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1. Introduction 
In 1968, Kannan [10] was the first who proved the existence of a fixed point for a map 
that can have a discontinuity in a domain, however the maps involved in every case were 
continuous at the fixed point.  On the other hand after the classical result of Jungck [7] of 
common fixed point of two commuting maps, Sessa [11] initiated the weaker condition 
than that of commutativity namely weak commutativity of maps and proved the result 
regarding common fixed point consideration of such maps. Of course two commuting 
mappings are weakly commuting but the converse is not true always. Further a weaker 
condition of these notions namely, compatibility of maps has been introduced by Jungck 
[8] and proved result regarding common fixed points of such maps. Jungck [8] also 
demonstrated that commuting mappings are weakly commuting and weakly commuting 
are compatible but neither implication is reversible. 

 Recently Jungck & Rhoades [9] has introduced a weaker class among all 
commutative conditions namely weakly compatibility maps or coincidently 
commutativity of maps and gave results regarding common fixed points of such maps.  
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Abbas et al. [2] introduced the notions namely weak annihilator and dominating 
maps and proved some results of common fixed points by using these notions in the 
framework of partially ordered metric space. 

Berinde in [4, 5] initiated the concept of almost contractions. Further by 
introducing the concept of almost generalized contractive condition Ćirić et al. [6] extend 
the concept of almost contractions to a pair of self-maps. Also Aghajani et al. [3] 
generalized the notion of almost generalized contraction by introducing the notion of 
almost generalized ��, ��-contraction. 

The aim of this paper is to establish coincidence point and common fixed point 
results for six mappings which satisfy almost generalized ��, ��-contractive condition in 
the setting of partially ordered metric spaces. Infact, we have generalized the results of 
Aghajani et al. [3] and many others.  

2. Preliminaries 
We start this section by some basic definitions and results which are used in sequel. 
 
Definition 2.1. Let ��, ≤� be a partially ordered set and �, 	: � → �  then  
(2.1.1) an ordered pair (f, g) are called partially weakly increasing if �� ≤  	��  for all 
� ∈ �. (cf. [2]) 
(2.1.2) a map � is called weak annihilator of 	 if �	� ≤ � for all � ∈ �. (cf. [2]) 
(2.1.3) a map � is called dominating if � ≤ �� for all � ∈ �. (cf. [2]) 
 
Definition 2.2. [9] Let ��, �� be a metric space then mappings  �, 	: � → � are said to be 
weakly compatible if they commute at their coincidence points, that is, if  �� =  	�  for 
some � ∈ � then �	� =  	��.  

 Berinde [5] introduced the notion of “weak contraction”   which further renamed 
as “almost contraction” by Berinde [4] defined as: 
 
Definition 2.3 [4, 5] A self-map �  on a metric space �  is said to an almost contraction 
or  ��, �� − contraction if there exist a constant � ∈ �0, 1� and some � ≥ 0 such that  
(2.3.1)  ����, ��� ≤ ����, �� + ����, ���,    ∀ �, � ∈ �. 
 
Remark 2.4. [4, 5] Due to the symmetry of the distance, the almost contraction condition 
(2.3.1) implicitly includes the following dual one 

����, ��� ≤ �. ���, �� + ����, ���,  ∀ �, � ∈ �, obtained from (2.3.1) by 
formally replacing ����, ��� and ���, �� by ����, ��� and ���, ��, respectively and 
then interchanging � and �. 

Berinde in [5] established some fixed point theorems for almost contractions in 
complete metric spaces and shown that any strict contraction such as Kannan [10] 
mapping as well as a large class of quasi-contractions are all almost contractions. 
 By generalizing the notion of almost contraction Ćirić et al. [6] gave: 
 
Definition 2.5. [6] Let ��, �� be a metric space and �: � → � is said to be an almost 
contraction with respect to 	: � → � if there exists a constant � ∈ �0, 1� and some � ≥ 0 
such that 

����, ��� ≤ ���	�, 	�� + �����, 	��,     ∀ �, � ∈ �. 
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Remark 2.6. [6] If one take 	 =  Identity map on �, then the above definition reduced to 
the notion almost contraction.  
 Further, Ćirić et al. [6] introduced the notion namely “almost generalized 
contraction” defined as: 
 
Definition 2.7. [6] Let ��, �� be a metric space and �, 	: � → � are said to satisfy almost 
generalized contractive condition if there exists a constant  � ∈ [0, 1� and some � ≥ 0 
such that 

(2.7.1)   ����, 	�� ≤ ���� ����, ��, ���, ���, ���, 	��, �� ,!"�#��",$ �
% &  

             +  ��'()���, ���, ���, 	��, ���, 	��, ���, ���*,         ∀ �, � ∈ �.  
 
