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Abstract. In theoretical chemistry, chemical compounds angjsiare modelled as graphs,
and the second geometric-arithmetic index and Caééx have been introduced to
measure the stability of alkanes and the strainggnef cycloalkanes. These indices have
found several applications in QSPR/QSAR study, alsd used to test the toxicity of
drugs. In this paper, we present the computatiferahulas for calculating the second
geometric-arithmetic index and Co-Pl index of ut@tal polyomino chain, unilateral
hexagonal chain, V-phenylenic nanotubes and nainatod hexagonal triangle graph. In
addition, the general second geometric-arithmetadex and general Co-Pl index are
defined, and the representations of special chémiotecular graphs in general version
are derived.
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1. Introduction
In chemical engineering, one of the most imporégmications of theoretical chemistry is
measuring chemical, physical, medicine and pharotaes properties of molecules which
is called alkanes. Large number of indices depegndim the graphical structure of the
alkanes were defined and employed to model botmigéng point and boiling point of
the molecules. There are several vertex distanseeband degree-based indices which are
introduced to analyze the chemical properties demde graph and applied in a variety of
QSPR/QSAR studies. For instance: Wiener index,nBéx, Szeged index, geometric-
arithmetic index and atom-bond connectivity index iatroduced to test the performance
of chemical molecular structures. There are seyapérs contributing to determining the
indices of special molecular graphs (See Yan efld]. Gao and Shi [2], Xi and Gao [3],
Dou et. al., [4], and Gao and Wang [5] for moreads}.

All (molecular) graphs considered in this articte &inite, loopless, and without
multiple edges. LetG be a (molecular) graph with vertex 3é{G) and edge seE(G)

. The notations and terminologies used but undéfinehis paper can refer to [6].
By considering the degrees of vertice&SinVukicevic and Furtula [7] introduced
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the geometric-arithmetic index, which is denoted as

GA(G) = Z 2,/d(u)d(v)
wlE(G) d(U) + d(V) ’
where d(u) denotes the degree of vertex1V (G) .

Yuan et al., [8] obtained the lower and upper baufat geometric-arithmetic
index of molecular graphs in terms of the numbérsedices and edges. Furthermore, the
N-vertex molecular trees with the minimum, the sekcand the third minimum, as well as
the second and the third maximum geometric-aritimietiices were determined. Das et
al., [9] gave lower and upper bounds on geometitbraetic indices and characterized
molecular graphs for which these bounds are besilple. Moreover, they discussed the
effect on geometric-arithmetic index of inserting adge into a molecular graph.
Madanshekaf and Moradi [10] calculated the geomatithmetic index of two infinite
classes of dendrimers.

Recently, Fath-Tabar et al., [11] developed a nension of the geometric
-arithmetic index, i.e., the second geometric-anitic index:

GA,(G) = z 2/ n(u)n(v)
wiE@) NU) +n(v)
where for eachuvJE(G), n(u) is the number of vertices closer to vertaxthan
vertex V and n(v) defines similarly. In Zhan and Qiao [12], the nmaxim and the
minimum second geometric-arithmetic index of ttax-$ike tree are learned in view of an
increasing or decreasing transformation of the sgg@ometric arithmetic index of trees,
and the corresponding extremal trees are manifested
Hasani et al., [13] introduced Co-PI index as
Co-PI, (G)= Z | n(u) —=n(v)].
WOE(G)
Su et al., [14] revealed that
Co-PI,(G)= > |T(u)-TM)l,

WOE(G)

where T(u)=3" Gduv).

Although there have been several advances in geicragithmetic index and Pl
index of molecular graphs, the study of second ggomarithmetic index and Co-PI
index of special chemical structures is limited.aldition, as widespread and critical
chemical structures, polyomino system, hexagonstesy, V-phenylenic nanotubes and
nanotori, and hexagonal triangle structure are Midesed in medical science and
pharmaceutical field. For example, as one of th&icbhehemical structures, polyomino
chain exists widely in benzene and alkali molecstaictures. Also, these indices are used
for QSPR/QSAR study of organic compounds. For imsta QSAR study on acute
toxicities of phenylsulfonyl carboxylate compoundsd QSPR/QSAR study on the water
solubility and biological toxicity for fatty alcohocompounds. For these reasons,
tremendous academic and industrial interests atractdd to research the second
geometric-arithmetic index, Co-Pl index and thekteasional versions of special
molecular structure from a mathematical point efwi

The contributions of our paper are five-fold. Firste give the second
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geometric-arithmetic index and Co-Pl index of uteital polyomino chain. Second, the
second geometric-arithmetic index and Co-Pl ind&umilateral hexagonal chain are
calculated. Third, we derive these two indices gbhénylenic nanotubes and nanotori.
Fourth, two indices of hexagonal triangle are deieed. At last, we extend these two
indices into general version. The computationainfaeas of special chemical structure in
general version are deduced.

