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1. Introduction

In 1965, the concept of fuzzy set was introducedZbgeh [15]. In 1978, Iseki and
Tanaka [1] introduced the concept of BCK-algebnad im 1980 Iseki [2] introduced the
concept of BCl-algebras. In 2015, Sithar Selvam Hagalakshmi [4,5]ntroduced a
new algebraic structure, named as PMS algebras, aasgeneralization of
BCK/BCI/TM/KUS /PS-algebras. In this paper we fdied PMS-algebras and studied
its properties in detail along with fuzzy PMS-idedlomomorphism and Cartesian
products.

2. Preliminaries
In this section, we present the fundamental dédimit that will be used in the
development of this paper.

Definition 2.1. [1, 14] A BCK- algebra is an algebra (X,*,0) of type (2,0) saiisfythe
following conditions:

) (x*y)*(x*2z)<(z*y)

i) x*(x*y)<y

i) x<x

iv) x<yandy<x= x=zy

v) 0<x= x=0, where xxy is defined by x *y =0 ,for all x, y, Z X.
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Definition 2.2. [4,5] A nonempty set X with a constant O and a binaryraipen ‘- ' is
called PMS — algebra if it satisfies the followiagjoms.

1. 0*x =X

2. (y*x)*(z*x)=z*y,0 x,y, zOX.
In X, we define a binary relatianby : x<yif and only if x *y = 0.

Definition 2.3. [4,5] Let X be a PMS - algebra and | be a subset of & this called a
PMS - ideal of X if it satisfies the following coitidns:

1. 000 |

2. z.yOlandz*xO 1= y*x Olforall x,y, zO X.

Example2.4. Let X = {0, 1, 2 } be the set with the followingtile.
* 0 1 2

0

1 2
1 2 0 1
2 1 2 0

Then (X -, 0) is a PMS — algebra.

Example2.5. Let X ={ 0, a, b, ¢ } be the set with the follavg table.

VEledlelle]
ol |T|T
O|Ic|O|0

O|T|o | O| *
O|T oo

a 0
Then (X ,«, 0) is a PMS — algebra and | = {0,a,b} is a PME&sl.

(@]

In any PMS - algebra (X, *,0), withxy, the following holds good for all x ,§ X.
i x*x=0
(i) (y*x)*x=y
(i) x*(y*x)=y*0
(iv) (y*x)*z=(z*x)*y
(v) 0*x=0=>x=0
(Vi) (z*¥x)*(z*y)sx*y
(Vil)x <y z*x<z*yandy*z<x*z
(viill) x * ((y *x) *x) =x*y
(ix) (x*y)*0=y*x=(0*y)*(0*x)
() 0*(x*y)=(0*x)*(0*y)
() (y*x)*x)*y=0
(xi) (x*y) *x =y.

Definition 2.6. [13] Let A be a non-empty subset of an algebra X , thécalled a sub
algebra of X if x*yO A, for all x ,yO A.
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Definition 2.7. [15,3] Let X be a non-empty set. A fuzzy subgebf the set X is a
mappingu : X - [0, 1].

Definition 2.8. [10,11] Let p be a fuzzy set of X. For a fixed 1[0, 1], the sept; ={x O
X Iu(x) > t} is called the upper level subsetpofClearlyu ' O p = X for tJ[0,1] if
t<t,thenuy Ope.

3. Fuzzy PM S-ideal and fuzzy PM S-sub algebra

Definition 3.1. Let X be a PMS-algebra. A fuzzy getn X is called a fuzzy PMS-ideal
of X if it satisfies the following conditions.

) 1(0) = u(x)

i) Ly *x)=>min {u(z*y), u(z *x)}, forall x, y, zO X

Definition 3.2. A fuzzy setu in a PMS-algebra X is called a fuzzy PMS- sub lalgeof
Xif u(x *y) = min {u(x), u(y)}, for all x, yo X.

Definition 3.3. The set of elements that belong to the fuzzy satlgast to the degree t is
called the t-level set. It is represented by fix O X/ p (X)>1t}.

