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Abstract. Laplace Homotopy Perturbation method is projeateimodified form to solve
highly nonlinear differential equations.This approaimplifies the equations and avoid
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obtained by using reduced differential transfornihuod.
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1. Introduction

The rapid developments in science and technologe lgiven birth to many complex
nonlinear problems in various fields of studies. \&alid state physics, plasma physics,
fluid mechanics, biology, chemistry etc.Studies tbése highly nonlinear problems
demand the emerge of many analytical as well agnigad and approximation techniques
and continuous approach to modify them. In the mecgears, many remarkable
semi-analytic methods are contributed to solve inear problems. Adomain
Decomposition Method [1-3], Variational Iteratiorekiod [4-5], Homotopy Perturbation
Method (HPM) [6-7], Differential Transform MethodDTM) [12-15], Sine-Cosine
method [8-9],Tanh Function mathod [10] and maneotiumerical methods [18-19] used
to solve such problems.The key advantage of these-analytic methods are that the
complicated nonlinear problems can be solved withosing any transformation,
linearization, discretization or any other consttsiln this work, our approach deals with
Laplace Homotopy Perturbation Method (LHPM) and &edl Differential Transform
Method (RDTM). DTM was introduced by Zhou to solireear and nonlinear initial value
problems of electric circuit analysis and modiflgdKeskin as RDTM. He developed the
HPM for solving linear, nonlinear initial and bowarg value problems. HPM combining
with Laplace Transformation (LT) has been introdudyy Khan and Wu for solving
various linear and nonlinear equations and provecbd very efficient due to the
application of LT. But this method involves the quutation of LT of complicated
function, for which the computational tool like Mi@matica consumes lots of computation
time to produce output.To overcome this disadvategthis work, we have presented the
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LHPM [16-17] in a new form. The approach is appliechighly nonlinear diffusion and

wave equations [11] involving logarithmic and expotial nonlinearity and obtained
satisfactory results. Even for third order timeidmive PDE the approach is equally
efficient. The obtained results are verified witle help of RDTM.

2. Modified laplace homotopy perturbation method (MLHPM)
We consider a general nonlinear partial differdmuation with initial conditions of the
form

Du(x,t) + Ru(x,t) + Nu(x,t) = g(x,t) 1)
with initial conditions
U0 _ 1), 1-012,m-1

m

where D is the mth order linear differential operab = gt_’“ R is the linear differential

operator, N represents the general nonlinear difitéal operator and g(x,t) is the source
term. Taking Laplace transform (let us denote iLbyn both sides of eqquation (1), we
get

L[Du(x,t)] + L[Ru(x,t)] + L[Nu(x,t)] = L[g(x,1)] 2
Using differential property of Laplace transfonwve have
L[u(x,)] = mz‘f ;(’f)) —Sim LIRu(x 1) + Nu(x.t) = g(x.1)] 3)
Operating with thei(:aplace inverse transform othisides of equation (3), gives
u(x,t) = gfi (x)ti—ll— L‘l[s—lm L[Ru(x,t) + Nu(x,t) —g(x,t)] 4)
In the He's HPM::t(;le basi.c assumption is that thet®n can be represented in the form of
u(xt) = 3P, (x 1) ©)
and the nonlinear term ma;/_(t))e represented as
Nu(xt) = S p"H, (u) 6)
where H_(u) may be repr;_soented by
o (Uos Uy ) == 13 n[N(Z;pu(xt)] Y

Using equation (5) and equation (6) in equatiopy (@ MLHPM, we construct the
homotopy as

u(x,t) = pr(x) TP "Tg(xt) - L'l[—L[RU(X £) + Nu(x,1)]] (8)

i=0

Comparing the coefficients of like power gf in euation (8), we find the values of

186



A New Approach Towards Laplace Homotopy Perturbakitethod

Uy(Xt) , u(Xt), u,(xt).. and so on. Finally the analytic solutiam(x,t) is
approximated by the truncated series as follows:

(D) = fim (4, (x.) ©)
This is the MLHPM. "

3. Reduced differential transform method
Consider a function of two variabla(x,t) and suppose that it can be represented as a

product of two single valued functions i.e(x,t) = f (x)g(t) . Based on the property of
one dimensional differential transform, the funatiai(x,t) can be represented as
follows:

u(xt) = Q_FH)x)(QG(i)t') = DU, ()t"
i=0 j=0 k=0
where U, (x) is called t-dimensional spectrum function ofx,t) .