2. Indices of polyomino chain

From the view in graph theory, polymino is a finkeconnected planar graph and each
interior face is surrounded by a square with lengtiPolyomino chain is one class of
polyomino such that the connection of centres fija@nt squares constitute a path

cC,-:-C,, Where ¢, is the centre of -th square. Polyomino chaifl ! is called a linear

chain if the subgraph induced by all 3-degree wvestiis a graph witth—2 squares.
Furthermore, polyomino Chailh'|: is called a Zig-zag chain if the subgraph indulbgd

all vertices with degree> 2 is path withn—1 edges. In what follows, we uslef] and
Z: to denote linear polyomino chain and Zig-zag polio chain, respectively. The

structure of L‘r‘] and Z,j‘ can refer to Figure 1. The purpose of this sedddn obtain the
second geometric-arithmetic index and Co-PI indexnilateral polyomino chain.

Linear polyomino chain Zig-zag polyomino chain

Figure 1: The structure ofL! and Z?

The technologies we used here follow from Gao ama§\[5]. Choose an edge
of the polyomino system and draw a straight limeulyh the center o€, orthogonal one

. This line will intersect the perimeter in two epdints P, and P,. The straight line
segmentC whose end points ar& and P, is the elementary cut, intersecting the edge

€. A fragment S in polyomino chain is just maximal linear chainiet includes the
squares in start and end vertices. LEB) be the length of fragment which denotes the

number of squares it is contained. Udt;‘ be a polyomino chain witn squares and
consist of fragment sequen&®, S,, -+, S, (m=1). Denotel(S) =I.(i =1,---,m).
It is not difficult to verify thatl +I,+---+|_ =n+m-1 and |[V(H!)|=2n+2,
|E(H?)|=3n+1. For the k-th fragment of polyomino chain, the cut of thiagment is
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the cut which intersects with, +1 parallel edges of squares in this fragment. Arfragt

called horizontal fragment if its cut parallelsie horizontal direction, and called vertical
fragment if its cut parallels to the vertical diiea. Unilateral polyomino chain is a special
kind of polyomino chain such that for each vertitagment, two horizontal fragments (if
exists) adjacent it appear in the left and rigtiesj respectively.
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Figure2: I-type cut and lI-type cut of unilateral polyominbain

The cuts in H: are divided into two types: I-type and ll-typeddeigure 2). An
edge is called I-type (or, llI-type) if it interssawith I-type (or, ll-type) cut. By virtue of
intermediate results in Gao and Wang [5], we suriredhe following facts.

* Ifedgee=uv is I-type in j-th square ofk-th fragment (i.e.,€ is edge which is
passed by dotted line in Figure 2), then

|, +1, if k=1
n(u)=11_+1, if k=m

k-1
2) 1, -2k +l, +3, if 2sk<sm-1,
i=1

and
2> 1, —2m+l, +3, if k=1
i=2
m-1
n(v) =<2> 1, —2m+1  +3, if k=m

i=1

m
2> 1, -2(m-k)+l, +1, if 2sk<m-1
i=k+1
* If edge € is Il-type in j-th square ofk-th fragment (i.e..e is edge which is
passed by real line in Figure 2). Then
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2j, if k=1
nu)=<2,-2j+2, if k=m
k-1
2>, -2k+2j+2, if 2sk<m-1,
i=1
and
2> 1, —2m+2(, - j) +4, if k=1
i=2
m-1
nv) =<2>1, -2m+2j +2, if k=m

i=1

m
2> 1, -2(m-k)+2(, - j)+2, if 2sksm-1
i=k+1
In view of above results and the definition of ssttgeometric-arithmetic index and Co-PI
index, our first result is stated as follows.