Theorem 3.4. Every fuzzy PMS-ideal of a PMS-algebra X is ordmrersing.
Proof: Letu be a fuzzy PMS-ideal of a PMS-algebra X.
Let x, yO X be such that x y, thenx*y =0
Now  u(x) =>min {u0 * x)}
=min {u(z * 0), u((x * y)* (z * y))}
= min {u(z * 0), u(0 * (z * y))}
=min {u(z * 0), u(z * y)}
= min {u(0 * 0), u(0 * y)} (Taking z = 0)
= min {u(0), u(y)}
= H(y)
= u(x) > i(y). O W is order reversing.

Theorem 3.5. Every fuzzy PMS-ideal of PMS-algebra is a fuzzy PM® algebra.
Proof: Let u be a fuzzy PMS-ideal.

To prove: U is a fuzzy PMS- sub algebra of X.

By definition of fuzzy PMS - ideali(y*x) > min {u(z *y), u(z*x)}, for all x,y,z 0 X
Now,ut (y *x) = min {p(z *y), W(z*x)}= min { p(0*y) ,u(0*x)}= min { u(y) , u(x)}
= W is a fuzzy PMS- subalgebra of X.

Theorem 3.6. The intersection of any set of fuzzy PMS - ideal®MS-algebra is also a
fuzzy PMS-ideal.
Proof: Let {u } be a family of fuzzy PMS-ideals of PMS-algebrasThen for any X, vy,
zOX. (n i) (0) =Inf@i(0)

> Inf (1 (X))
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(npi) (¥

Inf (1 i (y*x))

Inf{min{ wi(z*y), ui(z*x}
=min {Inf (1 (z *y)), Inf (i (z * X))}

=min{(n Wi) Z*y), (nHi) (2*x)}
This completes the proof.

And (n i) (Y*X)

Theorem 3.7. A fuzzy setp of a PMS - algebra is a fuzzy PMS - sub algebemif only
if the t —level sety' is either empty or a PMS - sub algebra of X, foerg t0 [0, 1].
Proof : Assume thafi is a fuzzy PMS - sub algebra of X guid¢@
Then for any x, Y1 ', we have p (x) = 1 (y) =t
H(x*y) =min {u(x), uy)}
=min{t, t} =t
There fore x *yd W',
Hencep' is a PMS - sub algebra of X.
Conversely, assume that is a PMS — sub algebra of X.
Let x, yO X. Take t=min{1(x), u(y)}
Then by assumptiop' is a PMS - sub algebra of X, x *y'
H(x *y) = t=min {u(x), u(y)}
Hencey is a fuzzy PMS- sub algebra of X.

Theorem 3.8. Any sub algebra of a PMS — algebra X can be redla® a t-level sub
algebra of some fuzzy PMS-sub algebra of X.
Proof: Let u be sub algebra of the given PMS— algebra X.
Let u be a fuzzy set in X defined by
t,if xOA

HX) :{O,if X0 A

where t [0, 1] is fixed. It is clear that'|FA.

Now we prove such defined U is a fuzzy PMS- sublaig of X.

Let x,ya X. If x, y O A, then x * yO A.

Hencep () =p (y) =p (x *y) =tand p(x * y= min {u (), 4 ()}

If x, y UA, then p(x) =p (y) =0and p(x * y min {p (x), p ()} = 0.

If at most one of x, ¥1 A, then at least one gfi (x) and u (y) is equal to 0.
Therefore, min {1 (x), 1 (y)} = 0 so that u(x * yp 0, which completes the proof.
As a generalisation of theorem 3.8, we prove thieviing theorem.

Theorem 3.9. Let X be a PMS - algebra. Then given any chairubfagebra §00 S, O

S, 0...0 S = X, there exists a fuzzy PMS-sub algebra p ofose t-level sub algebras
are exactly the sub algebras of this chain.

Proof : Consider a set of numbegstt; > 6> ......... >t, where each f1 [0,1].

Let u : X— [0,1] be a fuzzy set defined by w)(s band p (5-s1) =, 0 <i< .

