Annals of Pure and Applied Mathematics

Vol. 12, No. 2, 2016, 123-127

ISSN: 2279-087X (P), 2279-0888(online)

Published on 21 September 2016

www.researchmathsci.org

Annals of **Pure and Applied Mathematics**

Second Hankel Determinant for Starlike Functions Using Al-Oboudi Operator

S.P. Vijayalakshmi¹ and Anitha Kumari. B²

¹Department of Mathematics, Ethiraj College for Women, Chennai-600 008, India ¹Email: vijishreekanth@gmail.com

²Research Scholar, Department of Mathematics, Ethiraj College for Women Chennai-600 008, India

²Email: anithakumarib92@gamil.com

Received 5 September 2016; accepted 16 September 2016

Abstract. This paper focuses on attaining the upper bounds for the functional

$$|a_2a_4-a_3^2|$$

 $\left|a_2a_4-a_3^2\right|$ belonging to the subclass S^{**} defined in the unit disc $D=\{z:|z|<1\}$ which is introduced here by means of Al-Oboudi Operator [2].

Keywords: Starlike functions, Hankel determinant

AMS Mathematics Subject Classification (2010): 30C45, 30C50

1. Introduction

as

Let A denote the class of functions of the form

$$f(z) = z + \sum_{j=2}^{\infty} a_j z^j$$
(1.1)

which are analytic in the unit disc $D = \{z : |z| < 1\}$. Let S denote the subclass of A that is univalent in D. Let S* denote the starlike subclass of S. It is well known that $f \in S^*$ if and only if

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > 0, \ z \in D.$$

Let K denote the class of all functions $f \in A$ that are convex. Further, f is convex if and only if zf is starlike. It is well known that $K \subset S^* \subset S$.

In 1966, Pommerenke [9] stated the *qth* Hankel determinant for $q \ge 1$ and $n \ge 0$

 $H_q(n) = \begin{vmatrix} a_n & a_{(n+1)} & \dots & a_{(n+q+1)} \\ a_{(n+1)} & \ddots & & \vdots \\ \vdots & & & & \\ a_{(n+q-1)} & \dots & & a_{(n+2q-2)} \end{vmatrix}$

where a_n 's are the coefficient of various powers of z in f(z) defined by (1.1).

This determinant has also been considered by several authors. For example, Noor [8] determined the rate of growth of $H_q(n)$ as $n \to \infty$ for functions f given by (1.1) with bounded boundary.

S.P.Vijayalakshmi and Anitha Kumari.B

Easily one can observe that the Fekete and Szeg \ddot{o} [5] functional is $H_2(1)$. Fekete and Szegö then further generalized the estimate $|a_3 - \mu a_2^2|$ where μ is real and $f \in S$. We consider the Hankel determinant for the case q = 2 and n = 2.

$$H_2(2) = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix} = |a_2 a_4 - a_3^2|$$
 (1.2)

Let D^n be the Salagean differential operator $[10]D^n: A \to A, n \in \mathbb{N}$, defined by

$$D^{0}f(z) = f(z)$$

$$D^{1}f(z) = Df(z) = zf'(z)$$

$$\vdots$$

$$D^{n}f(z) = D(D^{n-1}f(z))$$

Let $n \in \mathbb{N}$ and $\lambda \geq 0$. Let $f \in S$ denote with $D_{\lambda}^{n}: A \to A$ the Al-oboudi operator [2] defined by

$$\begin{aligned} D_{\lambda}^{0}f(z) &= f(z) \\ D_{\lambda}^{1}f(z) &= (1-\lambda)f(z) + \lambda z f'(z) = D_{\lambda} f(z) \\ &\vdots \\ D_{\lambda}^{n}f(z) &= D_{\lambda} \left(D_{\lambda}^{n-1}f(z)\right). \end{aligned}$$

Acu and Owa [1] considered the operator D_{λ}^{β} which is defined as follows.