Theorem 1. Let H: be a unilateral polyomino chain consisted of m fragment S,
S, -+, §,(m=1),and I(S)=1I,(1=1,--,m) bethelength of each fragment. Then,
we have

2 /S —m+ j +1)(0,, - j +1)

_12\/j(ili—m—1+2) : \/
i=1 +22 i=1

GA(H)=2Y

n+1 n+1

el \/Zl —k+J+1)(Z| —(m=-k)-j+1)
gy

i \/(z_kfh—2k+|k+3)(2i|i-2(m-k)+|k+1)

=kl
k=1 n+1

-1

Irn m-
Co-PI (H% = 2Z|2Z| -2m+4-4j| +2Z|2Z‘f|i—2m+4j—2|m|

=1 = j=2 =1
m-1lk 1 -
+2Zlk2|22| —4k+4j - 2Z|+2m|
k=2j=2 i=1

+Z(| +1)|2Z| — 4k +2- 22| +2m|.

i=k+1
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Corollary 2. Let L‘r‘] be thelinear chain with n sguares. Then, we have

S 2)j(n+1-]
TN EP) ya 't Ll Y
= n+1
n-1
Co-PI (L)) =2> |2n+2-4j|.
j=1
Proof: By the definition of linear chain, we hava=1, |, =n, |, =---=[_=0. In
terms of Theorem 1, we immediately get the result. O

Corollary 3. Let Z: bethe Zig-zag chain with n sguares. Then, we have

4/m+1 .\ 4/m+1 +Zm: 3,/(2k +1)(2m-2k +3)

m+2 m+2 i m+2

GA,(Z;) =

Co-PI,(Z})=8m+) 3|4k -2m~-2|.
k=1

Proof: By virtue of the definition of Zig-zag chain, weale m=n-1, and
l,=1,=---=1,=2.Inview of Theorem 1, the result is immediatefyained. O

3. Indices of hexagonal chain
In this section, we report the second geometrittvauétic index and Co-Pl index of
unilateral hexagonal chain.

Hexagonal chain is one class of hexagonal systeithvdonsisted by hexagonal.
In hexagonal chain, each two hexagonals has onenconedge or no common vertex.
Two hexagonals are adjacented if they have comrdga.eNo three or more hexagonals
share one vertex. Each hexagonal has two adjaee@ghnals except hexagonals in
terminus, and each hexagonal chain has two hex&gortarminus. It is easy to verify that

the hexagonal chain witlh hexagonals hagn+2 vertices and5n+1 edges. Letl®
and Zf be the linear hexagonal chain and Zig-zag hexdgdmain, respectively. The

chemical structure ol.® and Z? can refer to Figure 3 for more detail.

The tricks we used in this section are presentdglaia and Wang [5]. Choose an
edge € of the hexagonal system and draw a straight lmeugh the center of,

orthogonal one. This line will intersect the perimeter in two epoints P, and P,. The
straight line segmen®C whose end points ard] and P, is the elementary cut,

intersecting the edge. A fragment S in hexagonal chain is just maximal linear chain
which include the hexagonals in start and end aesti Let|'(S) be the length of

fragment which denotes the number of hexagonasidntained. LetHr? be a hexagonal
chain with n hexagonals and consist of fragment sequeBceS,, ---, S, (m=1).
Denotel'(S) =1,(i =1,---,m). Then, we verify that, +1, +---+1_=n+m-1 since
each two adjacent fragment have one common hexhgborthe K -th fragment of
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hexagonal chain, the cut of this fragment is thenhich intersects with, +1 parallel

Linear hexagonal chain Zig-zag hexagonal chain

Figure 3: The structure ofL? and Z°

edges of hexagonals in this fragment. A fragmetiedehorizontal fragment if its cut
parallels to the horizontal direction, otherwisdlezh inclined fragment. Unilateral
hexagonal chain is a special class of hexagonah chech that the cut for each inclined
fragment at the same angle with a horizontal divactAs an example, Figure 4 shows a

structure of unilateral hexagonal chain. Cleailyear hexagonal chairh_?1 is a unilateral

hexagonal chain with one fragment, and Zig-zagusikateral hexagonal chain with—1
fragments.

