Annals of Pure and Applied Mathematics Vol. 12, No. 2, 2016, 153-159 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2016 www.researchmathsci.org DOI: 10.22457/apam.v12n2a6

Annals of Pure and Applied <u>Mathematics</u>

Fuzzy PMS Ideals in PMS Algebras

P.M.Sithar Selvam¹ and K.T.Nagalakshmi²

 ¹Department of Mathematics, R.V.S. School of Engineering and Technology Dindigul– 624 001, Tamilnadu, India E-mail : <u>sitharselvam@gmail.com</u>
²Department of Mathematics, K.L.N.College of Information and Technology Pottapalayam- 630611, Sivagangai District, Tamilnadu, India E-mail: gloryratna@gmail.com

Received 25 October 2016; accepted 10 November 2016

Abstract. In this paper, a new notion, namely fuzzification of PMS–algebra, a generalization of BCK/BCI/TM/KUS/PS-algebras is initiated along with fuzzified PMS-ideal and discussed some of its properties in detail.

Keywords: PMS-algebra, fuzzy PMS-subalgebra, fuzzy PMS-ideal, homomorphism, Cartesian product.

AMS Mathematics Subject Classification (2010): 20N25, 03E72, 03F055, 06F35

1. Introduction

In 1965, the concept of fuzzy set was introduced by Zadeh [15]. In 1978, Iseki and Tanaka [1] introduced the concept of BCK-algebras and in 1980 Iseki [2] introduced the concept of BCI-algebras. In 2015, Sithar Selvam and Nagalakshmi [4,5] introduced a new algebraic structure, named as PMS algebras, as a generalization of BCK/BCI/TM/KUS /PS-algebras. In this paper we fuzzified PMS-algebras and studied its properties in detail along with fuzzy PMS-ideal, homomorphism and Cartesian products.

2. Preliminaries

In this section, we present the fundamental definitions that will be used in the development of this paper.

Definition 2.1. [1, 14] A BCK- algebra is an algebra (X,*,0) of type (2,0) satisfying the following conditions:

- i) $(x * y) * (x * z) \le (z * y)$
- ii) $x * (x * y) \le y$
- iii) $x \le x$
- iv) $x \le y$ and $y \le x \Longrightarrow x=y$
- v) $0 \le x \Longrightarrow x=0$, where $x \le y$ is defined by x * y = 0, for all $x, y, z \in X$.

P.M.Sithar Selvam and K.T.Nagalakshmi

Definition 2.2. [4,5] A nonempty set X with a constant 0 and a binary operation '*' is called PMS – algebra if it satisfies the following axioms.

1. 0 * x = x

2. $(y * x) * (z * x) = z * y, \forall x, y, z \in X.$

In X, we define a binary relation \leq by : $x \leq y$ if and only if x * y = 0.

Definition 2.3. [4,5] Let X be a PMS - algebra and I be a subset of X, then I is called a PMS - ideal of X if it satisfies the following conditions:

- 1. $0 \in I$
- 2. $z * y \in I$ and $z * x \in I \Rightarrow y * x \in I$ for all x, y, $z \in X$.

Example 2.4. Let $X = \{0, 1, 2\}$ be the set with the following table.

		(- <i>)</i>)	j		
	*	0	1	2	
	0	0	1	2	
	1	2	0	1	
	2	1	2	0	
n	i in a DI		alaahaa		

Then (X , $_\ast$, 0) is a PMS – algebra.

Example 2.5. Let $X = \{0, a, b, c\}$ be the set with the following table.

*	0	a	b	c
0	0	a	b	с
a	b	0	a	b
b	а	b	0	с
с	с	с	а	0

Then (X, *, 0) is a PMS – algebra and I = $\{0,a,b\}$ is a PMS-ideal.

In any PMS - algebra (X, *,0), with $x \le y$, the following holds good for all x, $y \in X$.

- (i) x * x = 0
- (ii) (y * x) * x = y
- (iii) x * (y * x) = y * 0
- (iv) (y * x) * z = (z * x) * y
- (v) $0 * x = 0 \Longrightarrow x = 0$
- (vi) $(z * x) * (z * y) \le x * y$
- (vii) $x \le y \Rightarrow z * x \le z * y$ and $y * z \le x * z$ (viii) x * ((y * x) * x) = x * y
- (ix) (x * y) * 0 = y * x = (0 * y) * (0 * x)
- (x) 0 * (x * y) = (0 * x) * (0 * y)
- (xi) ((y * x) * x) * y = 0
- (xii) (x * y) * x = y.

