Annals of Pure and Applied Mathematics
Vol. 12, No. 2, 2016, 211-220

Annals of
ISSN: 2279-087X (P), 2279-0888(online) .
Published on 6 December 2016 P“re and Applled
www.researchmathsci.org :
DOI: http://dx.doi.org/10.22457/apam.v12n2al?2 Mathe—n‘atlcs

Size Multipartite Ramsey Numbersfor Small Paths
Versus Stripes
Chula Jayawardene and Lilanthi Samarasekara

Department of Mathematics, University of Colombejdnbo 3, Sri Lanka
Corresponding author. Email; jayawardene@yahoo.com

Received 30 October 2016; accepted 19 November 2016

Abstract. For graphs G and H, the size balanced multipartite Ramsey number
m, (G,H) is defined as the smallest positive integersuch that any arbitrary two

red/blue coloring of the grapK . forces the appearance of a rédor a blueH . In

Jxs

this paper we find the exact values of the multiaRamsey numbem, (P;,nK,) and
m, (P,,nK,) .
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1.Introduction
Let G,H and K be three finite graphs without loops and multiptiges. If for every
two coloring (red and blue) of the edges of a catgpgraphK ,, there exists a copy of

H in the first color (red) or a copy oK in the second color (blue), we say
G - (H,K). The Ramsey numbar(G, H) is defined as the smallest positive integer

n such that K, - (G,H). The classical Ramsey numbe(n,m) is defined as

r(K,,K,). Researches are now trying to approach this pmoble/ using new

techniques like fuzzy logic, genetic algorithmsrtgorove the lower bound (see [7,8,9]).
Another form of Ramsey numbers that originate witencomplete graph is replaced by
the complete bipartite graph in the above definiti® called bipartite Ramsey numbers.

More precisely, the bipartite Ramsey numbif(G,H) is defined as the smallest
positive integernsuch thatK, — (G,H). The bipartite Ramsey numb&, (n,m) is
defined asr(K, K, ,). These bipartite Ramsey numbers have been explored

extensively in the last decade (see [2,3,4,5,6l)e Possible generalization of bipartite
Ramsey numbers are the size multipartite Ramseybaum, (G,H) defined as the

smallest positive integers such that K. . - (G,H) where K. . represent the

jxs jxs

complete multipartite graph consisting pfpartite sets having exactly vertices in each
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partite set. These numbers were introduced Bungén/aiuren and Syafrizal et al. (i.e.,
[1,10]) in the last decade. However, not much paperve been published in this area
except for paths and cycles versus some smalledaggraphs. (see [1,10]).

2. Notation
The order of the graphG = (V, E) is denoted by|V | and the number of edges in the

graph is denoted byE |. Theneighborhoodof a vertexvV is defined as the set of
vertices adjacent ty and is denoted b¥/ (v) .

If v[IV , the vertexv along with the vertices adjacenttois denoted bm. The
degreeof a vertexv, d(v), is defined as the cardinality of (v), i.e. d(v)=|"(v)]|.
The maximum degree of a grap(V,E) denoted by A(G) is defined as
maxXd(v)|vOV}. A path of sizen is a graphP,, with V ={a,,a,,...,a,} and edge set
E={(a,a,),(a,,a),..,(a,,,a,)}.A cycle of sizen is a graph C,, with
VvV ={a,a,,...,a,} and edge set given bk ={(a,,a,),(a,,a,),....(a,,a)} . Given a
matchingM (set of independent edges) of a gr&pfV, E) of sizet, let V(M) denote
the 2t vertices adjacent to the edges of matchihigand letV (M )° denote the vertices
outside this matching of siz&/ (G)| -2t .

3. Small pathsversus stripes

Theorem 1.m, (B,,nK,) = {@—‘

J
Proof: This is a direct consequence of Corollary 1 (se8])[Isince we know
m, (R;,C,,) = {?—I implies m, (P,,nK,) = {?—‘

2n+1

Theorem 2.mj(P4,nK2)2{ —‘ if n>1.