Figure4. I-type cut and IlI-type cut of unilateral hexagoohhin

The cuts in Hf are divided into two types: I-type and ll-typeddeigure 4). A

edge is called I-type if it intersects with I-typet. Also, a edge is called Il-type if it
intersects with ll-type cut. In terms of intermediaesult of Gao and Wang [5], we sum up
the following facts.

* Ifedgee=uv is I-type in j-th square ofk-th fragment (i.e.,€ is edge which is
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passed by dotted line in Figure 4), then

2 +1, if k=1
n(u) =<2 +1, if k=m
k-1
43(I -k+1)+2, +1, if 2<sk<m-1,
i=1
and

4y (I, -m+1)+2,+1, if k=1
i=2

m-1
nv) =<4> (I, -m+1)+2, +1, if k=m
<

m
4% (Ii-m+k)+2, +1, if 2sk<sm-1
i=k+1
* Ifedgee=uv is ll-type in j-th square ofk -th fragment (i.e.,€ is edge which is
passed by real line in Figure 4), then

4j-1, if k=1
nu)=44 -4j+3, if k=m
k-1
4y (I, -k+1)+4j-1, if 2sksm-1,
i=1
and

43, -4j+3, if k=1
i=1

m-1
nv) =44 (I, -k+1)+4j-1, if k=m
i=1

431, -4j+3, if 2<k<sm-1
i=k

Using the definition of second geometric-arithmétidex and Co-PI index, we now show
the computational formulas for unilateral hexagatelin.

Theorem 4. Let H? bea unilateral hexagonal chain consisted of m fragment S, S,,

-, §,(m=1),and I'(S) =I,(i =1,---,m) bethelength of each fragment. Then, we
have

li-l\/mj ~1)@EQ), -m+1)-4j +3)
GA,(H?) = 4Y,

2n+1
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o \/[4(Zklli' -k +1)-1][4( Zmzli' -m+Kk) +3]

m_llk_l\/[4(ZI —k+1)+4] 1][4(ZI -m+k)-4j+3]
+4KZ;,Z; - 2n+1
i J[4(le—m+1)+4j —1](4,, —4j+3)
+4 =1
= 2n+1
- \/[4(%;—k+1)+2|'k+1][4(Zm:|;—m+k)+2|'k+1]
Co—PlV(Hf)=4§|4Zm:|i'—4m—8j+8| +2Z|4Z| -8k - 42| +4m|
R = S
+4mz_1|2|42| -8k +8j - 4Z| +4m| +4Z|4mz_1| ~4m+8j -4l |

k=2j=2 i=1 j=2 i=1
m-1

+Z(I +1)|4ZI -8k — 4ZI +4m+ 4|.

i=k+1

Corollary 5. Let L?] be the linear chain with n hexagonals. Then, we have

. 4j-1)(4n-4j+3 4j-1)(4n-4j+3
GA(LS) = 42«1 ;(HJ ) ZJ(J ;(MJ )

n-1
Co-PI (L% :42 |4n-8j +4|+4Z |[4n-8j + 4.

j=1 j=2
Proof: By the definition of linear chain, we check that=1, I, =n, I, =---=1_ =0
In terms of Theorem 4, we get the result soon. O

Corollary 6. Let Z6 be the Zig-zag chain with n hexagonals. Then, we have

GA,(Z°) = 8\/2 El\/(4k+3)(4m 4k+3)+m23\/(4k+1)(4m 4K +5)

2m+3 2m+3
m-1

Co-PI (Z2%)= 32m+22|8k 4m|+23|8k 4m- 4|.
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Proof: Using the definition of Zig-zag chain, we verithat m=n-1 and
l, =1, =---=1_=2.Inview of Theorem 4, the corollary is immedigtgielded. O

4. Indices of V-Phenylenic nanotubes and nanotori
The notations in this section follow from Diudea5]1 The molecular structures
V-Phenylenic nanotube and V-Phenylenic nanotoresdanoted byWVPHX[m,n] and

VPHY[m,n] , respectively. The structures &fPHX[m,n] and VPHY[m,n] are
described in Figure 5 an Figure 6, respectively.

