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1. Introduction 
In 1965, the concept of fuzzy set was introduced by Zadeh [15]. In 1978, Iseki and 
Tanaka [1] introduced the concept of BCK-algebras and in 1980 Iseki [2] introduced the 
concept of BCI-algebras. In 2015, Sithar Selvam and Nagalakshmi [4,5] introduced a 
new algebraic structure, named as PMS algebras, as a generalization of 
BCK/BCI/TM/KUS /PS-algebras. In this paper we fuzzified PMS-algebras and studied 
its properties in detail along with fuzzy PMS-ideal, homomorphism and Cartesian 
products.   
 
2. Preliminaries        
In this section, we present the fundamental definitions that will be used in the 
development of this paper. 
 
Definition 2.1. [1, 14] A BCK- algebra is an algebra (X,*,0) of type (2,0) satisfying the 
following conditions: 

i) (x * y) * (x * z) ≤ (z * y) 
ii)  x * (x * y) ≤ y 
iii)  x ≤ x 
iv) x ≤ y and y ≤ x ⇒ x=y 
v) 0 ≤ x ⇒ x=0, where x ≤ y is defined by x * y = 0 ,for all x, y, z ∈ X. 
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Definition 2.2. [4,5] A nonempty set X with a constant 0 and a binary operation ‘ * ’ is 
called  PMS – algebra if it satisfies the following axioms. 

1. 0 * x  = x 
2. (y * x) * (z * x) = z * y , ∀  x , y, z ∈ X. 

In X, we define a binary relation ≤ by :  x ≤ y if and only if x * y = 0. 
 
Definition 2.3. [4,5] Let X be a PMS - algebra and I be a subset of X, then I is called a 
PMS - ideal of X if it satisfies the following conditions: 

1. 0 ∈  I         
2. z * y ∈  I and z * x ∈ I ⇒  y * x ∈ I for all x, y, z ∈ X. 

 
Example 2.4. Let X = { 0, 1, 2 } be the set with the following table. 

*  0 1 2 

0 0 1 2 

1 2 0 1 

2 1 2 0 

  Then (X , * , 0 ) is a PMS – algebra. 
 
Example 2.5. Let X = { 0, a, b, c } be the set with the following table. 
 

*  0 a b c 
0 0 a b c 
a b 0 a b 
b a b 0 c 
c c c a 0 

Then (X , * , 0 ) is a PMS – algebra and I = {0,a,b} is a PMS-ideal. 
 
In any PMS - algebra (X, *,0), with x ≤ y, the following holds good for all x , y ∈ X. 

(i)   x * x = 0 
(ii)   (y * x) * x = y 
(iii)   x * (y * x) = y * 0 
(iv)  (y * x) * z = (z * x) * y 
(v)  0 * x = 0 ⇒ x = 0 
(vi)  (z * x) * (z * y) ≤ x * y 
(vii) x ≤ y ⇒ z * x ≤ z * y and y * z ≤ x * z 
(viii) x * ((y * x) * x) = x * y 
(ix)  (x * y) * 0 = y * x = (0 * y) * (0 * x) 
(x)   0 * (x * y) = (0 * x) * (0 * y) 
(xi)  ((y * x) * x) * y = 0 
(xii) (x * y) * x = y. 
 

Definition 2.6. [13] Let A be a non-empty subset of an algebra X , then A is called a sub 
algebra of X if  x * y ∈ A , for all x ,y ∈ A.  
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Definition 2.7. [15,3] Let X be a non-empty set. A fuzzy subset µ of the set X is a 
mapping µ : X → [0, 1]. 
 
Definition 2.8. [10,11] Let µ be a fuzzy set of X. For a fixed t ∈ [0, 1], the set µ t ={x ∈ 
X /µ(x) ≥ t} is called the upper level subset of µ. Clearly µ t ∪ µ t = X for t ∈[0,1] if 
 t1 < t2 , then µ t1 ⊆ µ t2 . 
 
3. Fuzzy PMS-ideal and fuzzy PMS-sub algebra  
 
Definition 3.1. Let X be a PMS-algebra. A fuzzy set µ in X is called a fuzzy PMS-ideal 
of X if it satisfies the following conditions.  
i) µ(0) ≥ µ(x)  
ii) µ (y * x) ≥ min {µ (z *y), µ(z * x)}, for all x, y, z ∈ X  
 
Definition 3.2.  A fuzzy set µ in a PMS-algebra X is called a fuzzy PMS- sub algebra of 
X if µ(x * y) ≥ min {µ(x), µ(y)}, for all x, y∈ X. 
 
Definition 3.3. The set of elements that belong to the fuzzy set µ at least to the degree t is 
called the t-level set. It is represented by µt = { x ∈ X / µ (x) ≥ t }. 
 