Theorem 2.8. [6] Let ��, ≤� be a partially ordered set and there exists a metric d on � 
such that ��, �� is a complete metric space. Let �, 	 ∶ � → �  be strictly weakly 
increasing mappings with respect to ≤ satisfying (2.7.1) for every comparable �, � ∈ �. If 
either � or 	 is continuous then � and 	 have a common fixed point in �. 
 Aghajani et al. [3] generalized the notion of almost generalized contraction by 
introducing the notion namely “almost generalized ��, ��-contraction” as: 
 
Definition 2.9. [3] Let �, 	, � and �  be self-maps on a metric space ��, ��,  then � and 	 
are said to satisfy almost generalized ��, ��-contractive condition if there exist a constant  
� ∈ [0, 1� and some � ≥ 0 such that  
(2.9.1) ����, 	�� ≤ �,��, �� + �-��, ��, where   

,��, �� = ��� �����, ���, ����, ���, ��	�, ���, ��. ,!"�#��$ ,/"�
% &,  

 -��, �� = �'()����, ���, ��	�, ���, ����, 	��, ����, ���*,       ∀ �, � ∈ �. 
 
Remark 2.10. [3] If one take � = � = Identity map on �, then above definition reduced 
to almost generalized contractive condition. 
 
Theorem 2.11. [3] Let ��, ≤� be a partially ordered set and there exists a metric � on � 
such that ��, �� is a complete metric space. Let �, 	, �, �: � → � satisfying the condition 
(2.9.1) for each pair of comparable elements  �, � ∈ � and  
(2.11.1) �� ⊆ ��  and   	� ⊆ ��. 
(2.11.2) � and 	 are dominating, and weak annihilators of � and �, respectively. 
(2.11.3) there exists a non-decreasing sequence )�1* with �1 ≤ �1 for all ( and �1 → 2   
              implies that  �1 ≤ 2. 
(2.11.4) pairs (�, � � and ( 	, �� are weakly compatible. 
(2.11.5) one of ��, 	�, �� and �� is a closed subspace of �, then �, 	, � and � have a  
             unique common fixed point. 
 
3. Main result 
Our main result is generalization of result of [3] for six self-maps as opposed to four 
maps satisfying almost generalized ��, ��-contractive condition in partially ordered 
complete metric space.  
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Theorem 3.1. Let ��, ≤, �� be an ordered complete metric space. Let 3, 4, �, 5, �, �: � →
� satisfying (2.11.3) and  
(3.1.1) 34� ⊆ ��  and  �5� ⊆ ��. 
(3.1.2) ��34�, �5�� ≤ �,��, �� + �-��, ��, where   

,��, �� = ��� �����, ���, ��34�, ���, ���5�, ���, ��. ,67"�#��89 ,/"�
% &,  

 -��, �� = �'()��34�, ���, ���5�, ���, ����, �5��, ��34�, ���*,    
for each pair of comparable elements  �, � ∈ �, � ∈ [0, 1� and some � ≥ 0.   
(3.1.3) (i) the pairs (�, 34 � and (�, �5 � are partially weakly increasing. 
            (ii) 34 and �5 are dominating, and weak annihilators of � and �, respectively. 
(3.1.4) one of 34�, �5�, �� and �� is a closed subspace of �, then 
            (i) �5 and � have a coincidence point in �, 
            (ii)  34 and � have a coincidence point in �. 
(3.1.5) pairs (34, � � and (�5, �� are weakly compatible then  
            (iii) 34, �5, � and � have a unique common fixed point in �. 
Furthermore if  
(3.1.6) the pairs  �3, 4�, �3, ��, �4, ��, ��, 5�, ��, �� and �5, �� commute at the 
common fixed point of 34, �5, � and �  then 3, 4, �, 5, � and � have a unique common 
fixed point in �. 
 