&& ﬂi

Figure5: The structure of V-phenylenic nanotube

Let S=min{n,m} and S =3+9+15+-.-+(6i—3). Based on the tricks
described in Gao and Wang [5], we show the theesgmtations ofGA, (VPHX[m, n])
and Co-PI (VPHX[m,n]) in Theorem 7, and the expressions@#, (VPHY[m, n])
and Co-PI (VPHY[m,n]) are determined in Theorem 8.

a,, if mzn

Theorem 7. GA, (VPHX[m, n]) :{a it m=n

a,, ifmzn

Co-PI (VPHX[m,n]) = {a if m=n

Here, a,(1<i <4) are given as follows:
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ni 2,/(6mi)(6mn —6mi)(2m) s i 2,/(3mi)(6mn —3mi)(2n)
L = (6mi)+(6mn—-6mi)(2m) 4= (3mi) +(6mn—3mi)(2n)
. 2|m—n|—1 2¢(2,3)(sﬂ +(63-3)i)(6mn - S, - (63 -3)i)
S (2B)(S, +(68-3)i)+(6mn-S, - (65-3)i)

Figure6: The structure of V-phenylenic nanotorus

_ i 2,/(6mi)(6mn —6mi)(2m) .\ i 2,/(3mi)(6mn —3mi)(2n)
2 = (6mi)+(6mn-6mi)(2m) 4= (3mi) +(6mn—3mi)(2n)
.\ 2,/4n(S, +6n-3)(6mn-S, —(6n-3))
4n(S, +6n-3)+(6mn-S - (6n-3))

a, = ZE [(6Bmi) — (6mn —6mi)(2m) | +§ [ (Bmi) = (6mn—3mi)(2n) |
|m-n|-1

+2 Z [(2B)(S; +(68-3)i) —(6mMn—=S,; - (65 -3)i)|.

a, = an_l |(6mi) — (6rn — 6mi ) (2m) | +"z_l |(3mi) - (6mn —3mi)(2n) |

i=1 i=1

+14n(S, +6n-3)—(6mn-S, - (6n-3))|.
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Theorem 8.
a,, if m=n.
Co-PI,(VPHY[m,n]) = {07' !f m#n
Y ag, if m=n.

Here, a,(5<i <8) are described as follows:
- an-l 2,/ (§mi )(6mn - 6mi )m) | an-l 2, (3-mi )(6mn - 3mi)(2n)
= (6mi) + (6mn—6mi)(2m) = (3mi) +(6mn—3mi)(2n)
12, /(2B)(S;, + (638 -3)i)(6mMn - S, — (63 -3)i)
+4 . —.
i (2B)(S; + (66 -3)i) +(6m S, - (65 -3)i)
- an-l 2\/(§mi)(6mn - 6mi)(2m) .\ an-l 2\/(§mi)(6mn —3mi)(2n)
= (6mi) + (6mn—6mi)(2m) = (3mi) + (6mn—3mi)(2n)
.\ 2,/4n(S, +6n-3)(6mn-S, —(6n-3))
4n(S, +6n-3)+(6mn-S, —(6n—-3))

a, = ZE | (6Bmi) — (6mn—6mi)(2m) | +2§ [(3mi) — (6mn—3mi)(2n) |
Im-n|-1

+4 Z [(2B)(S; +(63-3)i)—(6mn-S,; — (65 -3)i)|.

ag = 2§ [(Bmi) — (6mn—6mi)(2m) | +2§ [(Bmi) — (6mn—3mi)(2n) |
) +|4n(Sn+6n—3)—(tl3_mn—Sn—(6n—3))|.

5. Indices of Hexagonal triangle graph
In this section, we determine the second geomatiibmetic index and Co-PI index of

hexagonal triangle grapfii (n). This molecular graph is a class of nanotube, thed
structure of T(n) can refer to Fig 7 which is related to the atostizticture of bipod
shaped nanocrystals.

Theorem 9. Let T(n) be hexagonal triangle graph with n rows. Then, weyield
2(/(i% +2i)(n +4n+1-i2 - 2i)
n°+4n+1

GA(T()=3> (i+1)

I<isn

Co-PI,(T(n)=3> (i +1)|n* +4n+1-2i* - 4i |.

I<isn

110



On Second Geometric-Arithmetic Index and Co-Eekof Special Chemical Molecular
Structures

[,

Figure7: The structure of hexagonal triangle graph.