Definition 2.6. [13] Let A be a non-empty subset of an algebra X, then A is called a sub algebra of X if $x * y \in A$, for all $x, y \in A$.

Definition 2.7. [15,3] Let X be a non-empty set. A fuzzy subset μ of the set X is a mapping $\mu : X \rightarrow [0, 1]$.

Definition 2.8. [10,11] Let μ be a fuzzy set of X. For a fixed $t \in [0, 1]$, the set $\mu_t = \{x \in X / \mu(x) \ge t\}$ is called the upper level subset of μ . Clearly $\mu^t \cup \mu_t = X$ for $t \in [0,1]$ if $t_1 < t_2$, then $\mu_{t1} \subseteq \mu_{t2}$.

3. Fuzzy PMS-ideal and fuzzy PMS-sub algebra

Definition 3.1. Let X be a PMS-algebra. A fuzzy set μ in X is called a fuzzy PMS-ideal of X if it satisfies the following conditions. i) $\mu(0) \ge \mu(x)$ ii) $\mu(y * x) \ge \min \{\mu (z * y), \mu(z * x)\}$, for all x, y, $z \in X$

Definition 3.2. A fuzzy set μ in a PMS-algebra X is called a fuzzy PMS- sub algebra of X if $\mu(x * y) \ge \min \{\mu(x), \mu(y)\}$, for all x, $y \in X$.

Definition 3.3. The set of elements that belong to the fuzzy set μ at least to the degree t is called the t-level set. It is represented by $\mu^t = \{ x \in X / \mu(x) \ge t \}$.

Theorem 3.4. Every fuzzy PMS-ideal of a PMS-algebra X is order reversing. **Proof:** Let μ be a fuzzy PMS-ideal of a PMS-algebra X. Let x, $y \in X$ be such that $x \leq y$, then x * y = 0Now $\mu(x) \geq \min \{\mu(0 * x)\}$ $= \min \{\mu(z * 0), \mu((x * y)*(z * y))\}$ $= \min \{\mu(z * 0), \mu(0 * (z * y))\}$ $= \min \{\mu(z * 0), \mu(0 * (z * y))\}$ $= \min \{\mu(0 * 0), \mu(0 * y)\}$ (Taking z = 0) $= \min \{\mu(0), \mu(y)\}$ $= \mu(y)$ $\Rightarrow \mu(x) \geq \mu(y). \therefore \mu$ is order reversing.

Theorem 3.5. Every fuzzy PMS-ideal of PMS-algebra is a fuzzy PMS-sub algebra. **Proof:** Let μ be a fuzzy PMS-ideal.

To prove: μ is a fuzzy PMS- sub algebra of X. By definition of fuzzy PMS - ideal, $\mu(y^*x) \ge \min \{\mu(z^*y), \mu(z^*x)\}$, for all $x, y, z \in X$ Now, $\mu(y^*x) \ge \min \{\mu(z^*y), \mu(z^*x)\} = \min \{\mu(0^*y), \mu(0^*x)\} = \min \{\mu(y), \mu(x)\} \Rightarrow \mu$ is a fuzzy PMS- subalgebra of X.

Theorem 3.6. The intersection of any set of fuzzy PMS - ideals in PMS-algebra is also a fuzzy PMS-ideal.

Proof: Let $\{\mu_i\}$ be a family of fuzzy PMS-ideals of PMS-algebras X. Then for any x, y, $z \in X$. $(\cap \mu_i)(0) = Inf(\mu_i(0))$

 $\geq Inf(\mu_i(x))$

P.M.Sithar Selvam and K.T.Nagalakshmi

 $= (\cap \mu_i)(x)$ And $(\cap \mu_i)(y^*x) = Inf(\mu_i(y^*x))$ $\geq \text{Inf} \{ \min \{ \mu_i(z * y), \mu_i(z * x) \} \}$ = min {Inf ($\mu_i(z * y)$), Inf ($\mu_i(z * x)$)} $= \min \{ (\cap \mu_i) (z * y), (\cap \mu_i) (z * x) \}$

This completes the proof.