Proof: Let n>1. Consider the red/blue coloring given b§
[2n+1
S=

=HgUOH;, where

jxs

—I—l, generated by coloring all edges leaving a singletertex(sayv) of

K., by red and all the other edges by blue. Then,dgtawh has no red®, and

jxs

. + .
sj—-1= ﬂZn 1—‘—1} —1<2n. Also the vertexv is not adjacent to any vertices in

. 2n+1
blue. Therefore, the graph contains no b€, . Hence,m, (R,,nK,) = - )
J

In proving the theorem given below we will use fbBowing lemma which is a direct
consequence of Bondy’'s Lemma.
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Lemma 3. Consider the coloring given b, = H, U Hg, where j 2 4.
a) If W is a subset of/ (K .,.) such thafW [= 2s+2 and A(Gx[W]) <1 then G;[W]

jxs
(the induced subgraph of the blue gra@y generated by the vertices W) has a
Hamilton cycle.
b) If Y is a subset o¥/ (K ,,) such thafY [> 2s and A(Gz[Y]) <1 then G;[Y] has a

jxs

Hamilton cycle.

Theorem 4.
2 ifn=1landj=3

m, (P,,nK,) = {2n+1
J

—I otherwise

Proof: Clearly, m;(P,,K,) =2 for j=3 andm,(PF,,K,) =1 for j>3. Therefore, it
2n+1

suffices to showm, (F,,nK,) s{ —‘ for n#1. Consider any red®, free coloring

J
red graphH will consist of isolated vertices, a three cycteld,  for somem=1.

+
given by K, . =H U Hg, wheres= {E—I Then the connected components of the

Define N ={ v |V is highest degree vertex of a r&gd , wherem>1 or v is any one

of the vertices of a re@,}.

Casel: If =3

Let V(Kg,) ={V, |10{1,2,...,s} and k[0{1,2,3}} and for a fixed j [0{1,2,3} let

V, ={v,; |10{1,2,...,s}} represent thej™ partite set. Let the red induced graph and
the blue induced graph generated by the et |iO{p,p+1,.,p+I} and
k0{1,2,3}} be denoted respectively by Gg[p,p+1,..,p+l] and
Gglp, p+1,...,p+I]. Define N[ p, p+1] as the set of vertices d having the red
degree greater than or equal to two in the indscegraph ofG;[ p, p+1].

Claim 1 (Case 1): Any G¢[ p, p+1] has ared, , or Gg[p, p+1] has a blueK,.

Proof: [ N[ p, p+1] [ 2 as the red degree of any vertexii p, p+1] is greater than or
equal to 2 inGg[p, p+1]. If [N[p, p+1]|=0 then Gy[p, p+1] can have at most
three disjoint edges and thus the blue inducedngralb have a3K,. Thus we have only
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to consider the possibility whepN[ p, p+1][J{1,2} . Therefore, ifG;[ p, p+1] has
no red K, , without loss of generality the only remaining pbaiies for the maximal

red graphs (That is, there are no red graphdsgpp, p+1] satisfying the required

conditions, that could be obtained by adding regesdo any one of these graphs) are
illustrated in the following diagram.

Figure 1. The three posibilities

But then is seen that in each of these possibilities the ptemment graph
(Gg[ p, p+1]) will contain a3K,. Therefore, we can conclude that a@y[ p, p+1]

has ared, , or Gg[ p, p+1] has a blue3K,.

Claim 2 (Case 1): Any G;[p, p+1,p+2] has a bluedK,.

Proof: There are two possible cases.First supfiaglep, p+1] has no redK ,. We
know that G;[ p+2] will contain a blue edge oG;[ p+ 2] will contain a redC,. In
the first possibility we will get a bludK, . In the later possibility suppose without loss

of generality thai(v,,,,V,., ,) is a blue edge of the bllgK, of the graphGg[ p, p+1].

p.L7
Then in order to avoid a ref,, (v,,V,.,,) and (V,,;,,V,.,,) Wil have to be blue
edges. Thus by replacing, ,,V,.,,) bY (V,1:Vpi2,) @nd(V,,,5,V,,,,) blue edges we

will obtain a blue4K, .

Next suppose thaBg[ p, p+1] has a redk, , with the rootv,,. Then independent of

the structure olGg[ P+ 2], (V)01 Vi) (VpaVpias) s @nd (V. 5,V,.05) Will have to

p,3? p+1,2?

be blue edges. This would result in a bii€, as(v,,,,,V,,) is also a blue edge.

p+1,1?