Proof: By observing the structure of hexagonal triangi@py, we find that there arie
hexagons in the -th row, wherel<i <n. Since T(n) has an equilateral figure, we get

| E(T(n)) |:g(n2+3n) and |V(T(n))|[=n®+4n+1. Furthermore,i -th row has

exactly i +1 vertical edges of hexagonal triangle graph. Eet uv be an edge iri -th
row, we deduce

n(u) =i*+2i,
and
n(v) =n’+4n+1-i*-2i.
Thus, by virtue of the definition, we get

GA(T(M) =3 (i +1) 2NNV

i5en n(u) +n(v)
.2 ] 2 _.2 _ .
=32(i 1) 2\/(| +2|)(21 +4n+1-i°-2i) ’
1<i<n n“+4n+1
and
Co-PI,(T(n) =3> (i +1)[n(u)—n(v)| =3 (i +1)|n* +4n+1-2i* - 4i |,
I<i<n I<i<n
Thus, the desired results are obtained. |

6. General Second geometric-arithmetic index and general Co-Pl index
For the requirement of chemical applications, tidides should be expended into more
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generalized forms. For example, Li and Gutman [é8lended the ordinary Randic
connectivity index to general Randic connectivitgléx, and Zhou and Trinajstic [17]
raised general sum-connectivity index which exterttie sum-connectivity index.

In this section, we expend the definition of secgadmetric-arithmetic index and
Co-Pl index. The general second geometric-arittonetiex is defined as:

GAL(G) = Z (21/n(u)n(v))y
wiE@) NU) +n(v)
where y is a real number. Also, we introduce general Coééx as
Co-PIJ(G)= 3 [n(u)-n(v)l,
WOE(G)
where y is a real number. By the results in Su et al.],[d4 infer
Co-PI/(G)= > [TW)-TMV)/|.
uwlE(G)
Evidently, GA, and Co—PI} are the second geometric-arithmetic index and Co-P

index, respectively.
By virtue of the results determined in former smusi, we get the following
extended conclusions.

Theorem 10. Let H beaunilateral polyomino chain consistedof m fragment S, S,
, o, S,(m=1),and I(S)=1.(i=1,--,m) bethelength of each fragment. Then, for
any real number y, weyield

2\/J(ili ~m-j+2)
GAY(H) =2) (1 y

n+1

. 2\/(m2_1|i—m+1+1)(lm—j+1)
P)yauE y

n+1
2\/@ —k+ J+1), ~(m-K)= | +1)
+2ZZ( i=1 i=k

k=2j=2 n+1

)V

) \/(Zi ~ 2K+, +3)2D 1, ~2(m—K) +1, +1)
#3 (0, + 1) ).

n+1

-1
Co-PIY(H))=2> |2>], -2m+4-4j |

=1 =1
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Im m-1
+2) 12> -2m+4j -2 |
j=2 i=1

m-1k 1 k1

+2) 32>, — 4k +4] —22} +2m|”

k=2j=2 =l

m k- m
+>°(1, +1)|2f‘|i —4k+2-2>"I; +2m}’.
k=1 i=1

i=k+1

Corollary 11. Let L‘r‘1 bethelinear chainwith n squares. Then, for any real number y,
we deduce

oa(L) =25 ATy e,

n-1
Co-Pl/(L})=2> |2n+2-4]j .

j=1
Corollary 12. Let Z: bethe Zig-zag chain with n sguares. Then, for any real number
y, weinfer

),

oA (z0) =2BMm Ly o 2L, S kDM~ 2hcr )

m
Co-PI/(Z))=4(2m)" +> 3|4k -2m=-2[" .
k=1
Theorem 13. Let H? bea unilateral hexagonal chain consisted of m fragment §, S,
, +++, §,(m=1),and I'(S) =1.(i =1,---,m) bethelength of each fragment. Then, for
any real number ), we obtain

\/(41 ~DAQ), -m+1)-4] +3]

GAY(H?) = 43 ( 2 Y

- \/[4(Zk:|; —k+1)—1][4(zm:|; —m+k) +3]
+2§( i=1 2n+]|-:k+1 )y

.'k-ljm(fl; ~k+1)+4] 1[4 -mek) -4 +3]
a0 T )y

k=2 j=2
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’ \/[4&?'{ —m+1)+4j-1](4,-4j+3)
+4JZ:;( ) 2n+1 )y
- \/[4(%{ —k+1)+2, +1][4(Zm:li' -m+Kk)+2l, +1]
+é(|k +1)(—1= il ).

