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Abstract. In this paper, we introduce some multiplicative connectivity indices of a graph. 
A topological index is a numeric quantity from the structural graph of a molecule. In this 
paper, we compute first multiplicative Zagreb index, multiplicative hyper-Zagreb, general 
multiplicative Zagreb, multiplicative sum connectivity, multiplicative product 
connectivity, multiplicative ABC, general multiplicative GA indices for certain important 
chemical structures like nanotubes covered by C5 and C7 
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1. Introduction 
In this paper, we consider only finite connected, undirected without loops and multiple 
edges. Let G be a connected graph with vertex set V(G) and edge set E(G). The degree 
dG(v) of a vertex v is the number of vertices adjacent to v. The edge connecting the 
vertices u and v will be denoted by uv. For other undefined notations and terminology, 
the readers are referred to [1]. 
 A molecular graph is a simple graph such that its vertices correspond to the 
atoms and the edges to the bonds. Chemical graph theory is a branch of mathematical 
chemistry which has an important effect on the development of the chemical sciences. A 
single number that can be used to characterize some property of the graph of a molecular 
is called a topological index for that graph. In organic chemistry, topological indices have 
been found to be useful in chemical documentation, isomer discrimination, structure 
property relationships, structure activity relationships and pharmaceutical drug design. 
There has been considerable interest in the general problem of determining topological 
indices. 
 The first and second multiplicative Zagreb indices of a graph G are defined as  
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1 ,G
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II G d u
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These indices were introduced by Todeshine et al. in [2] and were studied, for example, 
in [3, 4, 5, 6, 7, 8, 9, 10, 11]. 
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 In [12], Eliasi et al. proposed a new multiplicative version of the first Zagreb 
index as  
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 The first and second multiplicative hyper-Zagreb indices of a graph G are defined 
as 
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These indices were introduced by Kulli in [13]. 
The general first and second multiplicative Zagreb indices of a graph G are 

defined as  
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These topological indices were introduced by Kulli et al. in [14]. 
One of the best known and widely used topological index is the product 

connectivity index or Randić index, introduced by Randić in [15]. The product 
connectivity index of a graph G is defined as 
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( ) ( )( )
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 Motivated by the definition of the product connectivity index and its wide 
applications, we introduce the multiplicative product connectivity index, multiplicative 
sum connectivity index, multiplicative atom bond connectivity index, multiplicative 
geometric-arithmetic index and also general multiplicative geometric-arithmetic index of 
a graph as follows: 
 The multiplicative sum connectivity index of a graph G is defined as  
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 The multiplicative product connectivity index of a graph G is defined as  
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 The multiplicative atom bond connectivity index of a graph G is defined as 
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 The multiplicative geometric-arithmetic index of  a graph G is defined as 
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 The general multiplicative geometric-arithmetic index of a graph G is defined as 
follows: 
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 Nanotubes are basic and primal structures of other more complicated chemical 
molecular structures. These molecular structures have been widely applied in chemical 
engineering, medical science and pharmaceutical fields. Therefore we compute 
multiplicative connectivity indices of nanotubes covered by C5 and C7 with industries and 
academic interest. 
 
2. Results for nanotubes covered by C5 and C7  
We compute index for  certain special classes of nanotubes, viz, VC5C7[p,q] and 
HC5C7[p, q] nanotubes. These nanotubes are trivalent decoration constructed by C5 and 
C7 in turn and they can cover either a cylinder or a torus. The parameter p is the number 
of pentagons in the first row of VC5C7[p,q] and HC5C7[p,q]. The vertices and edges in 
first four rows are repeated alternately, we denote the number of this repetition by q. 

 

 
 

Figure 1: VC5C7[p, q] nanotube 
 
 
 

 
 

Figure 2: HC5C7[p, q] nanotube 
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Theorem 2.1. Let G = VC5C7 [p,q] and G1 = HC5C7 [p,q] be two classes of nanotubes. 
Then 

1) II 1(VC5C7 [p,q]) = 212p 332pq. 
2) II 1(HC5C7 [p,q]) = 210p 324pq. 