Definition 1.1. [1] Let $\beta, \lambda \in R, \beta \geq 0, \lambda \geq 0$ and f(z) defined as (1.1). We denote by D_{λ}^{β} the linear operator defined by $D_{\lambda}^{\beta}: A \to A$ $D_{\lambda}^{\beta}f(z) = z + \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}z^{j}. \tag{1.3}$ We now define the following class S^{**} .

$$D_{\lambda}^{\beta} f(z) = z + \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta} a_j z^j.$$
 (1.3)

Definition 1.2. Let f(z) be given by (1.1). Then $f(z) \in S^{**}$ if and only if

$$Re\left\{\frac{D_{\lambda}^{\beta+1}f(z)}{D_{\lambda}^{\beta}f(z)}\right\} > 0, \ z \in D.$$
 (1.4)

When $\lambda = 1$, $\beta = 0$ the subclass S**=S*. In the present paper, we obtain an upper bound for functional $|a_2a_4 - a_3^2|$ in the class S^{**} .

2.Preliminary results

The following lemmas are required to prove our main results.

Let P be the family of all functions p analytic in the unit disk D for which Re p(z) > 0 and

$$p(z) = 1 + c_1 z + c_2 z^2 + \cdots {(2.1)}$$

Lemma 2.1. [4] Let $p \in P$, then $|c_k| \le 2$, k = 1,2,... and the inequality is sharp.

Lemma 2.2. [6,7]

Let
$$p \in P$$
, then $2c_2 = c_1^2 + x(4 - c_1^2)$ (2.2)

Let $p \in P$, then $2c_2 = c_1^2 + x(4 - c_1^2)$ and $4c_3 = c_1^3 + 2xc_1(4 - c_1^2) - x^2c_1(4 - c_1^2) + 2y(1 - |x|^2)(4 - c_1^2)$ for some x, y such that $|x| \le 1$ and $|y| \le 1$. (2.3) Second Hankel Determinant for Starlike Functions Using Al-Oboudi Operator

3. Main results

Theorem 3.1.

Let
$$f \in S^{**}$$
, then $\left|a_2a_4 - a_3^2\right| \leq \frac{1}{\lambda^2[1+2\lambda]^{2\beta}}$.

The inequality is sharp for the function $f(z) = z + \frac{1}{\lambda(1+2\lambda)^{\beta}}z^3 + \cdots$

Proof: Since $f \in S^{**}$, it follows from (2.1) that there exists $p \in P$ such that

$$D_{\lambda}^{\beta+1}f(z) = \left(D_{\lambda}^{\beta}f(z)\right)p(z) \tag{3.1}$$

for some $z \in D$.

Equating coefficients in (3.1) yields,

$$a_{2} = \frac{c_{1}}{[(1+\lambda)^{\beta+1} - (1+\lambda)^{\beta}]}$$

$$a_{3} = \frac{c_{2}}{[(1+2\lambda)^{\beta+1} - (1+2\lambda)^{\beta}]}$$

$$+ \frac{(1+\lambda)^{\beta}c_{1}^{2}}{[(1+\lambda)^{\beta+1} - (1+\lambda)^{\beta}][(1+2\lambda)^{\beta+1} - (1+2\lambda)^{\beta}]}$$

$$a_{4} = \frac{c_{3}}{[(1+3\lambda)^{\beta+1} - (1+3\lambda)^{\beta}]} + \frac{(1+\lambda)^{\beta}c_{1}c_{2}}{[(1+\lambda)^{\beta+1} - (1+\lambda)^{\beta}][(1+3\lambda)^{\beta+1} - (1+3\lambda)^{\beta}]}$$

$$+ \frac{(1+2\lambda)^{\beta}c_{1}c_{2}}{[(1+3\lambda)^{\beta+1} - (1+3\lambda)^{\beta}][(1+2\lambda)^{\beta+1} - (1+2\lambda)^{\beta}]}$$

$$+ \frac{(1+\lambda)^{\beta}(1+2\lambda)^{\beta}c_{1}^{3}}{[(1+\lambda)^{\beta+1} - (1+\lambda)^{\beta}][(1+2\lambda)^{\beta+1} - (1+2\lambda)^{\beta}]}$$

