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Abstract. In theoretical chemistry, chemical compounds and drugs are modelled as graphs, 
and the second geometric-arithmetic index and Co-PI index have been introduced to 
measure the stability of alkanes and the strain energy of cycloalkanes. These indices have 
found several applications in QSPR/QSAR study, and also used to test the toxicity of 
drugs. In this paper, we present the computational formulas for calculating the second 
geometric-arithmetic index and Co-PI index of unilateral polyomino chain, unilateral 
hexagonal chain, V-phenylenic nanotubes and nanotori, and hexagonal triangle graph. In 
addition, the general second geometric-arithmetic index and general Co-PI index are 
defined, and the representations of special chemical molecular graphs in general version 
are derived.  
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1. Introduction 
In chemical engineering, one of the most important applications of theoretical chemistry is 
measuring chemical, physical, medicine and pharmaceutical properties of molecules which 
is called alkanes. Large number of indices depending on the graphical structure of the 
alkanes were defined and employed to model both the melting point and boiling point of 
the molecules. There are several vertex distance-based and degree-based indices which are 
introduced to analyze the chemical properties of molecule graph and applied in a variety of 
QSPR/QSAR studies. For instance: Wiener index, PI index, Szeged index, geometric- 
arithmetic index and atom-bond connectivity index are introduced to test the performance 
of chemical molecular structures. There are several papers contributing to determining the 
indices of special molecular graphs (See Yan et al., [1], Gao and Shi [2], Xi and Gao [3], 
Dou et. al., [4], and Gao and Wang [5] for more details). 

All (molecular) graphs considered in this article are finite, loopless, and without 
multiple edges. Let G  be a (molecular) graph with vertex set )(GV  and edge set )(GE
. The notations and terminologies used but undefined in this paper can refer to [6]. 

By considering the degrees of vertices in G, Vukicevic and Furtula [7] introduced 
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the geometric-arithmetic index, which is denoted as  

 ,
)()(

)()(2
=)(

)( vdud

vdud
GGA

GEuv +∑
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where )(ud  denotes the degree of vertex )(GVu ∈ . 
Yuan et al., [8] obtained the lower and upper bounds for geometric-arithmetic 

index of molecular graphs in terms of the numbers of vertices and edges. Furthermore, the 
n -vertex molecular trees with the minimum, the second and the third minimum, as well as 
the second and the third maximum geometric-arithmetic indices were determined. Das et 
al., [9] gave lower and upper bounds on geometric-arithmetic indices and characterized 
molecular graphs for which these bounds are best possible. Moreover, they discussed the 
effect on geometric-arithmetic index of inserting an edge into a molecular graph. 
Madanshekaf and Moradi [10] calculated the geometric-arithmetic index of two infinite 
classes of dendrimers. 

Recently, Fath-Tabar et al., [11] developed a new version of the geometric 
-arithmetic index, i.e., the second geometric-arithmetic index:  
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where for each )(GEuv ∈ , )(un  is the number of vertices closer to vertex u  than 

vertex v  and )(vn  defines similarly. In Zhan and Qiao [12], the maximum and the 
minimum second geometric-arithmetic index of the star-like tree are learned in view of an 
increasing or decreasing transformation of the second geometric arithmetic index of trees, 
and the corresponding extremal trees are manifested. 

Hasani et al., [13] introduced Co-PI index as  

 .|)()(|=)(
)(
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Su et al., [14] revealed that  

 |,)()(|=)(
)(
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where ),(=)(
)(

vuduT
GVv∑ ∈

. 

Although there have been several advances in geometric-arithmetic index and PI 
index of molecular graphs, the study of second geometric-arithmetic index and Co-PI 
index of special chemical structures is limited. In addition, as widespread and critical 
chemical structures, polyomino system, hexagonal system, V-phenylenic nanotubes and 
nanotori, and hexagonal triangle structure are widely used in medical science and 
pharmaceutical field. For example, as one of the basic chemical structures, polyomino 
chain exists widely in benzene and alkali molecular structures. Also, these indices are used 
for QSPR/QSAR study of organic compounds. For instance, QSAR study on acute 
toxicities of phenylsulfonyl carboxylate compounds, and QSPR/QSAR study on the water 
solubility and biological toxicity for fatty alcohol compounds. For these reasons, 
tremendous academic and industrial interests are attracted to research the second 
geometric-arithmetic index, Co-PI index and their extensional versions of special 
molecular structure from a mathematical point of view. 