Definition 3.1. Let u(x,t) be the original analytic function and differentiated
continuously in the domain of interest. Then let

1. 0
U, (x) = E[? u(X,t)]i=o o1

The spectrumU, (X) is the transformed or T-function.

Definition 3.2. The differential inverse function is defined as follows:

u(x,t) = YU, (9t* (11)
k=0
Combining (10) and (11 we may write
1.9 K
u(x,t) = ;E WU(XJ)L:ot (12)

To illustrate the basic concepts of the RDTM, cdesthe nonlinear PDE (1).
According to RDTM, we can construct the followirtgration formula:

(k+1)(k+2)...k+m)U
with initial condition
U, (9= f,(¥) (14)
Substituting (14) into (13) and then by iteratime obtain the following values of
U, (X). Then, the inverse transformation of the set of emli{lJ, (x)},., gives the
n-term approximation to solution as follows:

(¥) =G (x)~RU,(x) ~NU,(x) (13)

k+m
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U, (x,t) = DU, (t* (15)
k=0
Therefore the exact solution of the problem isgity
u(x,t) =limu,(xt) (16)

n- oo
Some fundamental transformations, which can beilyeadbtained are listed in the
following table.

Original forrr Transformed forr
u(x,t) = wix,t) £ v(x,t) U, (X) =W, (X) £V, (X)
u(x,t) = a w(x,t) U, (X) = aW,(x)
_ o _ (k+m)
u(xt) = at—mw(x,t) U, (%) 0 Veem(X)
u(x,t) = iW(x,t) U.(x)= iWk(x)
ox 0x
u(x,t) = x"t" U,(x) = x"d(k —n) where
5(k—n):{1 if k:.n
0 otherwise
u(x,t) = x"t"w(xt) U, (x) = x"W,_,(x)
u(x,t) = x"t"w(xt) U, (x) = x"W,_,(x)

Table 1. Fundamental Operations in RDTM

Theorem 3.1. If g(x,t) =u(x,t)Inu(xt), u(x,0)= f(x) and G, (x) isthereduced
differential transform( RDT) of the function g(X,t) then

Go(X) =Uo(x) InUy(x)

Ga(¥) =
k=0.

Theorem 3.2. If g(x,t) =e™*", u(x,0)= f(x) and G (x) istheRDT of the
function g(x,t) then

Gy(x) =™

1 K . ‘
0,0 2TV (Ui 00+ (K= 2106 (U (0]

G = 2 Ui (G, (9 . k=1

4. Numerical examples
Example 4.1. Consider the equation

u, (X,t) = xu,, (X, t) = u(x,t) Inu(x,t) a7)
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with initial condition

u(x,0)=¢e" (18)
(i) By MLHPM
Taking Laplace transform on both sides of the @éqndtL7) we obtained
Llu(x,t)] =& EL[xu (X,t) +u(x,t) Inu(x,t)] (19)

Operating with the Laplace mverse transform otihisides of equation (19), gives
u(x,t) =e* - L‘l[— L[ xu,, (x,t) +u(x,t) Inu(x,t)]] (20)
S

According to He's HPM, the basic solution is reymeted by equation (5) and the
nonlinear term is represented by equations (6) (@hdherefore homotopy of equation
(20) becomes

> PU (kD) = € - LAZLIX U, (k) + TP, W (2D

where pég[0,1] is the embedding parameter ard (u) is the He’'s polynomial
represented by

Hn(uo,ul,..un)— o

a ; [Zp u (%, t)m(ZIO u; (x,1))]

1aan ipu(x D[N uy(x, t)+'”(1+2|0 U((x ?))]

