the I-rough connectedness in an I-rough topological spaces.

Definition 5.1. An I-rough topological spaces (X, β, τ) is I-rough connected if it is impossible to find two non-empty exact I-rough open sets (A, A) and (B, B) such that $(X, X) = (A, A) \cup (B, B)$ and $(A, A) \cap (B, B) = (\phi, \phi)$. If an I-rough topological space is not I-rough connected it is called I-rough disconnected.

Remark 5.1. It is clear that the I-rough open sets in the definition of I-rough connected spaces can be replaced by I-rough closed sets. Hence an I-rough topological spaces (X, β, τ) is I-rough connected if it is impossible to find two non-empty exact I-rough closed sets (A, A) and (B, B) such that $(X, X) = (A, A) \cup (B, B)$ and $(A, A) \cap (B, B) = (\phi, \phi)$.

Theorem 5.1. An I-rough topological spaces (X, β, τ) is I-rough connected space iff the only exact I-rough clopen sets of (X, β, τ) are (ϕ, ϕ) and (X, X).

Proof: First suppose that (X, β, τ) is an I-rough connected space. If possible there exist an I-rough clopen subset (A, A) other than (ϕ, ϕ) and (X, X). Now (A, A) is I-rough open implies $(A, A)^C = (X - A, X - A)$ is I-rough closed. Again (A, A) is I-rough closed implies $(A, A)^C = (X - A, X - A)$ is I-rough open. That is (A, A) and (X - A, X - A) are two exact I-rough open sets of (X, β, τ) such that $(X, X) = (A, A) \cup (X - A, X - A)$ and $(A, A) \cap (X - A, X - A) = (\phi, \phi)$. Which is a contradiction since (X, β, τ) is an I-rough connected space.

Conversely suppose that the only exact I-rough clopen sets of (X, β, τ) are (ϕ, ϕ) and (X, X). If (X, β, τ) is I-rough connected then there are two non-empty exact I-rough open sets (A, A) and (B, B) such that $(X, X) = (A, A) \cup (B, B)$ and $(A, A) \cap (B, B) = (\phi, \phi)$. Then clearly (A, A) and (B, B) = (X - A, X - A) are exact I-rough clopen sets of (X, β, τ) other than (ϕ, ϕ) and (X, X). Which is a contradiction to our assumption.

Example 5.1. Let (X, β) be any I-rough universe. Then (X, β) disconnected in the discrete I-rough topology and (X, β) is connected in the indiscrete I-rough topology.

Theorem 5.2. The image of an I-rough connected space under an I-rough continuous function is I-rough connected.

Proof: Let (X, β_1, τ_1) and (Y, β_2, τ_2) are two I-rough topological spaces, where (X, β_1, τ_1) is I-rough connected and let $f: (X, \beta_1) \to (Y, \beta_2)$ be an I-rough continuous bijective function. If (Y, β_2, τ_2) is not I-rough connected then there are two non-empty exact I-rough open sets (A, A) and (B, B) of (Y, β_2, τ_2) such that $(Y, Y) = (A, A) \cup (B, B)$ and $(A, A) \cap (B, B) = (\phi, \phi)$. Since $f: (X, \beta_1) \to (Y, \beta_2)$ is an I-rough continuous bijective function $f^{-1}(A, A)$ and $f^{-1}(B, B)$ are exact I-rough open subsets of (X, β_1, τ_1) and $f^{-1}(A, A) \cup f^{-1}(B, B) = (f^{-1}(A \cup B), f^{-1}(A \cup B)) = (f^{-1}(Y), f^{-1}(Y)) = (X, X)$. Also $f^{-1}(A, A) \cap f^{-1}(B, B) = (f^{-1}(A \cap B), f^{-1}(A \cap B)) = (f^{-1}(\phi), f^{-1}(\phi)) = (\phi, \phi)$. Which is a contradiction to the fact that (X, β_1, τ_1) is I-rough connected. Hence our

assumption is wrong and (Y, β_2, τ_2) is also I-rough connected.

REFERENCESS

- 1. T.B.Iwinski, Algebraic approach to rough sets, *Bull. Polish Acad. Sci. Math.*, 35(2) (1987) 673-683.
- 2. J.Thomas and S.J.John, Properties of D_{μ} -compact spaces in generalized topological spaces, *Annals of Pure and Applied Mathematics*, 9(1) (2015) 73-80.
- 3. B.P.Mathew and S.J.John, I-Rough topological spaces, *International Journal of Rough Sets and Data Analysis*, 3(1) (2016) 98-113.
- 4. B.P.Mathew and S.J.John, I-rough continuous functions, Communicated.
- 5. J.R.Munkres, Topology, New Delhi, Printice-Hall of India (1975).
- 6. Z.Pawlak, Rough sets, Intern. Journal of Computer & Information Sciences, 11(5) (1982) 341-356.
- 7. Z.Pawlak, Rough classification, *International Journal of Man-Machine Studies*, 20(5) (1984) 469-483.
- 8. Z.Pawlak, Rough sets-theoretical aspect of reasoning about data. Boston: Kluwer Academic (1991).
- 9. M.Seema, Epimorphisms in the category of Hausdorff fuzzy topological spaces, *Annals of Pure and Applied Mathematics*, 7(1) (2014) 35-40.
- 10. T. Indira and S. Geetha, Alpha closed sets in topological spaces, *Annals of Pure and Applied Mathematics*, 4(2) (2013) 138-144.
- 11. S.Willard, General topology. New York: Dover Publications Inc (1970).
- 12. Y.Y.Yao, Two views of the theory of rough sets in finite universes, *International Journal of Approximate Reasoning*, 15(4) (1996) 291-317.
- 13. Y.Y.Yao, Constructive and algebraic methods of the theory of rough sets, *Information Sciences*, 109(1) (1998) 21-47.