The contributions of our paper are five-fold. First, we give the second 
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geometric-arithmetic index and Co-PI index of unilateral polyomino chain. Second, the 
second geometric-arithmetic index and Co-PI index of unilateral hexagonal chain are 
calculated. Third, we derive these two indices of V-phenylenic nanotubes and nanotori. 
Fourth, two indices of hexagonal triangle are determined. At last, we extend these two 
indices into general version. The computational formulas of special chemical structure in 
general version are deduced. 

 
2. Indices of polyomino chain 
From the view in graph theory, polymino is a finite 2-connected planar graph and each 
interior face is surrounded by a square with length 4. Polyomino chain is one class of 
polyomino such that the connection of centres for adjacent squares constitute a path 

nccc ⋯21 , where ic  is the centre of i -th square. Polyomino chain 4
nH  is called a linear 

chain if the subgraph induced by all 3-degree vertices is a graph with 2−n  squares. 

Furthermore, polyomino chain 4
nH  is called a Zig-zag chain if the subgraph induced by 

all vertices with degree 2>  is path with 1−n  edges. In what follows, we use 4nL  and 
4
nZ  to denote linear polyomino chain and Zig-zag polyomino chain, respectively. The 

structure of 4
nL  and 4

nZ  can refer to Figure 1. The purpose of this section is to obtain the 

second geometric-arithmetic index and Co-PI index of unilateral polyomino chain. 

   
 Figure 1: The structure of 4

nL  and 4
nZ   

 
The technologies we used here follow from Gao and Wang [5]. Choose an edge e  

of the polyomino system and draw a straight line through the center of e , orthogonal on e
. This line will intersect the perimeter in two end points 1P  and 2P . The straight line 

segment C  whose end points are 1P  and 2P  is the elementary cut, intersecting the edge 

e . A fragment S  in polyomino chain is just maximal linear chain which includes the 
squares in start and end vertices. Let )(Sl  be the length of fragment which denotes the 

number of squares it is contained. Let 4nH  be a polyomino chain with n  squares and 

consist of fragment sequence 1S , 2S , ⋯ , 1)( ≥mSm . Denote ),1,=(=)( milSl ii ⋯ . 

It is not difficult to verify that 1=21 −++++ mnlll m⋯  and 22|=)(| 4 +nHV n , 

13|=)(| 4 +nHE n . For the k -th fragment of polyomino chain, the cut of this fragment is 
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the cut which intersects with 1+kl  parallel edges of squares in this fragment. A fragment 

called horizontal fragment if its cut parallels to the horizontal direction, and called vertical 
fragment if its cut parallels to the vertical direction. Unilateral polyomino chain is a special 
kind of polyomino chain such that for each vertical fragment, two horizontal fragments (if 
exists) adjacent it appear in the left and right sides, respectively. 

 
 Figure 2: I-type cut and II-type cut of unilateral polyomino chain  

 

The cuts in 4
nH  are divided into two types: I-type and II-type (see Figure 2). An 

edge is called I-type (or, II-type) if it intersects with I-type (or, II-type) cut. By virtue of 
intermediate results in Gao and Wang [5], we summarize the following facts. 
•    If edge uve =  is I-type in j -th square of k -th fragment (i.e., e  is edge which is 
passed by dotted line in Figure 2), then  
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•    If edge e  is II-type in j -th square of k -th fragment (i.e., e  is edge which is 
passed by real line in Figure 2). Then  



  On Second Geometric-Arithmetic Index and Co-PI Index of Special Chemical Molecular 
Structures 

103 
 

 













−≤≤++−

+−

∑
−

,122,222

=2,22

1=,2

=)(
1

1=

mkifjkl

mkifjl

kifj

un

i

k

i

m  

and  

 















−≤≤+−+−−

++−

+−+−

∑

∑

∑

+

−

.122,)2()2(2

=2,222

1=4,)2(22

=)(

1=

1

1=

1
2=

mkifjlkml

mkifjml

kifjlml

vn

ki

m

ki

i

m

i

i

m

i

 

In view of above results and the definition of second geometric-arithmetic index and Co-PI 
index, our first result is stated as follows.  
 