Claim 3 (Case 1): Any G;[p, p+1,p+2,p+3] has a blueK,.
Proof: If one of Gg[p,p+1] or Gg[p+2,p+3] has no red K , clearly

Gyl p, p+1,p+2,p+3] will have a blue5K, as required. Therefore, we may assume
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that Gg[ p, p+1] has a redK,, and thatGg[ p+2,p+3] also has another rel, ,.

Without loss of generality the only possible redgrs are illustrated in the following
diagram. However, eachof these two cases will tés@ blue5K,.

Figure2: The four possibilities.

Claim 4 (Case 1): Supposd = 3. Then anyG;[1,2,...]] has a bluemK, where

3|T_1 whenl is odd

3A-2 .
T whenl is even

Proof: We will use mathematical induction to prove thesult. Supposé is a natural
number such thalt> 3. By claim 2 and claim 3, the result is true wHen3 and| =4

respectively. Letd€™s assume that the result esfouall p<I .
When | is odd, G[1,2,...] —2] has a bluemK, where m=w (i.e.

2
m= %). So, G;[1,2,...] 2] has one vertex not incident to theK, (say A). By

claim 1, we have the following two situations.
Situation 1: Gg[l —1,1] has a blue3K, .

Situation 2: G¢[I —1,I] has aredK, ,.
Under situation 1, combiningG;[1,2,...] —2] and G;[l -1,I] we obtain that

Gy1,2,...]] hasablue{3|2_7+3jK2 i.e. ablue(alT_lez).
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Under situation 2, the induced subgraph@f[1,2,& (say H) whose vertex set is
V(Gy[I -1,I]) O{A has three blue edges that do not share end points.
Therefore, combining the edges of the two matchimgsobtain thaG;[1,2,...]] has a

blue (3' 2_7 +3jK2 (ie.a blu{‘ng_lez).

When | is even, G;[1,2,...] -2] has a bluemK, where m=

31-2)-2
2
)- So, Gg[1,2,...] —2] has two vertices not incident to teK,. As argued

(i.e.
3-8
m_—
2
above, by considering the two situations, we obtdiat G;[1,2,...]] has a blue

(3|2_8+3)K2 (ie. a blue[SI;ZJKz)- So, by mathematical induction, the result is

true for all| 23. Thus by the above claim, when= 3, any redP, free coloring given

+
by Kxs =HgUOHg, wheres:{m'—l will have a bluenkK,.

J
Case2: If 24
If |N[D{0,1} then at most one vertex iN has at least two red edges incident to it.
From this it is clear that whepN [1{0,1}, by Bondy’s lemma, the theorem follows
through. Thus, we will assuméN |> 2. Suppose that the the maximum degree of the red

graph isAg and achieved an, IN . If nOK ¢ then letl (n) ={ v|(v,n) is an edge
of Hgy }, Tr(n) =T;(n)O{n} and;(N)={ v|(v,m) is an edge ofH, for some
MUN}. Define N, = N\{n} (as|N[22, N, Z ¢).

Case2.1: If [Nz 2s+1
Since the vertices oN that are not in the same partite set are connéctedch other by
blue edges the blue degree of any vertex of theced subgraph orN (denoted

IN|

Gg[N]) is greater than or equal tpN |—527. Therefore, by Bondy's lemma

Gg[N] will contain a blue Hamilton cycle. By the definit of N, G;[N°] will have

at least4s+2 vertices and again by Bondy's lemma(see Lemm&3)N°] will also

contain a blue Hamilton cycle. Also &bl | is greater thar2s+1 the two cycles will be
connected by a blue edge. Thhk, will contain a Hamilton path. This will result i

blue nK, as required.

Case2.2: If ARS%—S
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Then the blue degree of any vertex of the grddh is greater than or equal to

sj—(AR+s)2%. Applying Bondy’'s Lemma toH, we get that it contains a blue

Hamilton cycle. This will result in a bluaK, as required.
In each of the following two cases we apply Bondyésnma (see Lemma 3) to two sets
separately. For each of these sets, we will reqjiee4 condition to satisfy the degree

condition of Bondy's Lemma.