Proof: 1) Let G = VC5C7 [p,q] be the nanotubes. By algebraic method, we get 
|V(G)|=16pq+6p | and E(G)|=24pq+6p. We have two partitions of the vertex set V(G) as 
follows: 

V2 = {v∈V(G) : dG(v) = 2}, |V2| = 6p. 
V3 = {v∈V(G) : dG(v) = 3}, |V3| = 16pq. 

Now 

 II 1(G) = ( )
( )

( ) ( )
2 3

6 162 2 2 2 22 3 2 3
p pq

G
u V G u V u V

d u
∈ ∈ ∈

= × = ×∏ ∏ ∏  

  = 212p 332pq. 
2) Let G1 = HC5C7[p,q] be the nanotubes. By algebraic method, we get |V(G1)|=8pq+5p 
and |E(G1)|=12pq+5p. We have two partitions of the vertex set V(G1) as follows:  

V2 = {v∈V(G1) : dG(v) = 2}, |V2| = 5p. 
V3 = {v∈V(G1) : dG(v) = 3}, |V3| = 8pq. 

Now 

 II 1(G1) = ( )
( )

( ) ( )
1

1 2 3
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d u
∈ ∈ ∈

= × = ×∏ ∏ ∏  

 = 210p 324pq. 
 We now determine the first and second multiplicative hyper-Zagreb indices of 
nanotubes. 
 
Theorem 2.2. Let G = VC5C7[p,q] and G1 = HC5C7[p,q] be two classes of nanotubes. 
Then 
1) HII 1(VC5C7 [p,q]) = 524P 648pq – 12p. 
2) HII 2(VC5C7 [p,q]) = 624P

  9
48pq – 12p. 

3) HII 1(HC5C7 [p,q]) = 42p 516p 624pq – 8p. 
4) HII 2(HC5C7 [p,q]) = 42p 616p 924pq – 8p. 

Proof: Let G=VC5C7 [p,q] be the nanotubes. By algebraic method, we get 
|V(G)|=16pq+6p and |E(G)|=24pq+6p. We have two partitions of the edge set E(G) as 
given in Table 1.  
dG(u), dG(u) \ uv ∈ E(G) E5 = (2, 3) E6 = (3, 3) 

Number of edges 12p 24pq – 6p 
Table 1: Computing the number of edges for VC5C7 [p, q] nanotube. 
 

1) HII 1(G) = ( ) ( )
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( ) ( )
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 = 524p 648pq – 12p. 
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2) HII 2(G) = ( ) ( )
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  = 624p 948pq – 12p. 
 
 Let G1 = HC5C7 [p,q] be the nanotubes. By algebraic method, we get 
|V(G1)|=8pq+5p and |E(G1)|=12pq+5p. We have three partitions of the edge set E(G1) as 
given in Table 2. 
 
dG(u), dG(u) \ uv ∈ E(G) E4 = (2, 2) E5 = (2, 3) E6 = (3, 3) 

Number of edges P 8p 12pq – 4p 
Table 2: Computing the number of edges for HC5C7 [p, q] nanotube.  
 

3) HII 1(G1) = ( ) ( )
( )
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1 1
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     = 42p 516p 624pq – 8p. 

4) HII 2(G1) = ( ) ( )
( )

( ) ( ) ( )
1 1

1 4 5 6
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       = 42p 616p 924pq – 8p. 
 
Theorem 2.3. Let G = VC5C7 [p,q] be a class of nanotubes. Then 

1) XII(VC5C7[p,q]) = 
6 12 3

1 1
.
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2) χII (VC5C7[p,q]) = 
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Proof: By using Table 1, we get 
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Theorem 2.4. Let G1 = HC5C7 [p,q] be a class of nanotubes. Then  
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Theorem 2.5. Let G = VC5C7[p,q] and G1= HC5C7[p,q] be two classes of nanotubes. 
Then  

1) ABCII(VC5C7[p,q]) = 224pq – 12p 36p – 24pq.  

2) ABCII(HC5C7[p,q]) = 
17

12 4 1222 3 .
pq p p pq− −  

Proof:1) By using Table 1, we get 
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2) By using table 2, we get, 
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Theorem 2.6. Let G = VC5C7 [p,q] and G1 = HC5C7[p,q] be two classes of nanotubes. 
Then 

1) GAII(VC5C7[p,q]) = 
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Proof: 1) By using Table 1, we get 
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3) By using Table 2, we get 
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