Theorem 1.  Let 4
nH  be a unilateral polyomino chain consisted of m  fragment 1S , 

2S , ⋯ , 1)( ≥mSm , and ),1,=(=)( milSl ii ⋯  be the length of each fragment. Then, 

we have  
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Corollary 2. Let 4
nL  be the linear chain with n  squares. Then, we have  

 1,
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Proof: By the definition of linear chain, we have 1=m , nl =1 , 0===2 mll ⋯ . In 

terms of Theorem 1, we immediately get the result.                                    □  
 

Corollary 3. Let 4
nZ  be the Zig-zag chain with n  squares. Then, we have  
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Proof: By virtue of the definition of Zig-zag chain, we have 1= −nm , and 
2==== 21 mlll ⋯ . In view of Theorem 1, the result is immediately obtained.        □  

 
3. Indices of hexagonal chain 
In this section, we report the second geometric-arithmetic index and Co-PI index of 
unilateral hexagonal chain. 

Hexagonal chain is one class of hexagonal system which consisted by hexagonal. 
In hexagonal chain, each two hexagonals has one common edge or no common vertex. 
Two hexagonals are adjacented if they have common edge. No three or more hexagonals 
share one vertex. Each hexagonal has two adjacent hexagonals except hexagonals in 
terminus, and each hexagonal chain has two hexagonals in terminus. It is easy to verify that 

the hexagonal chain with n  hexagonals has 24 +n  vertices and 15 +n  edges. Let 6
nL  

and 6
nZ  be the linear hexagonal chain and Zig-zag hexagonal chain, respectively. The 

chemical structure of 6
nL  and 6

nZ  can refer to Figure 3 for more detail. 

The tricks we used in this section are presented in Gao and Wang [5]. Choose an 
edge e  of the hexagonal system and draw a straight line through the center of e , 
orthogonal on e . This line will intersect the perimeter in two end points 1P  and 2P . The 

straight line segment C  whose end points are 1P  and 2P  is the elementary cut, 

intersecting the edge e . A fragment S  in hexagonal chain is just maximal linear chain 
which include the hexagonals in start and end vertices. Let )(Sl′  be the length of 

fragment which denotes the number of hexagonals it is contained. Let 6
nH  be a hexagonal 

chain with n  hexagonals and consist of fragment sequence 1S , 2S , ⋯ , 1)( ≥mSm . 

Denote ),1,=(=)( ' milSl ii ⋯′ . Then, we verify that 1=''
2

'
1 −++++ mnlll m⋯  since 

each two adjacent fragment have one common hexagonal. For the k -th fragment of 
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hexagonal chain, the cut of this fragment is the cut which intersects with 1' +kl  parallel  

  
 Figure 3: The structure of 6

nL  and 6
nZ   

 
edges of hexagonals in this fragment. A fragment called horizontal fragment if its cut 
parallels to the horizontal direction, otherwise called inclined fragment. Unilateral 
hexagonal chain is a special class of hexagonal chain such that the cut for each inclined 
fragment at the same angle with a horizontal direction. As an example, Figure 4 shows a 

structure of unilateral hexagonal chain. Clearly, linear hexagonal chain 6nL  is a unilateral 

hexagonal chain with one fragment, and Zig-zag is a unilateral hexagonal chain with 1−n  
fragments. 

   
Figure 4. I-type cut and II-type cut of unilateral hexagonal chain  

 

The cuts in 6
nH  are divided into two types: I-type and II-type (see Figure 4). A 

edge is called I-type if it intersects with I-type cut. Also, a edge is called II-type if it 
intersects with II-type cut. In terms of intermediate result of Gao and Wang [5], we sum up 
the following facts. 
•    If edge uve =  is I-type in j -th square of k -th fragment (i.e., e  is edge which is 
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passed by dotted line in Figure 4), then  
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•    If edge uve =  is II-type in j -th square of k -th fragment (i.e., e  is edge which is 
passed by real line in Figure 4), then  
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Using the definition of second geometric-arithmetic index and Co-PI index, we now show 
the computational formulas for unilateral hexagonal chain.  
 

Theorem 4. Let 6
nH  be a unilateral hexagonal chain consisted of m  fragment 1S , 2S , 

⋯ , 1)( ≥mSm , and ),1,=(=)( ' milSl ii ⋯′  be the length of each fragment. Then, we 

have  
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Corollary 5. Let 6
nL  be the linear chain with n  hexagonals. Then, we have  
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Proof: By the definition of linear chain, we check that 1=m , nl ='
1 , 0=== ''

2 mll ⋯ . 