Lo al u (Xt
nl nZ|Ou(xt)[lnu(xt)+2( 1)i%= (z ( )) N
Comparing the like powers op in equation (21) the foIIowmg approx|mations are
obtained:

P Uy (x,t) =€

P10, = L[ Ly o (x,0) + Ho(u)] = 2e'x

p°:u, = L‘l[l L[XU, o (X, 1) + H, (u)]] = t%€* (2x2 +3x)
p’:u, = L‘l[ L[XU, . (X,t) + H,(u)]] = —t e x(4x2 +18x+13)
p*iu, =L [ L[XUy o (X,t) + H, (U)]] =—2t e x(8x3 +72%° +158x+75)

p° 1y, = 6—10t5exx(16x4 +240x° +1060¢ +1530x +541)

p®:u, = %teexx(?ﬁxf’ +720x* +5320x° +15480¢° +16622 + 4683
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+20197& +47293

U, = ﬁt7exx(64x6 +5856¢° +22400" +109200¢° + 2364047 )

oy =L
% 2016(
+384199X* + 2724878 +545835)
Solution is represented using the truncated sé@)ess
u(x,t) =u, +u, +u, +u, +u, +.....
(i) By RDTM
According to the RDTM and Table 1 the differenti@nsform of equations (17)
and (18) are as follows:

t%e*x(128x" +182016x° +375616¢> + 73008(x* + 2231208

2
(K4 DU, =X 5U, (0 =G (9 @2)
with U, (x) =¢€" (23)
here G, (x) represents the RDT ofi(x,t)Inu(x,t) . Clearly G,(x) = xe*. Using
Theorem 3 into equation (22) we obtain

M(x)-ki[x" U, (%
(24)
1
T Zuk.(x){(k—l)u (%) + (k= 21)G, ()]
where k>1.
Equation (24) in tern implies
00 =[x 2 U, () +— zu (k=) (%)
k+1 k 1 a .2 Yk kU ( ) k=i
+(k=20){(i +1)U, () - xa U, (O] (25)

From equation (22) we obtain
U,(x) = 2xe*
Using (25) as an iteration formula we obtain tHéofeing values ofU, (X)

u,= %ex(4x2 +6x)
U,(x) = %ex(4x3 +18x° +13x)

158x?

U4(X)=%e (82 +24x% + +25xj
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5 3 2
Ug(X) = %ex(%+ 20x* + 2635X + 25?( + 533}

U,(%) = —— ex(32xC + 720x* +5320¢ +15480¢ +16622+ 4683
°7 36C

U,(x) = ie*x(64x6 +2016x° + 22400k* +109200¢% + 2364042
! 252(

+20197&+47293
and so on. Using inverse transform (11) and (12phktain the solution of (17) as

u(x,t) = e[1+2xt + %tz(Gx +4x%) + %t3(13x +24x% +8x%)

+%t4(29x +(212)/3+ (100°)/3+ (8x*)/3) + ..

Example 4.2. Consider the equation

U, (%, t) = x°u (x,t) = a+be™™v (26)
with initial condition
u(x,0) = x,u, (x,0) = x? (27)

(i) By MLHPM
By taking laplace transform and then inverse Laplaansform, using we can
construct the homotopy of the equation (26) as

> o o 2
D p"u, (x,t) = X+ px’t + pz(L'l[S—l2 L[X*> p"U, o +bD_p"H, (U] + %)
n=0 n=0

n=0
(28)
where solution is represented by equation (5) axdimear term is represented by He'’s
polynomial as
" /\Zpiui(x,t)

_1 o _
Hn(uO’ul’”uh)_Ea_pne ,p—O (29)

Comparing the like power inp in equation (28) the following approximations are
obtained:
P Uy (X,t) = X
ptiu, =tx?
2 2
p2:u, = L‘l[s—l2 LIXUq . (X, t) + bH, (W)]] + % E %(a+ be™)

p*iu, = |_-1[S—12 L[X2U, o (X,t) +bH, ()] = %t3x2 (bre +2)
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ptiu, =L [ L[Xu, ,, (x,t) +bH, (W)]] ——t“e"x(ab/l +h X + b 2) S

p°iug = %e”x (3ab/12t5x2 +bA%°x® + A% X +4bA%t°x3 + 4b/1t5X2)
+ib2/]2tsxzeyx +t5X2

p° :u, 7 —bAt° ‘X(3a +a(7be™ + 6Ax*) + 4b%e®™ + bA(11x* +1)x’e™

+x*(A°x* +8)) + b/1 %tox%e™ (ad + 4bAe™ + 12" +8Ax% + X% +12X% + 4Ax + 2)

Solution is represented using the truncated sé3)ess
u(x,t) =u,+u +u, +u,+u, +.....
(i) By RDTM
According to the RDTM and Table 1 the differenti@nsform of equation (26)
and (27) are as follows:

62
(k+ 1)K+ 2)Uy,,(9 = X5 U, (X) = a(K) +bG, () (30)
G, (X) is the differential transform o™V .
and
Uo(X) = x,U (x) = Xx° (31)
Equation (26), by the influence of Theorem 4 maw\bitten as
1 9°
Uno(X)=— X —U, (X) +ad(K) +— Y iU, (X)G,_ (X 32
= G paa gl gk +adlk) k; ()G (%] (32)
Also from Theorem 4,
G, (x) = ™
and
G,(X) = Ax’e™
From (26):
U, (X) = %(a+ be”x) (33)

Using equation (32) as iteration formula, thedwling values ofU, (X) are obtained:
U,(x) = % x*(oAe’ +2)

Ax(abA 1

U, =% =+ 5o+ b/12 Zj 2—14b2/1e“*
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2

Ug(X) = L om (Sab/lzx2 +bAX® +bAX* + 4bA7x3 + 4b)|x2) — P Ax%e +
12C 3C 30

Ugs(X) = L prer *(3a% + a(7he™ +6Ax*) + 4b%e®™ + bA(11x? +1)x%e™
o T2C

+x* (A" +8)) + 7;C bA*x%e™ (aA +4bAe™ + Ax* +8Ax% + °x* +12x% + 4x + 2)

and so on. The solution is obtained by using theaton (15) and (16). We observe that
solution obtained by both the methods are exachesa

Example 4.3. Consider the equation

Uy (X’t) - UXX(X,t) =+ eu(x,t) (34)
with initial condition
u(x,0)=x, u(x,0)=x% u,(x0)=x° (35)
(i) By MLHPM

By taking laplace transform and then inverse Laplaansform, using we can
construct the homotopy of the equation as

Zp U, (xt) = x+ px2t+ Pt +p (L‘l[ L[szp unxx+2p H,u)+€]]) (36)

n=0
where solution is represented by equatlon (5) zmdlmear term is represented by He's

polynomial as
n
an AZp'ui(x,t)

H,(Up, Uy, u,) = lra_p“e =0 ,p=0 (37)

Comparing the like power irp in equation (36) the following approximations teet
solution is obtained:

ext ex’ e e e*x* e XX x g€
+ + + +t° +—
720 120 720 720 120 120 20 120

X<,2 X 3% 3 X
a5 g gbeed

+e™+e -t +x+1+..

u(x,t) =t6(

(i) By RDTM
According to the RDTM and Table 1 the differenti@nsform of equation (34)

and (35) are as follows:
2

(k+1)(k+2)(k+3)Uy.5(x) = a o k=4 +G(X) (38)

G, (X) is the differential transform oé“(“’.
and
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U, (X) = x,U,(x) = x*,U, =% (39)
Equation (38), by the influence of Theorem 4 mayabitten as
1 92 1 1
U,..(X)= —U, (X)+—+— ) IU.(X)G,_ (X
k+3( ) (k+1)(k+2)(k+3)[0X2 k( ) kl k; |( ) k—|( )]

(40)
Using equation (40) as an iteration formula tHetfan is obtained as

u(x,t) = 7i2ct6(ex(x6 +6X° + 2)+ e +1)+1—;ct5(exx4 +2e"'x° +12x+1)

+it4(exx2 +3)+lt3(ex +1)+t2x3 +X+ X+
24 6

Since the direct comparision of the two methoddH®M and RDTM is not visible here,
we shall compare them graphically:

U L

e
< 10Y =
3.5%108
2.5%10° 510
1o
20%10° 2.5x10 .
Iy
3 iS5 2.0%108 ! bpm
1wt | e |
b dtm = | dtm
L% 10% !
18108 i |
Lox10f | i
w000 | otk |
1 | S—— i 1 1 1 X
-1 = E 10 -10 - F 10
(A) =1 (B) t=3
Figure1:

5 Conclusion

In this work, nonlinear PDE with variable coeffioteinvolving logarithmic and
exponential nonlinearity are solved by MLHPM. Had traditional LHPM been applied,
then from equation (1), the homotopy would havenbemstructed as follows:

u(xt) = r_ani (x)i—; +p L‘l[S—lm L[g(x,1t) — Ru(x,t) + Nu(x,t)]]

Even for an equation involving second order tineeivéitive, this leads to the tedious
computations of Laplace Transform. But MLHPM maktess computation very simple. In
this paper, the results obtained by MLHPM are iemliby using RDTM.
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