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1. Introduction

The idea of fuzzy set was first introduced by leanimathematician Zadeh [18]. Fuzzy
set is specifically designed to mathematically espnt uncertainty and vagueness. Fuzzy
set is defined by a membership function which assigach object to a grade of
membership between zero and one. Adak et al. [d]Rmadhan and Pal [14] have done
remarkable work on fuzzy set theory. Kramosil anidhdlek [10] applied the concept of
fuzziness to the classical metric space and compaeefuzzy metric space with
probabilistic metric space, the generalization etnm space. George and Veeramani [4]
modified the concept of fuzzy metric space by inipgsome stronger conditions using
continuous t-norm and defined the hausdorff topplofyfuzzy metric spaces. Gregori
and Sapena [6] defined the concepts of convergequence, Cauchy sequence,
completeness and compactness in sense of fuzzicrepéice. Grabiec [5] introduced the
fuzzy version of Banach contraction principle.

Jungck [7] introduced commuting mappings in metsipace. Sessa [16]
generalized commuting mappings in metric spacseakly commuting mappings. Pant
[13] introduced R weak commutativity in metric spa¥asuki (2010) defined R weak
commutativity in fuzzy metric space. Jungck [8]agkd the class of noncommuting
mappings by compatible mappings. Also the concepbmpatible mappings was further
improved by Jungck et al. [9] with the notion of aly compatible mappings which
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merely commute at coincidence points. Mishra efl&l] defined compatible mappings
in fuzzy metric spaces and proved some common fixéak theorems.

Aamri and El Moutawakil [2] defined the (E.A) prape for self mappings
whose class contains the class of noncompatiblevels as compatible mappings.
Common property (E.A) is introduced by Ali et &].[It is observed that (E.A) property
and common property (E.A) require the closednedhafubspaces for the existence of
fixed point. Mihet [11] defined (E.A) property inZzy metric spaces.

In this paper, we prove some common fixed poinbtéms in fuzzy metric
spaces using implicit relation and the common pityd&. A).

2. Preliminaries
Definition 2.1. (Schweizer B. and Sclar A., 1986) A binary operation
+: [0,1] x [0,1] — [0,1] s called continuous-rtorm if it satisfies the following
conditions:
1) =is commutative and associative;
2) = is continuous;
3) a*x1=a,foralla€[0,1];
4) a*b <c+dwhenever & cand k< d, forall a, b, c, & [0, 1].

Remark 2.2. (Schweizer B. and Sclar A., 198bhe concept of t-norm can be considered
as fuzzy union.

Definition 2.3. (George A. and Veeramani P., 1994) The 3-tuple (X, Mj) is said to be
a fuzzy metric space (FMS) if, X is a hon empt; s€s a continuous t-norm, M is a
fuzzy seton XxXx (Oy) satisfying thefollowing conditions:

1) My, t)>0;

2) M(x,y, t) =1if and only if x=y;

3) M(x,y, t) = M(y, x, t);

4) M(X,y, t)* M(y, z,s) < M(X, z,t + s);

M(X, Yy, *): (0,0) — [0, 1] is continuous, for all x, y,e X and s, t > 0.

M(x, v, t) is considered as the degree of nearokégsand y with respect to t.

Example 2.4. (George A. and Veeramani P., 1994)
Let (X, d) be a metric spacexd= min {a, b} andv x,y € Xand t > 0.

t
M Xl !t :—!
dX, y, 1) t+d(x,y)
then (X, M,*) is a Fuzzy metric space.

Definition 2.5. (Gregori V. and Sapena A., 2002)
I. A sequence {} is said to convergent to x in X, if and only iffl_., M (X, X, t)
=1 for all t>0.
II. A sequence {§§ is said to M cauchy, if and only if for each

£0(0,1),t>0,thereexistny N such that lim., M( Xm X, t)>1-
gforanym,n=n, for all t>0.
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Il The fuzzy metric space M(X, y, t called M-complete if every M-cauchy
sequence is convergent.

Definition 2.6. (Vasuki R., 1999) Two self mappings f and g of a fuzzy metric spgte
M, =) are said to be weakly commuting if,
M ( fgx, gfx, t)> M(fx, gx t), for all xe X, t> 0.

Definition 2.7. (Vasuki R., 1999) Two self mappings f and g of a fuzzy metric spgte
M, =) are said to be R weakly commuting if,

M ( fgx, gfx, t) > M(fx, gx, %), forall xe X, t> 0.

Definition 2.8. (Mihet D., 2010) Two self mappings f and g of a fuzzy metric spé¢e
M, *) are said to satisfy the (E.A) property if thergsea sequence fkin X such that
forallt> 0,
lim,,_,, M(fx,, gxp,t) = 1.

