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1. Introduction 
The rapid developments in science and technology have given birth to many complex 
nonlinear problems in various fields of studies viz. solid state physics, plasma physics, 
fluid mechanics, biology, chemistry etc.Studies of these highly nonlinear problems 
demand the emerge of many analytical as well as numerical and approximation techniques 
and continuous approach to modify them. In the recent years, many remarkable 
semi-analytic methods are contributed to solve nonlinear problems. Adomain 
Decomposition Method [1-3], Variational Iteration Method [4-5], Homotopy Perturbation 
Method (HPM) [6-7], Differential Transform Method (DTM) [12-15], Sine-Cosine 
method [8-9],Tanh Function mathod [10] and many other numerical methods [18-19] used 
to solve such problems.The key advantage of these semi-analytic methods are that the 
complicated nonlinear problems can be solved without using any transformation, 
linearization, discretization or any other constraints.In this work, our approach deals with 
Laplace Homotopy Perturbation Method (LHPM) and Reduced Differential Transform 
Method (RDTM). DTM was introduced by Zhou to solve linear and nonlinear initial value 
problems of electric circuit analysis and modified by Keskin as RDTM. He developed the 
HPM for solving linear, nonlinear initial and boundary value problems. HPM combining 
with Laplace Transformation (LT) has been introduced by Khan and Wu for solving 
various linear and nonlinear equations and proved to be very efficient due to the 
application of LT. But this method involves the computation of LT of complicated 
function, for which the computational tool like Mathematica consumes lots of computation 
time to produce output.To overcome this disadvantage, in this work, we have presented the 
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LHPM [16-17] in a new form. The approach is applied to highly nonlinear diffusion and 
wave equations [11] involving logarithmic and exponential nonlinearity and obtained 
satisfactory results. Even for third order time derivative PDE the approach is equally 
efficient. The obtained results are verified with the help of RDTM. 

 
2. Modified laplace homotopy perturbation method (MLHPM)  
We consider a general nonlinear partial differential equation with initial conditions of the 
form  

 ),(=),(),(),( txgtxNutxRutxDu ++                             (1) 
with initial conditions  
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operator, N represents the general nonlinear differential operator and g(x,t) is the source 
term. Taking Laplace transform (let us denote it by L) on both sides of eqquation (1), we 
get  
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 Operating with the Laplace inverse transform on both sides of equation (3), gives  
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In the He’s HPM, the basic assumption is that the solution can be represented in the form of  
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and the nonlinear term may be represented as  
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where )(uH n  may be represented by  
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 Using equation (5) and equation (6) in equation (4), in MLHPM, we construct the 
homotopy as  
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Comparing the coefficients of like power of p  in euation (8), we find the values of 
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),(0 txu , ),(1 txu , ),(2 txu ... and so on. Finally the analytic solution ),( txu  is 

approximated by the truncated series as follows:  

 )),((lim=),(
0=

txutxu n

N

nN
∑

∞→                                             
(9) 

 This is the MLHPM.  
 
3. Reduced differential transform method 
Consider a function of two variable ),( txu  and suppose that it can be represented as a 

product of two single valued functions i.e. )()(=),( tgxftxu . Based on the property of 

one dimensional differential transform, the function ),( txu  can be represented as 
follows:  
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where )(xU k  is called t-dimensional spectrum function of ),( txu .  

 
Definition 3.1. Let ),( txu  be the original analytic function and differentiated 
continuously in the domain of interest. Then let  
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The spectrum )(xU k  is the transformed or T-function.  

 
Definition 3.2. The differential inverse function is defined as follows:  
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 Combining (10) and (11 we may write  
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To illustrate the basic concepts of the RDTM, consider the nonlinear PDE (1). 
According to RDTM, we can construct the following iteration formula: 

 
)()()(=)()2)...(1)(( xNUxRUxGxUmkkk kkkmk −−+++ +              (13) 

with initial condition  
 )(=)( xfxU kk                                                    (14) 

 Substituting (14) into (13) and then by iteration we obtain the following values of 

.)(xU k  Then, the inverse transformation of the set of values n
kk xU 0=)}({  gives the 

n-term approximation to solution as follows:  
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 Therefore the exact solution of the problem is given by  
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                                              (16) 

Some fundamental transformations, which can be readily obtained are listed in the 
following table.  