Theorem 3.4. Every fuzzy PMS-ideal of a PMS-algebra X is order reversing. 
Proof:  Let µ be a fuzzy PMS-ideal of a PMS-algebra X. 
Let x, y ∈ X be such that x ≤ y, then x * y = 0 
Now       µ(x)  ≥ min {µ(0 * x)} 

= min {µ(z * 0), µ((x * y)* (z * y))} 
= min {µ(z * 0), µ(0 * (z * y))} 
= min {µ(z * 0), µ(z * y)} 
= min {µ(0 * 0), µ(0 * y)} (Taking z = 0) 
= min {µ(0), µ(y)} 
= µ(y) 

    ⇒ µ(x) ≥ µ(y). ∴ µ is order reversing. 
 
Theorem 3.5. Every fuzzy PMS-ideal of PMS-algebra is a fuzzy PMS-sub algebra. 
Proof: Let  µ be a fuzzy PMS-ideal.  
To prove: µ is a fuzzy PMS- sub algebra of X. 
By definition of fuzzy PMS - ideal, µ(y*x) ≥ min {µ(z *y), µ(z*x)}, for all x,y,z ∈ X 
Now,µ (y * x)  ≥ min {µ(z *y), µ(z*x)}= min { µ(0*y) ,µ(0*x)}= min { µ(y) , µ(x)} 
⇒  µ is a fuzzy PMS- subalgebra of X. 
 
Theorem 3.6. The intersection of any set of fuzzy PMS - ideals in PMS-algebra is also a 
fuzzy PMS-ideal. 
Proof: Let {µ i} be a family of fuzzy PMS-ideals of PMS-algebras X. Then for any x, y, 
z ∈ X.  ( ∩ µ i ) (0)  = Inf (µ i (0))  
         ≥ Inf (µ i (x))  
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         = ( ∩ µ i  ) (x) 
And   ( ∩ µ i  ) (y*x)  = Inf (µ i (y*x)) 
          ≥ Inf {min { µ i (z * y) , µ i (z * x)}} 
          = min {Inf (µ i (z * y)), Inf (µ i (z * x))} 
          = min {( ∩ µ i  ) (z * y) , ( ∩ µ i  ) ( z * x)} 
This completes the proof. 
 
Theorem 3.7. A fuzzy set µ of a PMS - algebra is a fuzzy PMS - sub algebra if and only 
if the t –level set, µt is either empty or a PMS - sub algebra of X, for every t ∈ [0, 1]. 
Proof : Assume that µ is a fuzzy PMS - sub algebra of X and µt ≠φ 
Then for any x, y ∈ µt , we have µ (x) = µ (y) = t  
        µ (x * y)  ≥ min {µ(x), µ(y)} 

= min {t, t} = t 
There fore  x * y ∈ µt. 
Hence µt is a PMS - sub algebra of X. 
Conversely, assume that  µt is a PMS – sub algebra of X. 
Let x , y ∈ X.  Take  t = min{µ(x), µ(y)}  
Then by assumption µt is a PMS -  sub algebra of X, x * y ∈ µt

 

µ(x * y) ≥ t = min {µ(x), µ(y)} 
Hence µ is a fuzzy PMS- sub algebra of X. 
 
Theorem 3.8. Any sub algebra of a PMS – algebra X can be realized as a t-level sub 
algebra of some fuzzy PMS-sub algebra of X. 
Proof: Let µ be sub algebra of the given PMS– algebra X. 
Let µ be a fuzzy set in X defined by  

, if
( )

0, if

t x A
x

x A
µ

∈
=  ∉

 

where t ∈ [0, 1] is fixed. It is clear that µt =A. 
Now we prove such defined µ is a fuzzy PMS- sub algebra of X. 
Let x,y∈ X. If x, y ∈ A, then x * y ∈ A.  
Hence, µ (x) = µ (y) = µ (x * y) = t and  µ(x * y) ≥ min {µ (x), µ (y)} 
If x, y ∉A, then   µ (x) = µ (y) = 0 and µ(x * y) ≥ min {µ (x), µ (y)} = 0. 
If at most one of x, y ∈ A, then at least one of  µ (x) and  µ (y) is equal to 0.  
Therefore, min {µ (x), µ (y)} = 0 so that µ(x * y) ≥ 0, which completes the proof. 
As a generalisation of theorem 3.8, we prove the following  theorem. 
 