Proof. Let �: be an arbitrary point in �, since 34� ⊆ �� then there exists �; ∈ � such 
that 34�: = ��;. Also since �5� ⊆ �� then there exists �% ∈ � such that �5�; = ��%. 
Inductively we can construct the sequences )�1* and )�1* in � such that 
�%1 = 34�%1 = ��%1#; and  �%1#; = �5�%1#; = ��%1#%  for all ( = 0, 1, 2, 3 . . .        . 
From (3.1.3), we have 
�%1 ≤ 34�%1 = ��%1#; ≤ �34���%1#; ≤ �%1#; and  
�%1#; ≤ �5�%1#; = ��%1#% ≤ ��5���%1#% ≤ �%1#%.  
Thus ∀  ( ≥ 0, we obtain �: ≤ �; ≤ �% ≤ �> ≤ ⋯ ≤ �1 ≤ �1#;  . . .           . 

Now we claim that ) �1* is a Cauchy sequence in �. If  �%1 = �%1#;, for some (, 
then from (3.1.2), we have 
���%1#;, �%1#%� = ��34�%1#%, �5�%1#;� ≤ �,��%1#%, �%1#;� + �-��%1#%, �%1#;�,  
where   
,��%1#%, �%1#;� = max )����%1#%, ��%1#;�, ��34�%1#%, ��%1#%�, 
                                                ���5�%1#;, ��%1#;�, ��. CDEC,67 CDEF�#��89 CDEC,/ CDEF�

% * 
                                 = ���)���%1#;, �%1�, ���%1#%, �%1#;�, ���%1#;, �%1#;�, 

���%1#;, �%1#;� + ���%1#%, �%1�
2 * 

                                = ���)0, ���%1#%, �%1#;�, 0, :#��"CDEC,"CD�
% * ≤ ���%1#;, �%1#%�, 

and 
-��%1#%, �%1#;� = min )��34�%1#%, ��%1#%�, ���5�%1#;, ��%1#;�, 
                                          ����%1#%, �5�%1#;�, ��34�%1#%, ��%1#;�* 
                   = min)���%1#%, �%1#;�, ���%1#;, �%1�, ���%1#;, �%1#;�, ���%1#%, �%1�* = 0.  
Hence ���%1#;, �%1#%� ≤ ����%1#;, �%1#%�, since � ∈ [0, 1� yields that �%1#; = �%1#%.  
Further by using the similar arguments, we have �%1#% = �%1#> and so on. Thus  ) �1* 



Common Fixed Point Theorems for Six Mappings Satisfying Almost Generalized         
(S, T)-Contractive Condition in Partially Ordered Metric Spaces 

147 
 

 

turns out to be a constant sequence and �%1 is the common fixed point of 34, �5, � and 
�.  

If we suppose ���%1, �%1#;� > 0,  for every ( and since � = �%1 and � = �%1#; 
are comparable, then from (3.1.2), we have  
���%1, �%1#;� = ��34�%1, �5�%1#;� ≤ �,��%1, �%1#;� + �-��%1, �%1#;�            (3.1) 
 
where   
,��%1, �%1#;� = ���)����%1, ��%1#;�, ��34�%1, ��%1�, ���5�%1#;, ��%1#;�, 

����%1, �5�%1#;� + ��34�%1, ��%1#;�
2 * 

                            = ���)���%1J;, �%1�, ���%1 , �%1J;�, ���%1#;, �%1�, 
���%1J;, �%1#;� + ���%1, �%1�

2 * 
≤ ���)���%1J;, �%1�, ���%1#;, �%1�* .                      

and 
-��%1, �%1#;� = min )��34�%1, ��%1�, ���5�%1#;, ��%1#;�, ����%1, �5�%1#;�,  

��34�%1, ��%1#;�* 
                            = min)���%1, �%1J;�, ���%1#;, �%1�, ���%1J;, �%1#;�, 0* = 0. 
Therefore from (3.1), we have 
���%1, �%1#;� = ��34�%1, �5�%1#;� ≤ ����)���%1J;, �%1�, ���%1#;, �%1�*     (3.2) 
Now  