We claim that p is a fuzzy PMS-sub algebra of Xt xt,ey O X. Then we classify it into
two cases as follows :

Case (1) : Let x, ¥ s -s.1. Then by the definition of i, u(x) 7t 1 (y).
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Since $is a sub algebra, it follows that X®5,and so either x®¢ S — S(or) x * yOS.1
In any case, we conclude that p(x =y} = min {u(x), u(y) }.

Case (2):Fori>j, Letkil§S—S; andyd §—S,.

Then p(x) =it; p (y) =tand x * yO S, since $is a subalgebra of X and S S.

Hence p(x ™yl =min {u(x), u(y)}
Thus u is a fuzzy PMS-subalgebra of X.

From the definition of ,it follows that Im(u) =t{, t,, to, ......... t}.
Hence the t-level subalgebras of u are given byliaén of subalgebras.
Mo O Mo O PO ooeeennasnn. O Py =X

Now [ = {X0 X/ p(x)=to } = So.
Finally, we prove thaty=Sfor0<i<r.

Clearly SO .
If x O pg, then p(x> t; which implies that XJ § for j > i.
Hence p(xd{ty, o, ......... t} and so xO & for some k<.

As S OS, itfollowsthatxdS. = Y =Sfor0< i<r.
This completes the proof.

Theorem 3.10. Two level sub algebras’y!' (s < t) of a fuzzy PMS- algebras are equal if
and only if there is noXX such that & p(x) < t.

Proof: Let |°= p'for some s < t.

If there exist xO X such that s< p(x) < t, then fiis a proper subset of’,which is a
contradiction.

Conversely, assume that there is rio X such thas< p(x) <t, since s <p' 0 1°

If x O p®then p(xp> s and so u(xx t, because p(x) does not lie between s and t.
Hence xO W', which gives fiJ i'. This completes the proof.

Theorem 3.11. Let u be a fuzzy set in a PMS-algebra X and Iet im(u). Thenp is a
fuzzy PMS-ideal of X if and only if the t-level ssit |1 is a PMS-ideal of X.

Proof : Assume thaft is a fuzzy PMS-ideal of X.

Clearly 00 .

Letz*xO W' andz*yd .

Thenp (z*x)>tandu (z*y)>t

Nowp(y *xX)>min{u(z*y),u(z *x)} >min {t, t} =t.

Hence the t-level subsetig a PMS-ideal of X.

Conversely assume that, the t-level subset @ PMS-ideal of X, for anyd[0,1].
Suppose assume that there exist sognX>such tha(0) <p(Xo)

Take s = [ K(0) + K(xo)]

= K(0) < S <(Xo)

= Xo O p* and OO P a contradiction, since’jis a PMS-ideal of X.

Thereforeu(0) > p(x) for all xaX.

If possible, assume thag, ¥, 2o X such thapi(yo* Xo) < min { W(zo * Yo) , W(Zo* Xo)}-
Take s i [U(Yo™* Xo) + min { W(zo * Yo) , i(Zo* Xo)}]

= S >H(Yo* Xo) and s < min {u(zo * Yo) , W(Zo™* Xo)}-

= S >U(Yo* Xo) , S <H(Zo * Yo) and s qU(zo* Xo).
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= Yo * Xo O °, a contradiction, since’jis a PMS-ideal of X.
Thereforeu(y * x) > min { u(z * y), u(z * x)}, for any x, y, zO X.

Theorem 3.12. Let X be a PMS-algebra & u be a fuzzy PMS-sub atgel X. If Im(u)
is finite, say {t, &, ... t}, then for any{ t U Im(u), g, = He s implies f = .

Proof : Assume thatt£tsay t<ft .

If x O ,urj__Jthen H(X)=t > t, which implies that XJ p, .

Let xJ X be such that & p(x) <t.Then xU g, , but xOJ e

Hence,url_EI,urJ__ and Hee = By @ contradiction.

4. Conclusion

In this article, we have been discussed some ciegizations of fuzzy PMS-algebras. It
adds an another dimension to the defined PMS--edgellhis concept can further be
generalized to soft sets, rough sets and in birpgolzzy for new results in our future
work.
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