Theorem 3.7. A fuzzy set μ of a PMS - algebra is a fuzzy PMS - sub algebra if and only if the t-level set, μ^{t} is either empty or a PMS - sub algebra of X, for every $t \in [0, 1]$. **Proof**: Assume that μ is a fuzzy PMS - sub algebra of X and $\mu^t \neq \phi$

Then for any x, $y \in \mu^t$, we have $\mu(x) = \mu(y) = t$ $\mu(x * y) \geq \min \{\mu(x), \mu(y)\}$ $= \min \{t, t\} = t$ There fore $x * y \in \mu^t$. Hence μ^{t} is a PMS - sub algebra of X. Conversely, assume that μ^t is a PMS – sub algebra of X. Let x, $y \in X$. Take $t = \min{\{\mu(x), \mu(y)\}}$ Then by assumption μ^t is a PMS - $\,$ sub algebra of X, x * y \in \mu^t $\mu(x * y) \ge t = \min \{\mu(x), \mu(y)\}$ Hence μ is a fuzzy PMS- sub algebra of X.

Theorem 3.8. Any sub algebra of a PMS – algebra X can be realized as a t-level sub algebra of some fuzzy PMS-sub algebra of X.

Proof: Let μ be sub algebra of the given PMS– algebra X. Let μ be a fuzzy set in X defined by (...

$$\mu(x) = \begin{cases} t, \text{ if } x \in A \\ 0, \text{ if } x \notin A \end{cases}$$

where $t \in [0, 1]$ is fixed. It is clear that $\mu^{t} = A$. Now we prove such defined μ is a fuzzy PMS- sub algebra of X. Let $x, y \in X$. If $x, y \in A$, then $x * y \in A$. Hence, $\mu(x) = \mu(y) = \mu(x * y) = t$ and $\mu(x * y) \ge \min \{\mu(x), \mu(y)\}$ If x, $y \notin A$, then $\mu(x) = \mu(y) = 0$ and $\mu(x * y) \ge \min \{\mu(x), \mu(y)\} = 0$. If at most one of x, $y \in A$, then at least one of $\mu(x)$ and $\mu(y)$ is equal to 0. Therefore, min { μ (x), μ (y)} = 0 so that μ (x * y) ≥ 0 , which completes the proof. As a generalisation of theorem 3.8, we prove the following theorem.

Theorem 3.9. Let X be a PMS - algebra. Then given any chain of sub algebra $S_0 \subset S_1 \subset$ $S_2 \subset ... \subset S_r = X$, there exists a fuzzy PMS-sub algebra μ of X whose t-level sub algebras are exactly the sub algebras of this chain.

Proof : Consider a set of numbers $t_0 > t_1 > t_2 > \dots > t_r$, where each $t_i \in [0,1]$. Let $\mu : X \rightarrow [0,1]$ be a fuzzy set defined by $\mu (s_0) = t_0$ and $\mu (s_i - s_{i-1}) = t_i$, $0 < i \le r$. We claim that μ is a fuzzy PMS-sub algebra of X. Let x, $y \in X$. Then we classify it into two cases as follows :

Case (1): Let x, y \in s_i - s_{i-1}. Then by the definition of μ , $\mu(x) = t_i = \mu(y)$.

Fuzzy PMS Ideals in PMS Algebras

Since S_i is a sub algebra, it follows that $x^*y \in S_i$, and so either $x^*y \in S_i - S_{i-1}(or) \times x^* y \in S_{i-1}$ In any case, we conclude that $\mu(x * y) \ge t_i = \min \{\mu(x), \mu(y)\}$. Case (2): For i > j, Let $x \in S_i - S_{i-1}$ and $y \in S_i - S_{i-1}$. Then $\mu(x) = t_i$; $\mu(y) = t_i$ and $x * y \in S_i$, since S_i is a subalgebra of X and $S_i \subset S_i$. Hence $\mu(x * y) \ge t_i = \min \{\mu(x), \mu(y)\}$ Thus µ is a fuzzy PMS-subalgebra of X. From the definition of μ , it follows that $Im(\mu) = \{ t_0, t_1, t_2, \dots, t_r \}$. Hence the t-level subalgebras of μ are given by the chain of subalgebras. $\mu_{t0} \subset \ \mu_{t1} \subset \ \mu_{t2} \subset \ \ldots \ldots \subset \ \mu_{tr} = X.$ Now $\mu_{t0} = \{x \in X / \mu(x) \ge t_0\} = S_0$. Finally, we prove that $\mu_{ti} = S_i$ for $0 < i \le r$. Clearly $S_i \subseteq \mu_{ti}$. If $x \in \mu_{ti}$, then $\mu(x) \ge t_i$ which implies that $x \notin S_i$ for j > i. Hence $\mu(x) \in \{ t_1, t_2, \dots, t_i \}$ and so $x \in S_k$ for some $k \leq i$. As $S_k \subseteq S_i$, it follows that $x \in S_i$. $\Rightarrow \mu_{ti} = S_i$ for $0 < i \leq r$. This completes the proof.