���)���%1J;, �%1�, ���%1#;, �%1�* = either ���%1J;, �%1� or ���%1#;, �%1� 
If  ���)���%1J;, �%1�, ���%1#;, �%1�* = ���%1#;, �%1� then from (3.2), we have 
���%1, �%1#;� ≤ ����%1, �%1#;�, which is a contradiction, since � ∈ [0, 1�. Therefore 
���%1, �%1#;� ≤ ����%1J;, �%1�. Similarly it can be proved that ���%1J;, �%1� ≤
����%1J%, �%1J;�. Therefore for all n ≥ 1, we have ���1 , �1#;� ≤ ����1J;, �1�.  
Inductively for all n ≥ 1, we have 
        ���1, �1#;� ≤ �����1J;, �1�� ≤ �%����1J%, �1J;��  ≤ ⋯ ≤ �1����:, �;�� 
By triangle inequality for  � > (, we have  
 ���K, �1� ≤ ���1 , �1#;� + ���1#;, �1#%� + ���1#%, �1#>� + ⋯ + ���KJ;, �K�  
                 ≤ LD

;JL ���:, �;� → 0 as ( → ∞ ( since � ∈ [0, 1��, yields that )�1* is a Cauchy 

sequence in �. By the completeness  of �, the Cauchy sequence )�1* and its 
subsequences  )�%1*  and  )�%1#;* are also converges to some  N in �, i.e., 
lim1→P �%1 = lim1→P 34�%1 = lim1→P� �%1#; = N  and  
lim

1→P
�%1#; = lim

1→P
�5 �%1#; = lim

1→P
��%1#% = N. 

 Suppose �� is closed then there exists Q ∈ � such that N = �Q. From (3.1.3), 
since 
             �%1 ≤ 34�%1 and 34�%1 → N as ( → ∞ ⇒ �%1 ≤ N = �Q ≤ �34��Q ≤ Q.  
Using (3.1.2), we have   

��34�%1, �5Q� ≤ �,��%1, Q� + �-��%1, Q�                                                (3.3) 
where   
,��%1, Q� = ���)����%1, �Q�, ��34�%1, ��%1�, ���5Q, �Q�, 

����%1, �5Q� + ��34�%1, �Q�
2 * 
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                      = ���)����%1, N�, ��34�%1, ��%1�, ���5Q, N�, ��. CD,67S�#��89 CD,T�
% *  

and  
-��%1, Q� = min )��34�%1, ��%1�, ���5Q, �Q�, ����%1, �5Q�, ��34�%1, �Q�* 
      = min )��34�%1, ��%1�, ���5Q, N�, ����%1, �5Q�, ��34�%1, N�*. 
Letting ( → ∞, we have 
lim

1→P
 ,��%1, Q� = ���5Q, N�,  lim

1→P
 -��%1, Q� = 0. 

Therefore from (3.3) as ( → ∞, we have  
 ��N, �5Q� ≤ ����5Q, N� yields that  �5Q = N. So  �5Q = �Q = N. Now by 
weakly compatibility of pair ��5, ��, �5N = ��5��Q = ���5�Q = �N.  
Using (3.1.2), we have   
��N, �5N� = ��34�%1, �5N� ≤ �,��%1, N� + �-��%1, N�                                           (3.4) 
where   
,��%1, N� = ���)����%1, �N�, ��34�%1, ��%1�, ���5N, �N�, 

����%1, �5N� + ��34�%1, �N�
2 * 

= ���)����%1, �5N�, ��34�%1, ��%1�, ���5N, �5N�,     
����%1, �5N� + ��34�%1, �5N�

2 * 
and  
-��%1, N� = min )��34�%1, ��%1�, ���5N, �N�, ����%1, �5N�, ��34�%1, �N�* 
     = min )��34�%1, ��%1�, ���5N, �N�, ����%1, �5N�, ��34�%1, �N�*. 
Letting  ( → ∞, we have 
lim

1→P
 ,��%1, N� = ��N, �5N�,  lim

1→P
 -��%1, N� = 0.  

Therefore from (3.4) as ( → ∞, we have  
��N, �5N� ≤ ���N, �5N�, yields that  �5N = N.  