In terms of Theorem 4, we get the result soon.                                         □  
 

Corollary 6. Let 6
nZ  be the Zig-zag chain with n  hexagonals. Then, we have  
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Proof: Using the definition of Zig-zag chain, we verify that 1= −nm  and 

2==== ''
2

'
1 mlll ⋯ . In view of Theorem 4, the corollary is immediately yielded.      □  

 
4. Indices of V-Phenylenic nanotubes and nanotori 
The notations in this section follow from Diudea [15]. The molecular structures 
V-Phenylenic nanotube and V-Phenylenic nanotorus are denoted by ],[ nmVPHX  and 

],[ nmVPHY , respectively. The structures of ],[ nmVPHX  and ],[ nmVPHY  are 
described in Figure 5 an Figure 6, respectively. 

 

 
 Figure 5: The structure of V-phenylenic nanotube  

 
Let },{min= mnβ  and 3)(61593= −++++ iSi ⋯ . Based on the tricks 

described in Gao and Wang [5], we show the the representations of ]),[(2 nmVPHXGA  

and ]),[( nmVPHXPICo v−  in Theorem 7, and the expressions of ]),[(2 nmVPHYGA  

and ]),[( nmVPHYPICo v−  are determined in Theorem 8.  

 

Theorem 7.   
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Here, 4)(1 ≤≤ iiα  are given as follows:  
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Figure 6: The structure of V-phenylenic nanotorus  
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Theorem 8. 
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))(23(6)(3

))(23)(6(32
2

))(26(6)(6

))(26)(6(62
2=

1

1=

1

1=
5 nmimnmi

nmimnmi

mmimnmi

mmimnmi n

i

n

i −+
−

+
−+
−

∑∑
−−

α  

 .
)3)(6(6)3)(6)((2

)3)(6)(63)(6)((22
4

1||

1= iSmniS

iSmniSnm

i −−−+−+
−−−−+

+ ∑
−−

βββ
βββ

ββ

ββ
 

))(23(6)(3

))(23)(6(32
2

))(26(6)(6

))(26)(6(62
2=

1

1=

1

1=
6 nmimnmi

nmimnmi

mmimnmi

mmimnmi n

i

n

i −+
−

+
−+
−

∑∑
−−

α  

 .
3))(6(63)6(4

3))(63)(66(42

−−−+−+
−−−−+

+
nSmnnSn

nSmnnSn

nn

nn  

|))(23(6)(3|2|))(26(6)(6|2=
1

1=

1

1=
7 nmimnmimmimnmi

n

i

n

i

−−+−− ∑∑
−−

α  

 .|)3)(6(6)3)(6)((2|4
1||

1=

iSmniS
nm

i

−−−−−++ ∑
−−

βββ ββ  

|))(23(6)(3|2|))(26(6)(6|2=
1

1=

1

1=
8 nmimnmimmimnmi

n

i

n

i

−−+−− ∑∑
−−

α  

 .|3))(6(63)6(4| −−−−−++ nSmnnSn nn  

 
5. Indices of Hexagonal triangle graph 
In this section, we determine the second geometric-arithmetic index and Co-PI index of 
hexagonal triangle graph )(nT . This molecular graph is a class of nanotube, and the 

structure of )(nT  can refer to Fig 7 which is related to the atomic structure of bipod 
shaped nanocrystals. 
 
Theorem 9. Let )(nT  be hexagonal triangle graph with n  rows. Then, we yield  
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Figure 7: The structure of hexagonal triangle graph.  

 
Proof: By observing the structure of hexagonal triangle graph, we find that there are i  
hexagons in the i -th row, where ni ≤≤1 . Since )(nT  has an equilateral figure, we get 

)3(
2

3
|=))((| 2 nnnTE +  and 14|=))((| 2 ++ nnnTV . Furthermore, i -th row has 

exactly 1+i  vertical edges of hexagonal triangle graph. Let uve =  be an edge in i -th 
row, we deduce  

 ,2=)( 2 iiun +  
and  

 .214=)( 22 iinnvn −−++  
Thus, by virtue of the definition, we get  

)()(

)()(2
1)(3=))((

1
2 vnun

vnun
inTGA

ni +
+∑

≤≤

,
14

)214)(2(2
1)(3=

2

222

1 ++
−−+++

+∑
≤≤ nn

iinnii
i

ni

 

 and  

|)()(|1)(3=))((
1

vnuninTPICo
ni

v −+− ∑
≤≤

.|4214|1)(3= 22

1

iinni
ni

−−+++∑
≤≤

 

 
Thus, the desired results are obtained.                                                 □  

 
6. General Second geometric-arithmetic index and general Co-PI index 
For the requirement of chemical applications, the indices should be expended into more 
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generalized forms. For example, Li and Gutman [16] extended the ordinary Randic 
connectivity index to general Randic connectivity index, and Zhou and Trinajstic [17] 
raised general sum-connectivity index which extended the sum-connectivity index. 