Substituting the values of a_2 , a_3 and a_4 , we have

Substituting the values of
$$a_2$$
, a_3 and a_4 , we have
$$|a_2 a_4 - a_3^2| = \left| \frac{c_1 c_3}{3\lambda^2 (1 + \lambda)^\beta (1 + 3\lambda)^\beta} - \frac{c_2^2}{4\lambda^2 [1 + 2\lambda]^{2\beta}} \right.$$

$$+ \frac{\left[2(1 + 2\lambda)^{2\beta} - 3(1 + 3\lambda)^\beta \right] c_1^4}{12\lambda^4 (1 + 2\lambda)^{2\beta} (1 + 3\lambda)^\beta}$$

$$+ \frac{\left((1 + 2\lambda)^{2\beta+1} - 3\lambda(1 + \lambda)^\beta (1 + 3\lambda)^\beta \right) c_1^2 c_2}{12\lambda^4 (1 + \lambda)^\beta (1 + 2\lambda)^{2\beta} (1 + 3\lambda)^\beta}$$

$$= \left| \frac{c_1 c_3}{p_1} - \frac{c_2^2}{p_2} + \frac{c_1^4}{p_3} + \frac{c_1^2 c_2}{p_4} \right|$$

$$\text{where, } p_1 = 3\lambda^2 (1 + \lambda)^\beta (1 + 3\lambda)^\beta, \ p_2 = 4\lambda^2 [1 + 2\lambda]^{2\beta}$$

$$(3.2)$$

$$p_3 = \frac{12\lambda^4(1+2\lambda)^{2\beta}(1+3\lambda)^{\beta}}{2(1+2\lambda)^{2\beta}-3(1+3\lambda)^{\beta}} \text{ and } p_4 = \frac{12\lambda^4(1+\lambda)^{\beta}(1+2\lambda)^{2\beta}(1+3\lambda)^{\beta}}{(1+2\lambda)^{2\beta+1}-3\lambda(1+\lambda)^{\beta}(1+3\lambda)^{\beta}}$$
 Substituting the values of c_2 and c_3 using the equations (2.2) and (2.3) from lemma 2.2,

$$\begin{aligned} \left| a_2 a_4 - a_3^2 \right| &= \left| \frac{c_1 \{ c_1^2 + 2c_1 (4 - c_1^2) x - c_1 (4 - c_1^2) x^2 + 2y (4 - c_1^2) (1 - x^2) \}}{4p_1} \right. \\ &+ \frac{\left[c_1^2 + x (4 - c_1^2) \right]^2}{4p_2} + \frac{c_1^4}{p_3} + \frac{c_1^2 \left[c_1^2 + x (4 - c_1^2) \right]}{2p_4} \right| \end{aligned}$$

S.P.Vijayalakshmi and Anitha Kumari.B

Suppose that $c_1 = c$. Since $|c| = |c_1| \le 2$, using the Lemma 2.1, we may assume without restriction that $c \in [0,2]$ and on applying the triangle inequality with $\rho = |x| \le 1$, we get

$$\begin{aligned} \left| a_2 a_4 - a_3^2 \right| &\leq \\ \left\{ \frac{c \{ \, c^3 + 2c(4 - c^2) \rho - c(4 - c^2) \rho^2 + 2(4 - c^2)(1 - \rho^2) \}}{4p_1} + \frac{\{ c^2 + \rho(4 - c^2) \}^2}{4p_2} \right. \\ &\qquad \qquad + \frac{c^4}{|p_3|} + \frac{c^2 [c^2 + \rho(4 - c^2)]}{2|p_4|} \\ &\leq k_1 c^4 + k_2 c(4 - c^2) + k_3 \rho c^2 (4 - c^2) + (4 - c^2) \rho^2 \left[\frac{c^2 - 2c}{4p_1} + \frac{4 - c^2}{4p_2} \right] \\ &= k_1 c^4 + k_2 c(4 - c^2) + k_3 \rho c^2 (4 - c^2) + (4 - c^2) \rho^2 \left[k_4 c^2 - \frac{c}{2p_1} + \frac{1}{p_2} \right] \\ &= F(\rho) \text{ for } \rho > 0. \\ k_1 &= \frac{1}{4p_1} + \frac{1}{4p_2} + \frac{1}{|p_3|} + \frac{1}{2|p_4|}, \quad k_2 &= \frac{1}{2p_1}, \quad k_3 &= \frac{1}{2p_1} + \frac{1}{4p_2} + \frac{1}{2|p_4|} \quad \text{and} \\ k_4 &= \frac{1}{4} \left\{ \frac{1}{p_1} - \frac{1}{p_2^2} \right\}. \end{aligned}$$