Hence �5N = N.                                                                                        …                  (3.5)  
 Since  �5� ⊆ �� then there exists a point U ∈ � such that N = �5N = �U. From 
(3.1.3) since N ≤ �5N = �U ≤ ��5��U ≤ U implies that  N ≤ U.   
Using (3.1.2), we have  
��34U, �U� = ��34U, �5N� ≤ �,�U, N� + �-�U, N�                                                   (3.6) 
where   

,�U, N� = ���)���U, �N�, ��34U, �U�, ���5N, �N�, ��.V,67T�#��89V,/T�
% * 

               = ���)���U, �N�, ��34U, �U�, ���5N, �N�, ��.V,67T�#��89V,67T�
% *  

               = ���)0, ��34U, �U�, 0, :#��89V,.V�
% * = ��34U, �U�, 

and  
-�U, N� = min )��34U, �U�, ���5N, �N�, ���U, �5N�, ��34U, �N�* 
               = min )��34U, �U�, 0, ���U, �5N�, ��34U, �U�* = 0. 
Therefore from (3.6), we have  
 ��34U, �U� ≤ ���34U, �U� yields that  34U = �U. Now by weakly 
compatibility of pair �34, ��, 34N = �34��U = ��34�U = �N.  
Using (3.1.2), we have  
��34N, N� = ��34N, �5N� ≤ �,�N, N� + �-�N, N�                                                       (3.7) 
where   
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,�N, N� = ���)���N, �N�, ��34N, �N�, ���5N, �N�, ��.T,67T�#��89T,/T�
% * 

               = ���)��34N, �N�, ���N, �N�, ���5N, �N�, ��89T,67T�#��89T,/T�
% *  

               = ���)��34N, N�, 0,0, ��34N, N�* = ��34N, N�, 
and  
-�N, N� = min )��34N, �N�, ���5N, �N�, ���N, �5N�, ��34N, �N�* 
               = min )0,0, ���N, N�, ��34N, N�* = 0. 
Therefore from (3.7), we have  
��34N, N� ≤ ���34N, N�,  yields that 34N = �N = N                                                    (3.8) 
Hence from (3.5) and (3.8), we have 34N = �5N = �N = �N = N,  i.e. N is the common 
fixed point of 34, �5, �   and �.    
 For the uniqueness of N suppose 2 be another common fixed point of 34, �5, �  
and � then from (3.1.2), we have  

��N, 2� = ��34N, �52� ≤ �,�N, 2� + �-�N, 2�                                             (3.9) 
where   

,�N, 2� = ���)���N, �2�, ��34N, �N�, ���52, �2�, ��.T,67W�#��89T,/W�
% * 

                = ���)��N, 2�, 0,0, ��N, 2�* = ��N, 2�  
and  
-�N, 2� = min )��34N, �N�, ���52, �2�, ���N, �52�, ��34N, �2�* 
               = min )0,0, ��N, 2�, ��N, 2�* = 0. 
Therefore from (3.9), we have  
��N, 2� ≤ ���N, 2�, yields that N = 2, i.e.  N is the unique  common fixed point of 
34, �5, �  and �.   
 The proof is similar for the cases in which one of 34�, �5� and �� is a closed 
subspace of �. 
From (3.1.6) by commutativity of �3, 4�, �3, �� and �4, ��, we have  
 3N = 3�34N� = 3�43N� = 34�3N�,     3N = 3��N� = ��3N�, 
 4N = 4�34N� = 4�3�4N�� = 43�4N� = 34�4N�,     4N = 4��N� = ��4N�,  
which shows that 3N and 4N are the common fixed points of  (34, � �. But 34  and � 
have a unique fixed point N, then  

N = 3N = 4N = �N = 34N                                                                             (3.10) 
Again from (3.1.6) by commutativity of ��, 5�, ��, �� and �5, ��, we have  
 �N = ���5N� = ��5�N� = �5��N�,     �N = ���N� = ���N�, 
 5N = 5��5N� = 5��5N� = �5�5N�,   5N = 5��N� = ��5N�, 
which shows that �N and 5N are the common fixed points of  (�5, � �. But �5  and � 
have unique fixed point N, then  
 N = �N = 5N = �N = �5N                                                                              (3.11) 
Using (3.1.2), (3.10) and (3.11), we have 
 ��3N, �N� = ��34�3N�, �5��N�� ≤ �,�3N, �N� + �-�3N, �N�                   (3.12) 
where   
,�3N, �N� = ���)���3N, ��N�, ��34�3N�, �3N�, ���5��N�, ��N�,    
                                                                            ��.8T,67�6T��#��89�8T�,/6T�

% * 
                    = ���)��N, N�, ��N, N�, ��N, N�, ��T,T�#��T,T�

% * = max)0,0,0,0* = 0 
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and  
-�3N, �N� = min )��34�3N�, �3N�, ���5��N�, ��N�, ���3N, �5��N��, ��34�3N�, ��N�* 
                    = min )��N, N�, ��N, N�, ��N, N�, ��N, N�* = 0. 
Therefore from (3.12), we have  

��3N, �N� ≤ �0 = 0, yields that  3N = �N                                                      (3.13) 
Hence from (3.10), (3.11) and (3.13), we have N = 3N = 4N = �N = 5N = �N = �N, i.e. 
N is the unique common fixed point of self-mappings 3, 4, �, 5, � and �.    