Theorem 3.9. Let X be a PMS - algebra. Then given any chain of sub algebra S0 ⊂  S1 ⊂ 
S2 ⊂ ... ⊂ Sr = X, there exists a fuzzy PMS-sub algebra µ of X whose t-level sub algebras 
are exactly the sub algebras of this chain. 
Proof : Consider a set of numbers t0 > t1 > t2 > ……… > tr, where each ti ∈ [0,1]. 
Let µ : X → [0,1] be a fuzzy set defined by µ (s0) = t0 and µ (si - si-1) = ti, 0 < i ≤  r. 
We claim that µ is a fuzzy PMS-sub algebra of X. Let x, y ∈ X. Then we classify it into 
two cases as follows : 
Case (1) : Let x, y ∈ si - si-1. Then by the definition of µ, µ(x) = ti = µ (y). 
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Since Si is a sub algebra, it follows that x*y∈Si,and so either x*y∈ Si – Si-1(or) x * y∈Si-1 
In  any case, we conclude that µ(x * y) ≥ ti = min {µ(x), µ(y) }. 
Case (2) : For i > j, Let x ∈ Si – Si-1  and y ∈ Sj – Sj-1. 
Then µ(x) = ti ; µ (y) = tj and x * y ∈ Si, since Si is a subalgebra of X and Sj ⊂  Si. 
Hence  µ(x * y) ≥ tj = min {µ(x), µ(y)} 
Thus µ is a fuzzy PMS-subalgebra of X. 
From the definition of µ,it follows that Im(µ) = { t0 , t1, t2 , ………  tr }. 
Hence the t-level subalgebras of µ are given by the chain of subalgebras. 
µt0 ⊂  µt1 ⊂  µt2 ⊂  ………….  ⊂  µtr  = X. 
Now µt0 = {x∈ X / µ(x) ≥ t0 } = S0. 
Finally, we prove that µti = Si for 0 < i ≤ r. 
Clearly Si ⊆ µti. 
If x ∈ µti, then µ(x) ≥ ti which implies that x ∉ Sj for j > i. 
Hence µ(x) ∈ { t1, t2 , ………  ti } and so x ∈ Sk for some k ≤ i. 
As Sk ⊆ Si, it follows that x ∈ Si. ⇒ µti = Si for 0 <  i ≤ r.  
This completes the proof. 
 
Theorem 3.10. Two level sub algebras µs, µt (s < t) of a fuzzy PMS- algebras are equal if 
and only if there is no x∈X such that s ≤ µ(x) < t.  
Proof: Let µs = µt for some s < t.  
If there exist x ∈ X such that s ≤ µ(x) < t, then µt is a proper subset of µs, which is a 
contradiction. 
Conversely, assume that there is no x ∈ X such that s ≤ µ(x) < t, since s < t, µt  ⊆ µs. 
If x ∈ µs then µ(x) ≥ s and so µ(x) ≥ t , because µ(x) does not lie between s and t. 
Hence x ∈ µt, which gives µs ⊆ µt . This completes the proof. 
 
Theorem 3.11. Let µ be a fuzzy set in a PMS-algebra X and let t ∈ Im(µ). Then µ is a 
fuzzy PMS-ideal of X if and only if the t-level subset µt is a PMS-ideal of X. 
Proof : Assume that µ is a fuzzy PMS-ideal of X.  
Clearly 0 ∈ µt. 
Let z * x ∈ µt   and z * y ∈ µt.  
Then µ ( z * x) ≥ t and µ (z * y) ≥ t 
Now µ(y * x) ≥ min { µ( z * y) , µ(z * x)} ≥ min {t , t} = t. 
Hence the t-level subset µt is a PMS-ideal of X. 
Conversely assume that, the t-level subset µt is a PMS-ideal of X, for any t ∈[0,1].   
Suppose assume that there exist some x0∈X such that µ(0) < µ(x0) 
Take s =  [ µ(0) + µ(x0)] 

⇒ µ(0) < s < µ(x0) 
⇒ x0 ∈ µs and 0 ∉ µs, a contradiction, since µs is a PMS-ideal of X. 
Therefore, µ(0) ≥  µ(x) for all x∈X. 
If possible, assume that x0, y0 , z0 ∈X such that µ(y0 *  x0) < min { µ(z0 * y0) , µ(z0 * x0)}. 
Take s =   [µ(y0 *  x0) + min { µ(z0 * y0) , µ(z0 * x0)}]  
⇒ s > µ(y0 *  x0) and s < min { µ(z0 * y0) , µ(z0 * x0)}. 
⇒ s > µ(y0 *  x0) , s < µ(z0 * y0) and s < µ(z0 * x0). 
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⇒ y0 * x0 ∉ µs , a contradiction, since µs is a PMS-ideal of X. 
Therefore µ(y * x) ≥ min { µ(z * y), µ(z * x)}, for any x, y, z ∈ X. 
 
Theorem 3.12. Let X be a PMS-algebra & µ be a fuzzy PMS-sub algebra of X. If Im(µ) 
is finite, say {t1, t2, … tr}, then for any ti, tj ∈ Im(µ),  , implies ti = tj. 

Proof : Assume that ti  ≠ tj say ti < tj . 
If x ∈ then µ(x) ≥ tj > ti, which implies that x ∈ . 

Let x ∈ X be such that ti < µ(x) < tj .Then x ∈  , but x ∉ .  

Hence ⊄⊄⊄⊄  and   , a contradiction. 

 
4. Conclusion 
In this article, we have been discussed some charecterizations of fuzzy PMS-algebras. It 
adds an another dimension to the defined PMS--algebras. This concept can further be 
generalized to soft sets, rough sets and in bi-polar fuzzy for new results in our future 
work. 
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