Definition 2.9. (Ali J. et al., 2010) Two pairs (A, S) and (B, T) of self mappings of a
fuzzy metric space (X, M) are said to satisfy the (E.A) property if therdse two
sequences £ and {y.} in X such that for all t > 0,

lim,_,, Ax,, = lim,_, Sx, = lim,,_,, By, = lim,_, Ty, = z, for some z in X.

3. Main results

Definition 3.1. (Implicit relation) Let @ be the class of all real valued, non-decreasing
and continuous functiong; (R")* — R, satisfying the following condition:

d(X Y, % Y) >0 or ¢p(X,y,y,x)=0 or (X, %VY,y)>0 impliesx>y, forall x,y>0;

Theorem 3.2. Let A, B and < > where iJ Nu {0}, be self-maps of fuzzy metric space
(X, M, =), satisfying the following conditions,
l. FcBand R CA;
.  d(M(F;x, Fyy, kt), M(Ax, By, t), M(F;x, Ax, t),M(Fyy, By, kt) ) = 0;
Il The pairs F;, A) and ¢,, B) share the common property (E.A.);
IV.  The pairsF;, A) and §,, B) are R-weakly commuting,
forall x, ye X, t> 0, ke (0, 1). If range of one of A and B is closed swzspof X, then
< F > where il Nu {0}, A and B have a unique common fixed point.
Proof: Since The pairsH;, A) and §,, B) share the common property (E.A.), there exist
two sequences { and {y,} such that,
lim Fyx, = lim Bx, = lim F;y, = lim Ay, =z
n—-oo n-—-oo n-—-oo n—oo
Suppose that A(X) is a closed subspace of X, theretexists some U X such that z =
Au.
Now we show that ;& = z. using condition Il with x = u and y 7.x
¢( M(Fyu, Foxy, kt), M(Au, Bxy, t), M(F;u, Au, t), M(Fyx,, Bxp, kt) ) = 0
Taking limit as p>o
¢( M(Fu, z, kt), M(z, z,t), M(Fyu, Au, t),M(z,z,kt) ) = 0
¢(M(Fu,z kt), 1, M(F;u, Au,t),1) =0
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Sinceg is non decreasing therefore,

¢(M(Fu,z,t),1, M(Fiu,Au,t),1) =0
From the definition 3.1

M(Fu,zt) =1
Therefore, 1=z = Au.
Since F€ B, there exists some& X, such that fo = z = Bv.
Now we show that §v = z. using condition Il with y =v and x 5.y
O M(Fiyn, Fov, kt), M(Ayy, Bv, t), M(F; v, Ayn, t), M(Fyv, B, kt) ) = 0
Taking limit as r>o
d(M(z, Fyv, kt),M(z,z,t),M(z,2,t), M(Fyv,z kt) ) = 0

¢(M(z, Fyv, kt), 1,1, M(Fyv,z,kt) ) = 0

From the definition 3.1
M(Fyv,z,kt) = 1

Therefore Ffyv = z = By,
Hence, U = Au=Fyv = Bv = z.
Since Fand A are pointwise R-weakly commutting, theresexR > 0 such that,
M ( FAu, AFu, t) > M(Fiu,Au,ﬁ) =1, hence Au = AFu = FFu = AAu.
Similarily Fy and B are pointwise R-weakly commutting, therestsxk > 0 such that,

M ( FoBv, BRov, t) = M(F,v, By, g) =1 hence Bv = BRyv = RFv = BBV.
using condition Il with y = v and x 5,
¢( M(F;Fyu, Fyv, kt), M(AF;u, Bv,t), M(F;Fyu, AF;u, t), M(Fyv, Bv, kt) ) = 0
d)( M(FiFiu, Fiu, kt), M(FiFiu, Fl-u, t), 1, 1 ) >0
Since¢ is non decreasing therefore,
d)( M(FiFl-u, Fiu, t), M(FiFl-u, Fiu, t), 1, 1 ) >0
From the definition 3.1,
M(Fl-Fl-u, Fiu, t) >1
It is possible only wher;F;u = F;u
HencefF;z = z
ThereforeF;z = z = Az
Therefore z is a fixed point & and A.
Now using condition Il with y = fv and x = u,
d( M(Fyu, FyFyv, kt), M(Au, BFyv, t), M(Fju, Au, t), M(FoFov, BFyv, kt) ) = 0
d( M(Fyv, FyFyv, kt), M(Fyv, FyFov,t),1,1) = 0
Since¢ is non decreasing therefore,
P(M(Fyv, FyFyv, t), M(Fyv, FyFov,t),1,1) =0