Case2.3 If s+1<|N £ 2s andA, >%—s

Then the number of vertices @[ N, L1 ;(n))] is greater thanSZ—J. As we can assume

o1 OTr(N) and nON; such that(n,v,,,) is a blue

However if,v ., [1T(n,) let X be any element of

that |N [= 2 there exist a vertex

edge. Ifv O (n) let x=v

p+l P
=(n) . Applying Bondy's Lemma, separately @[ N, O (F'z(n) \ {x})] (see Lemma

3) andGg[(N, O (n))* O{x}] (see Lemma 3), a§ =5 in this Case 2.3, we get that
GoIN, O(Mr(m)\{x})] and Gg[(N, OT;(n))°O{x}] contain blue Hamilton cycles

nV,V,..v, andVv,,,V,.,...,V as indicated in the following diagram. Then wel witain

a blue Hamilton path ifHg given by v,v,..v nv v, .,..v . This will result in a blue

nK, as required.

Figure3: Case 2.3.

Case2.4: If [N|<'s andA, >%—s
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Claim 1 (Case 2.4): SupposeN is not contained in any partite set. Then thera is
matching of sizgf N | -1 where one edge of the matching is of the fdmpm) where
n,mON and the other edges of the matching are betwé¢h{n,m} and
M=(N\{n,m}) . Let D denote the set of vertices incident to the bluéchiag of size
[N|-1.

Remark 1. For any two distinct verticest and m of G;[N] belonging to the same
partite set, we can find a vertex I, (m) adjacent ton in blue and a vertex iz (n)
adjacent tom in blue. Further, for any three distinct verticeasm and k of Gg[N]
belonging to the same partite set, we can findreexen I, (m) adjacent ton in blue, a
vertex in[; (k) adjacent tam in blue and a vertex ifi;(n) adjacent tok in blue.

Remark 2. For any three verticep,q and r of Gg[N] belonging to distinct partite
sets, without loss of generality we can find aeeih [';(p) adjacent toq in blue and a
vertex in[;(q) adjacent top in blue.

Remark 3. For any two vertices ifG;[N] belonging to distinct partite sets by the
definition of N are connected by an blue edge.

SupposéN is not contained in any partite set. Then, firgtyythe repeated use of
the first remark we can build a matching consistiigedges betweedN and I';(N)
such that if there are any remaining vertices thech vertices ofN will consist of
singleton elements belonging to different partétssSecondly, by the repeated use of the
second remark we can reduce the remaining eleroén¥s to consist of two elements of
N belonging to distinct partite sets or a singlettement ofN.

If we were left with two vertices by thkird remark we can increase the blue
matching size by 1 as the two remaining verticestrbe connected by a blue edge and
obtain a matching of sizeN | -1 as given in the claim. If we were left with onertes
we can switch one of the blue edges and obtaimméasi matching as given in the
claim.Then ag D [ 2s-2, and|D° |> 2s+ 2, applying Bondy’'s Lemma (see Lemma
3) to G;[D°] we get that it contains a blue Hamilton cycle.

This information is illustrated in Figure 4
But then the blue matching db;[D] and the blue matching dB;[ D] together will

give us the blueK, as required.
Thus we are left with the case whbh is contained in some partite Sét of K,
and j = 4. Out of this first let us consider the case whénis strictly contained in some

partite setV, of K,,; with j>4 orif N is equal to some partite s&f with j >5.

S

Then by remark 1 we will be able to find a blue chirtg of size| N |. Let D, denote the
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set of vertices incident to the blue matching dfesjN |. But then, |D; |2 2s+2.

Applying Bondy's Lemma (see Lemma 3) 6,[D;] we get that it contains a blue
Hamilton cycle. This information is illustrated Figure 5..

Figure5: G;[D°]
Then the blue matching dB;[D,] and the blue matching @[ D;] together will give
us the bluenK, as required. Therefore, we are only left with thee whereN =V, for

some partite seV, with j = 4.Then degy(n){s+1,5+2} and either one of the
following conditions will hold
a)deg,(n,) = s+2 and the red degree of all the other vertice®ofs exacly 2.
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b)deg,(n) =s+1 and the red degree of all the other verticed\bfis exacly 2, and

HR

has one isolated vertex.

c)deg,(n) =s+1 and the red degree of all the other verticedNofis exacly 2 except
for one vertex of red degree 3.

In each of the three cases |43/ |[=2s. Then asA,(Gx[D;]) <1 by applying

Bondy's Lemma (see Lemma 3) @&,[D;’] we will get that it contains a blue Hamilton
cycle, which will generate a blueK, as required.

10.
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