Theorem 3.10. Two level sub algebras μ^s , μ^t (s < t) of a fuzzy PMS- algebras are equal if and only if there is no $x \in X$ such that $s \le \mu(x) < t$. **Proof:** Let $\mu^s = \mu^t$ for some s < t. If there exist $x \in X$ such that $s \le \mu(x) < t$, then μ^t is a proper subset of μ^s , which is a contradiction. Conversely, assume that there is no $x \in X$ such that $s \le \mu(x) < t$, since s < t, $\mu^t \subseteq \mu^s$. If $x \in \mu^s$ then $\mu(x) \ge s$ and so $\mu(x) \ge t$, because $\mu(x)$ does not lie between s and t.

Hence $x \in \mu^t$, which gives $\mu^s \subseteq \mu^t$. This completes the proof.

Theorem 3.11. Let μ be a fuzzy set in a PMS-algebra X and let $t \in Im(\mu)$. Then μ is a fuzzy PMS-ideal of X if and only if the t-level subset μ^{t} is a PMS-ideal of X. **Proof :** Assume that μ is a fuzzy PMS-ideal of X. Clearly $0 \in \mu^t$. Let $z * x \in \mu^t$ and $z * y \in \mu^t$. Then μ (z * x) \geq t and μ (z * y) \geq t Now $\mu(y * x) \ge \min \{ \mu(z * y), \mu(z * x) \} \ge \min \{t, t\} = t.$ Hence the t-level subset μ^{t} is a PMS-ideal of X. Conversely assume that, the t-level subset μ^{t} is a PMS-ideal of X, for any $t \in [0,1]$. Suppose assume that there exist some $x_0 \in X$ such that $\mu(0) < \mu(x_0)$ Take s = $\frac{1}{2} [\mu(0) + \mu(x_0)]$ $\Rightarrow \mu(0) < s < \mu(x_0)$ $\Rightarrow x_0 \in \mu^s$ and $0 \notin \mu^s$, a contradiction, since μ^s is a PMS-ideal of X. Therefore, $\mu(0) \ge \mu(x)$ for all $x \in X$. If possible, assume that $x_0, y_0, z_0 \in X$ such that $\mu(y_0 * x_0) < \min \{ \mu(z_0 * y_0), \mu(z_0 * x_0) \}$. Take $s = \frac{1}{\pi} \left[\mu(y_0 * x_0) + \min \left\{ \mu(z_0 * y_0), \mu(z_0 * x_0) \right\} \right]$ \Rightarrow s > $\mu(y_0 * x_0)$ and s < min { $\mu(z_0 * y_0)$, $\mu(z_0 * x_0)$ }. \Rightarrow s > $\mu(y_0 * x_0)$, s < $\mu(z_0 * y_0)$ and s < $\mu(z_0 * x_0)$.

P.M.Sithar Selvam and K.T.Nagalakshmi

⇒ $y_0 * x_0 \notin \mu^s$, a contradiction, since μ^s is a PMS-ideal of X. Therefore $\mu(y * x) \ge \min \{ \mu(z * y), \mu(z * x) \}$, for any x, y, z ∈ X.