From the definition 3.1,
M(Fyv, FyFyv,t) = 1
It is possible only wherfyv = FyFyv =z
HenceFyz = z
ThereforeFyz = Bz =z
Therefore z is a fixed point &} and B.
This gives,F;z = A=Fy,z=Bz = z.
Hence z is a common fixed point of =f A and B.
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Now to show that z is unique common fixed poinkdf >, where il N v {0}, A and B.
Suppose #s another common fixed point of <>F where i N u {0}, A and B.
Now using condition Il with y =gzand x = z,
G(M(F;z,Fyzqy, kt), M(Az, Bz, t), M(F;z,Az,t), M(Fyz,,Bz,,kt) ) = 0
¢(M(z, 2z, kt),M(z,21,),1,1) =0
Sinceg is non decreasing therefore,
¢(M(z,24,t),M(z,24,t),1,1) =0
From the definition 3.1,
M(z,z,t) =1
It is possible only when, z5z
Hence z is unigue common fixed point of <>Fwhere iLl N v {0}, A and B.

Theorem 3.3. Let A, B, F and G be self-maps of fuzzy metric gpéX, M, = ), satisfying
the following conditions,
l. Fc Band GE A;

.  ¢(M(Fx, Gy, kt), M(Ax, By, t),M(Fx,Ax, t),M(Gy, By, kt)) = 0;

Il The pairs ¥, A) and (¢, B) share the common property (E.A.);

IV.  The pairsF, A) and ¢, B) are R-weakly commuting,
forall x, ye X, t > 0, ke (0, 1). If range of one of A and B is closed swdzspof X, then
F, G, A and B have uniqgue common fixed point.
Proof: Since The pairsH, A) and ¢, B) share the common property (E.A.), there exist
two sequences { and {y,} such that,

Am Gy = Jim B, = lim Py = lim Ay, =7
Suppose that A(X) is a closed subspace of X, theretexists some U X such that z =
Au.
Now we show that Fu = z. using condition Il witkexi and y = x
¢( M(Fu, Gxp, kt), M(Au, Bx,, t), M(Fu, Au, t), M(Gx,, Bx,, kt) ) = 0
Taking limit as Ao
¢(M(Fu,z kt),M(z,z,t), M(Fu, Au,t),M(z,z,kt) ) = 0
¢(M(Fu,z kt), 1, M(Fu,Au,t),1) =0
Sinceg is non decreasing therefore,
¢(M(Fu,z,t),1, M(Fu,Au,t),1) >0
From the definition 3.1,
M(Fu,z kt) > 1
Therefore Fu =1z =Au.
Since = B, there exists some& X, such that Fu=z =v.
Now we show that, Gv = z. using condition Il witkryw and x = y,.
d(M(Fyy, Gv, kt), M(Ay,, Bv,t), M(Fyy, Ay,, t), M(Gv, Bv,kt) ) = 0
Taking limit as rRoo
¢(M(z, Gv, kt),M(z,2,t),M(z,z1t), M(Gv,z, kt)) =0
Sinceg is non decreasing therefore,
M(Fv,z kt) > 1
ThereforeGv = z = By,
Hence, Fu = Au€v =Bv = z.
Since F and A are pointwise R-weakly commagttthere exists R > 0 such that,
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M(FAu, AFu, t)> M(Fu,Au,%) = 1thatis, FAu = AFu = FFu = AAu.
Similarily, G and B are pointwise R-weakly commuidtj there exists R > 0 such that,
M ( GBv, BGv, t)= M(Gv, Bv,%) =1 that is, GBv = BGv = GGv = BBVv.
using condition Il with y = v and x 5,
¢( M(FFu, Gv, kt), M(AFu, Bv,t), M(FFu, AFu,t), M(Gv,Bv,kt) ) = 0
¢(M(FFu,Fu,kt), M(FFu,Fu,t),1,1) =0
Sinceg¢ is non decreasing therefore,
¢(M(FFu,Fu,t), M(FFu,Fu,t),1,1) =0
From the definition 3.1,
M(FFu,Fu,t) > 1
It is possible only wherEFu = Fu
HenceFz =z
ThereforeFz = z= Az
Therefore z is a fixed point éf and A.
Now using condition Il with y = Gv and x = u,
¢( M(Fu, GGv, kt), M(Au, BGv,t), M(Fu, Au, t), M(GGv,BGv,kt) ) = 0
¢(M(GGv, Gv, kt), M(GGv,Gv,t),1,1) =0
Since¢ is non decreasing therefore,
¢(M(GGv,Gv,t),M(GGv,Gv,t),1,1) =0
From the definition 3.1,
M(GGv,Gv,t) = 1
It is possible only wherGv = GGv = z
Hence,Gz = z
ThereforeGz = Bz =z
Therefore z is a fixed point & and B.
This gives,Fz = A =Gz =Bz =z
Hence z is a common fixed point of F, G, A and B.
Now to show that z is unique common fixed poinFof5, A and B.
Suppose #s another common fixed point of F, G, A and B.
Now using condition Il with y = zand x = z,
¢(M(Fz,Gzy,kt),M(Az, Bz, t), M(Fz,Az,t), M(Fz{,Bz1,kt) ) = 0
¢(M(z, 24, kt),M(z,21,t),1,1) =0
Sinceg is non decreasing therefore,
¢(M(z,24,t),M(z,2,,t),1,1) =0
From the definition 3.1,
M(z,z,t) =1
It is possible only when, z5z
Hence z is unigue common fixed point of F, G, A &ad