If we take � = � in Theorem 3.1, we have the following corollary: 
 
Corollary 3.2. Let ��, ≤, �� be an ordered complete metric space. Let 3, 4, �, 5, �: � →
� satisfying (2.11.3) and   
(3.2.1) 34� ⊆ ��  and  �5� ⊆ ��. 
(3.2.2) ��34�, �5�� ≤ �,��, �� + �-��, ��, where   

,��, �� = ��� �����, ���, ��34�, ���, ���5�, ���, ��/ ,67"�#��89 ,/"�
% &,  

 -��, �� = �'()��34�, ���, ���5�, ���, ����, �5��, ��34�, ���*    
for every comparable elements  �, � ∈ �, � ∈ [0, 1� and some � ≥ 0.   
(3.2.3) (i) the pairs (�, 34 � and (�, �5 � are partially weakly increasing. 
            (ii)  34 and �5 are dominating, and weak annihilators of �.  
(3.2.4) one of 34�, �5� and �� is a closed subspace of �, then 
            (i) �5 and � have a coincidence point in �, 
            (ii) 34 and � have a coincidence point in �. 
 (3.2.5) pairs (34, � � and (�5, �� are weakly compatible then  
            (iii) 34, �5 and � have a unique common fixed point in �. 
Furthermore if  
(3.2.6) the pairs  �3, 4�, �3, ��, �4, ��, ��, 5�, ��, �� and �5, �� commute at the 
common fixed point of 34, �5 and �,  then 3, 4, �, 5 and � have a unique common 
fixed point in �. 
Corollary 3.3.  
(3.3.1) If we take 4 = 5 = Identity mappings in Theorem 3.1, we can obtain Theorem 
2.10 of Aghajani et al. [3]. 
(3.3.2) If we take 34 = �5 = � and � = � in Theorem 3.1, we can obtain Corollary 2.3 
of Aghajani et al. [3]. 
(3.3.3) If we take 34 = �5 = � and � = � = Identity mappings in Theorem 3.1, we can 
obtain Theorem 2.1 of Ćirić et al. [6]. 

Remark 3.4. Here note that for every self-map �,  (�, X) is weakly compatible, X is 
identity and dominating map so by taking 34 = �5 = X in Theorem 3.1, we have the 
following result. 

Corollary 3.5. Let ��, ≤, �� be an ordered complete metric space. Let �, �: � → � 
surjective maps such that �� ≤ �  and  �� ≤ �  for all � ∈ � satisfying (2.10.3) and   

���, �� ≤ �,��, �� + �-��, ��, where   

,��, �� = ��� �����, ���, ���, ���, ���, ���, ��. ,"�#�� ,/"�
% &,  

 -��, �� = �'()���, ���, ���, ���, ����, ��, ���, ���*    
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for every comparable elements  �, � ∈ �, � ∈ [0, 1� and some � ≥ 0,  then � and � have 
a unique  common fixed point in �.  

Now we illustrate the following example in support of Theorem 3.1. 

Example 2.6. Let � = [0, ∞� with relation given by “ ≤ ” and ���, �� = |� − �|, we 
define a new ordering “≼” on � such that � ≼ � ⇔ � ≤ �, ∀ �, � ∈ �. Then ��, ≤, �� is 
an ordered complete metric space. Define 3, 4, �, 5, �, �: � → � such that  

 3� = ln ^1 +  
%_ , 4� = 2�, �� = ln ^1 +  

`_, 5� = 4�, �� = b% − 1 and �� = b − 1. 
Then by routine calculation we can see that all the conditions of Theorem 3.1 are satisfied 
and 0 is the unique common fixed point of 3, 4, �, 5, � and �. 
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