Theorem 3.12. Let X be a PMS-algebra & μ be a fuzzy PMS-sub algebra of X. If Im(μ) is finite, say {t₁, t₂, ..., t_r}, then for any t_i, t_j \in Im(μ), $\mu_{\mathfrak{e}_i} = \mu_{\mathfrak{e}_j}$, implies t_i = t_j. **Proof :** Assume that t_i \neq t_j say t_i < t_j. If $x \in \mu_{\mathfrak{e}_{j^n}}$ then $\mu(x) \ge t_j > t_i$, which implies that $x \in \mu_{\mathfrak{e}_i}$. Let $x \in X$ be such that t_i < $\mu(x) < t_j$. Then $x \in \mu_{\mathfrak{e}_i}$, but $x \notin \mu_{\mathfrak{e}_j}$. Hence $\mu_{\mathfrak{e}_i} \not\subset \mu_{\mathfrak{e}_j}$ and $\mu_{\mathfrak{e}_j} = \mu_{\mathfrak{e}_i}$, a contradiction.

4. Conclusion

In this article, we have been discussed some charecterizations of fuzzy PMS-algebras. It adds an another dimension to the defined PMS--algebras. This concept can further be generalized to soft sets, rough sets and in bi-polar fuzzy for new results in our future work.

Acknowledgement

Authors wish to thank Dr.T.Priya, Faculty of Mathematics, Omen and to anonymous referees, Editor-in-chief, for their comments, suggestions and ideas to improve and make this paper as successful one.

REFERENCES

- 1. K.Iseki and S.Tanaka, An introduction to the theory of BCK-algebras, *Math Japonica*, 23 (1978) 1-20.
- 2. K.Iseki, On BCI-algebras, Math. Seminar Notes, 8 (1980) 125-130.
- 3. K.Megalai and A.Tamilarasi, Fuzzy subalgebras and fuzzy T-ideals in TM-algebra, *Journal of Mathematics and Statistics*, 7(2) (2011) 107-111.
- 4. P.M.Sithar Selvam and K.T.Nagalakshmi, On PMS-algebras, *Transylvanian Review*, 24(10) (2016) 1622-1628.
- 5. P.M.Sithar Selvam and K.T.Nagalakshmi, Homomorphism and Cartesian product on fuzzy α -translation and fuzzy α -multiplication of PMS-algebras, *Transylvanian Review*, 24(10) (2016) 1630-1638.
- 6. P.M.Sithar Selvam and K.T.Nagalakshmi, Anti Q-fuzzy PMS-ideals in PMSalgebras, International Journal of Mathematics Trends and Technology, 38(4) (2016)
- 7. P.M.Sithar Selvam, T.Priya and T.Ramachandran, Anti fuzzy subalgebras and homomorphism of CI-algebras, *International Journal of Engineering Research & Technology*, 1(5) (2012) 1-6.
- P.M.Sithar Selvam and K.T.Nagalakshmi, A study on normalization of fuzzy PMSalgebras, *International Journal of Trend in Research and Development*, 3(6) (2016) 49-55.
- 9. P.M.Sithar Selvam and K.T.Nagalakshmi, Role of homomorphism and Cartesian product over fuzzy PMS-algebras, *International Journal of Fuzzy Mathematical Archive*, 11(1) (2016) 31-38.

Fuzzy PMS Ideals in PMS Algebras

- 10. T.Priya and T.Ramachandran, A note on fuzzy PS-ideals in PS-algebra and its level subsets, *International Journal of Advanced Mathematical Sciences*, 2(2) (2014) 101-106.
- 11. T.Priya and T.Ramachandran, Some Characterization of Anti fuzzy PS-ideals of PSalgebras in Homomorphism and Cartesian Products, *International Journal of Fuzzy Mathematical Archive*, 4(2) (2014) 72-79.
- 12. T.Priya and T.Ramachandran, A note on anti Q-Fuzzy R-closed PS-ideals in PSalgebras, *Annals of Pure and Applied Mathematics*, 6(2) (2014) 150-159.
- 13. T.Priya and T.Ramachandran, Homomorphism and Cartesian product on fuzzy translation and fuzzy multiplication of PS-algebras, *Annals of Pure and Applied Mathematics*, 8(1) (2014) 93-104.
- T.Senapati, M.Bhowmik and M.Pal, Atanassov's intuitionistic fuzzy translations of intuitionistic fuzzy *H*-ideals in *BCK/BCI*-algebras, *Notes on Intuitionistic Fuzzy Sets*, 19 (2013) 32–47.
- 15. L.A.Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.