  
Original form Transformed form 
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Table 1: Fundamental Operations in RDTM 

 
Theorem 3.1. If ),(ln),(=),( txutxutxg , )(=,0)( xfxu  and )(xGk  is the reduced 

differential transform( RDT) of the function ),( txg  then 
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Theorem 3.2. If ),(=),( txauetxg , )(=,0)( xfxu  and )(xGk  is the RDT of the 
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4. Numerical examples 
Example 4.1. Consider the equation  

 ),(ln),(=),(),( txutxutxxutxu xxt −                                       (17) 
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with initial condition  

 xexu =,0)(                                                         (18)  
(i) By MLHPM 

Taking Laplace transform on both sides of the equation (17) we obtained  
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 Operating with the Laplace inverse transform on both sides of equation (19), gives  
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 According to He’s HPM, the basic solution is represented by equation (5) and the 
nonlinear term is represented by equations (6) and (7).Therefore homotopy of equation 
(20) becomes  
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where [0,1]εp  is the embedding parameter and )(uH n  is the He’s polynomial 

represented by 
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 Comparing the like powers of p  in equation (21) the following approximations are 
obtained:  
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 Solution is represented using the truncated series (9) as 
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(ii) By RDTM 
According to the RDTM and Table 1 the differential transform of equations (17) 

and (18) are as follows:  
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here )(xGk  represents the RDT of ),(ln),( txutxu . Clearly xxexG =)(0 . Using 
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where 1≥k . 
Equation (24) in tern implies  
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From equation (22) we obtain  
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Using (25) as an iteration formula we obtain the following values of )(xU k  
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 and so on. Using inverse transform (11) and (12) we obtain the solution of (17) as  
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Example 4.2. Consider the equation  
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with initial condition  
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(i) By MLHPM 
By taking laplace transform and then inverse Laplace transform, using we can 

construct the homotopy of the equation (26) as  
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where solution is represented by equation (5) and nonlinear term is represented by He’s 
polynomial as  
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Comparing the like power in p  in equation (28) the following approximations are 
obtained:  
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 Solution is represented using the truncated series (9) as  
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(ii) By RDTM 
According to the RDTM and Table 1 the differential transform of equation (26) 

and (27) are as follows:  
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 Equation (26), by the influence of Theorem 4 may be written as  
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 Also from Theorem 4,  
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and so on. The solution is obtained by using the equation (15) and (16). We observe that 
solution obtained by both the methods are exacly same.  
 
Example 4.3. Consider the equation  
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with initial condition  
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(i) By MLHPM 

By taking laplace transform and then inverse Laplace transform, using we can 
construct the homotopy of the equation as  
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where solution is represented by equation (5) and nonlinear term is represented by He’s 
polynomial as  
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 Comparing the like power in p  in equation (36) the following approximations to the 
solution is obtained:  
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 (ii) By RDTM 

According to the RDTM and Table 1 the differential transform of equation (34) 
and (35) are as follows:  
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 Equation (38), by the influence of Theorem 4 may be written as  
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 Using equation (40) as an iteration formula the solution is obtained as  
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 Since the direct comparision of the two methods MLHPM and RDTM is not visible here, 
we shall compare them graphically:  

 
 

Figure 1: 
 

5  Conclusion 
In this work, nonlinear PDE with variable coefficient involving logarithmic and 
exponential nonlinearity are solved by MLHPM. Had the traditional LHPM been applied, 
then from equation (1), the homotopy would have been constructed as follows:  
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 Even for an equation involving second order time derivative, this leads to the tedious 
computations of Laplace Transform. But MLHPM makes the computation very simple. In 
this paper, the results obtained by MLHPM are verified by using RDTM.  
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