In this section, we expend the definition of second geometric-arithmetic index and 
Co-PI index. The general second geometric-arithmetic index is defined as:  
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where γ  is a real number. Also, we introduce general Co-PI index as  
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where γ  is a real number. By the results in Su et al., [14], we infer  
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Evidently, 1
2GA  and 1

vPICo −  are the second geometric-arithmetic index and Co-PI 

index, respectively. 
By virtue of the results determined in former sections, we get the following 

extended conclusions.  
 

Theorem 10. Let 4
nH  be a unilateral polyomino chain consisted of m  fragment 1S , 2S

, ⋯ , 1)( ≥mSm , and ),1,=(=)( milSl ii ⋯  be the length of each fragment. Then, for 

any real number γ , we yield  
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Corollary 11. Let 4
nL  be the linear chain with n  squares. Then, for any real number γ , 

we deduce  
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Corollary 12. Let 4
nZ  be the Zig-zag chain with n  squares. Then, for any real number 

γ , we infer  
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Theorem 13. Let 6
nH  be a unilateral hexagonal chain consisted of m  fragment 1S , 2S

, ⋯ , 1)( ≥mSm , and ),1,=(=)( ' milSl ii ⋯′  be the length of each fragment. Then, for 

any real number γ , we obtain  
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Corollary 14. Let 6
nL  be the linear chain with n  hexagonals. Then, for any real number 

γ , we have  
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Corollary 15. Let 6
nZ  be the Zig-zag chain with n  hexagonals. Then, for any real 

number γ , we get ,)
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Theorem 16. For any real number γ , we infer  
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Theorem 17. For any real number γ , we deduce  
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Here, 16)(13 ≤≤ iiα  is given as follows:  

γγα )
))(23(6)(3

))(23)(6(32
(2)

))(26(6)(6

))(26)(6(62
(2=

1

1=

1

1=
13 nmimnmi

nmimnmi

mmimnmi

mmimnmi n

i

n

i −+
−

+
−+
−

∑∑
−−

 

 .)
)3)(6(6)3)(6)((2

)3)(6)(63)(6)((22
(4

1||

1=

γ

ββ

ββ

βββ
βββ

iSmniS

iSmniSnm

i −−−+−+
−−−−+

+ ∑
−−

 

γγα )
))(23(6)(3

))(23)(6(32
(2)

))(26(6)(6

))(26)(6(62
(2=

1

1=

1

1=
14 nmimnmi

nmimnmi

mmimnmi

mmimnmi n

i

n

i −+
−

+
−+
−

∑∑
−−

 



  Wei Gao, Li Liang and Yuhua Chen 

116 
 

 .)
3))(6(63)6(4

3))(63)(66(42
( γ

−−−+−+
−−−−+

+
nSmnnSn

nSmnnSn

nn

nn  

γγα |))(23(6)(3|2|))(26(6)(6|2=
1

1=

1

1=
15 nmimnmimmimnmi

n

i

n

i

−−+−− ∑∑
−−

 

 .|)3)(6(6)3)(6)((2|4
1||

1=

γ
ββ βββ iSmniS

nm

i

−−−−−++ ∑
−−

 

γγα |))(23(6)(3|2|))(26(6)(6|2=
1

1=

1

1=
16 nmimnmimmimnmi

n

i

n

i

−−+−− ∑∑
−−

 

 .|3))(6(63)6(4| γ−−−−−++ nSmnnSn nn  

 
Theorem 18. Let )(nT  be hexagonal triangle graph with n  rows. Then, for any real 
number γ , we derive  
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7. Conclusion 
In this paper, we report the second geometric-arithmetic index and Co-PI index of several 
special chemical molecular structures, including unilateral polyomino chain, unilateral 
hexagonal chain, V-Phenylenic nanotube, V-Phenylenic nanotorus and hexagonal triangle 
graph. Furthermore, we introduce the general version of second geometric-arithmetic 
index and Co-PI index, and obtain corresponding results for these special chemical 
molecular structures. The results achieved in our article illustrates the promising 
application prospects in biology, pharmacy and chemical engineering. 
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