Differentiating $F(\rho)$, we get

$$F'(\rho) = k_3 c^2 (4 - c^2) + 2\rho (4 - c^2) \left[k_4 c^2 - \frac{c}{2p_1} + \frac{1}{p_2} \right]$$

We note that $F'(\rho) > 0$ and consequently F is an increasing function of ρ on a closed interval [0,1]. Hence $F(\rho) \leq F(1)$ for all $\rho \in [0,1]$.

$$F(\rho) \le k_1 c^4 + k_2 c (4 - c^2) + k_3 c^2 (4 - c^2) + (4 - c^2) \left[k_4 c^2 - \frac{c}{2p_1} + \frac{1}{p_2} \right]$$

$$= G(c)$$

then
$$G'(c) = -c \left\{ \left| \frac{2}{p_2} - 8k_3 - 8k_4 \right| + 4c^2 |k_3 + k_4 - k_1| \right\} = 0$$

implies c=0. We observe that $G''(c) \le 0$ for $0 \le c \le 2$ and G(c) has real critical point at c=0. Thus the upper bound of $F(\rho)$ corresponds to $\rho=1$ and c=0. Therefore the maximum of G(c) occurs at c=0. Hence, $\left|a_2a_4-a_3^2\right| \le \frac{1}{\lambda^2\lceil 1+2\lambda\rceil^{2\beta}}$.

By setting $c_1 = 0$, and x = 1 in (2.1) and (2.2) we find that $c_2 = 2$ and $c_3 = 0$. Using these in (3.2), we get the equality

$$|a_2a_4 - a_3^2| = \frac{1}{\lambda^2[1 + 2\lambda]^{2\beta}}$$

The inequality is sharp for the function $f(z) = z + \frac{1}{\lambda(1+2\lambda)^{\beta}}z^3 + \cdots$

Corollary 2.2. [3] When $\lambda = 1$, $\beta = 0$ then it reduces to [3], $\left| a_2 a_4 - a_3^2 \right| \le 1$.

REFERENCES

- 1. M.Acu and S.Owa, Note on a class of starlike function, *Kyoto. Proceeding of the international short joint work on a study on calculus operators in univalent function theory*, (2006)1-10.
- F.M.Alboudi, On univalent functions defined by a Generalized Sălăgean operator, Int. J. Math. Sci., 25-28 (2004) 1429-1436.

Second Hankel Determinant for Starlike Functions Using Al-Oboudi Operator

- 3. A.Janteng, S.A.Halim and M.Darus, Hankel determinant for starlike and convex functions, *Int. Journal of Math. Analysis*, 1(13) (2007) 619-625.
- 4. P.L.Duren, *Univalent functions*, Springer Verlag, New York Inc. (1983)
- 5. M.Fekete and G.Szegö, Eine Bemerkung uber ungerade Schlichte Functionen (A Remark On odd univalent functions), *J. London Math.Soc.*, 8 (1933) 85-89.
- 6. R.J.Libera and E.J.Zloltkiewicz, Early coefficients of the inverse of a regular convex function, *Proc. Amer. Math. Soc.*, 85(2) (1982) 225-230.
- 7. R.J.Libera and E.J.Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in *p*, *Proc. Amer. Math. Soc.*, 87(2) (1983) 251-289.
- 8. K.I.Noor, Hankel determinant problem for the class of functions with bounded boundary rotations, *Rev. Roum. Math. Pures. Et. Appl.*, 28(8) (1983) 731-739.
- 9. C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, *Journal of the London Mathematical Society*, 41 (1966) 111-122.
- 10. G.S.Sălăgean, *Geometric Planului Complex*, Ed-Promedia Plus, Cluj-Napoca (1999).