Corollary 3.4. Let A, B and < > where iJ Nu {0}, be self-maps of fuzzy metric space
(X, M, =), satisfying the following conditions,
l. FcBand RS A;
.  d¢(M(Fx, Fyy, kt), M(Ax, By, t), M(F;x, Ax, t),M(Fyy, By, kt) ) = 0;
Il The pair £, B) satisfies property (E.A.);
IV.  The pairsf;, A) and §,, B) are R-weakly commuting,
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forall x, ye X, t> 0, ke (0, 1). If range of one of A and B is closed swzspof X, then
<k >wherei € NU {0}, A and T have a unique common fixed point.
Proof: Since the pairK,, B) share the common property (E.A), there exisequence
{Xn} such that,
lim,,_, Fy x, = lim,_,, Bx, = z, for some £ X.
SinceF,(X) € A(X), there exists { y} in X such thatF,x, = Ay, andlim,,_,., Ay, = z.
Now we show thatim,,_,..F; y, = z.
Using condition Il with x = yand y = .

¢( M(Fi)’nr Foxn, kt), M(Aan Bxp, t), M(FianAYn' t)' M(Foxnr Bxn, kt) ) =0

Taking limit as Ao
O(M(F;yp, 2z, kt),M(z,z,t), M(Fiy,, z,t),M(z,z,kt) ) = 0
¢( M(Fiyn, Z, kt), 1,M(Fiyn, Z, t), 1 ) >0
Since¢ is non decreasing therefore,
d)( M(Flynl Z, t): 1: M(Fiynl Z, t), 1 ) =0
From the definition 3.1,
M(F;y,, z,t) =1
It is possible only whedim,,_, . F; y, = z.
Therefore,
Jim Foxa = Jim Bxy = lim Fiyo = lim A3, =z
The pairs ;, A) and ,, B) share the common property (E.A).
Therefore all the conditions of theorem 3.1 arésBatl hence < where i1 Nu {0},
A and B have a uniqgue common fixed point.

Corollary 3.5. Let A and B be self mappings of fuzzy metric sp@¢eM, = ), satisfying
the following conditions:
.  ¢(M(Ax, Ay, kt),M(Bx, By,t), M(Ax, Bx, t),M(Ay,By, kt)) = 0;
II.  The pair (A, B) satisfies property (E.A.);
Il The pair A and B are R-weakly commuting;
V. Range of B is closed subspace of X,
for all x, ye X, t >0, ke (0, 1), then A and B have unique common fixed poin
in X.
Proof: The proof can be obtained by putting-F=A and A= B in theorem 3.1.

Corollary 3.6. Let A and | be self mappings of fuzzy metric spéXeM, = ), satisfying
the following conditions,
l. ¢( M(Ax, Ay, kt), M(x,y,t), M(Ax, x,t), M(Ay,y, kt) ) = 0;
II.  The pair (A, |) satisfies property (E.A.),
for all x, ye X, t >0, ke (0, 1), then A has unique common fixed point in X.
Proof: The proof can be obtained by putting=F=A and A= B = | in theorem 3.1.

Example 3.7. Let (X, M, ) be a fuzzy metric space, X = [1,-1] with M(x, vy, t) =t+|;—_y| ,
for all x, yeX, a* b = min{a, b} for all a, be [0, 1], t> 0, let
FixzﬁforieN, Fox = 0, Ax= -X, BXx = X, < x> =% <yn>=_71,
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Since,

lim, ., Fo X, = lim,_, Bx, = lim,_, F;y, = lim,_,, Ay,
and Ai(X) eT(X), AO(X) € X).
Also M( FAX, AFX, t) = M(Fx, AX, 1), M( FoBX, B, t) = M(Fx, Sx, 7) for al
XEX.
Therefore, ( F A) and (R B) are R weakly commuting.
Let ¢: RT — R be defined as,

¢(a,b,c,d)=a—-»b

Therefore all the conditions of theorem 3.2 aresBatl and 0 is the common fixed point.
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