-1

Co-PI/(H?) = 4Z|4Z| -4m-8j + 8| +2Z|4Z| -8k - 4Z| +4mY}’

j=1 i=1 i=k+1
m_|
+4§Z|4Z| -8k +8j - 4Z| +4m|’ +4Z|4Z|;—4m+8j—4|;1|y
k=2j=2 =1 =2 =1

+Z(| +1)|4Z| -8k - 4Z| +am+ 4|

=k+1

Corollary 14. Let Lﬁ bethelinear chainwith n hexagonals. Then, for any real number
y, we have

~1(@n-4j+3),, 42(«41 -1)(4n-4j+3),,
2n+1 2n+1

),

Co-PI(L?) :42 |4n—8j + 4| +4Z |[4n—8j + 4" .

=1 j=2

Corollary 15. Let er’ be the Zig-zag chain with n hexagonals. Then, for any real

number y, we get GAzy(Zr?) = 8(@ Z(\/(‘]-k +32)r(;lT3 4k +3)

)",

\/(4k +1)(4m-4k +5),
23( 2m+3 Y

m-1
Co-PI1/(Z?) = 8|4m| +2Z |8k —4m|” +> 3|8k —4m~- 4.
k=1 k=2

Theorem 16. For any real number y, weinfer

GAY (VPHX[m, n]) :{

a,, ifm#n

0o 1fm=n.
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a if m#n
Co-PI/(VPHX[m,n]) ={ **
vV [m.n]) {a if m=n.

121
Here, a,(9<i<12) is given as follows:

2,/(6mi)(6mn—6mi)(2m) 2,/(3mi)(6mn-3mi)(2n), ,
Z( )+ 2(
(6mi) + (6mn— 6m|)(2m) (3mi) +(6mn —3mi)(2n)

+2'm‘”'12\/(2,3)(5/;+(6,3 3)i)(6mn—S; - (64 - 3)'))y

(2B)(Sz +(6B-3)i) +(6mMn—S,; - (635 -3)i) '
Z (2\/(6m|)(6mn 6mi)(2m) Vs Z (2\/(3m|)(6mn 3mi)(2n),,
(6mi) + (6mn— 6m|)(2m) (3mi) + (6mn—3mi)(2n)

(2\/4n(31+6n 3)(6mn-S, - (6n— 3)))
4an(S, +6n- 3)+(6mn S, —(6n-3))

a, = 2§ [(6mi) = (6mn —6mi)(2m) [ +Z [(3mi) = (6mn—3mi)(2n) [

Im-n|]-1

+2 Z |28)(S; + (68 -3)i) —(6mn—-S,; - (65-3)i)|" .

a, = 2§ [(6mi) — (6mn—6mi)(2m) | +n§‘ |(3mi) — (6Bmn—3mi)(2n) |

i=1 i=1

+14n(S, +6n-3)-(6mM-S, - (6n—-3))|".

Theorem 17. For any real number y, we deduce
a,, ifm#zn

GA/(VPHY[m,n]) = {a

4 I m=n.

a., if m#zn
Co—PIVV(VPHY[m,n]):{ e

de if m=n.

Here, a,(13<i <16) is given as follows:
Z (2\/ (6mi)(6mn - 6m|)(2m) Z ( 2y/(3mi)(6mn—3mi)(2n) y
(6mi) + (6mn — 6m|)(2m) (3mi) + (6mn —3mi)(2n)
. 4'm‘”'12J(2ﬁ)(Sﬂ+(6/J’ 3)i)(6mn—-S, -(65-3)i) ,
(2B)(S; +(64-3)i) + (6 —-S, - (65 -3)i)

2\/(6m|)(6mn 6m|)(2m) 2,/(3mi)(6mn-3mi)(2n), ,
= Z( 2(
(6mi) + (6mn - 6m|)(2m) (3mi) +(6mn —3mi)(2n)
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.\ 2,/4n(S, +6n-3)(6mn-S, - (6n—-3))
4n(S, +6n-3)+(6mn-S, - (6n—23))

).

a = ZE [ (6mi) = (6mn —6mi)(2m) [ +2§ [(3mi) = (6mn—3mi)(2n) |
Im-n|-1

+4 Z |(2B)(S; + (68 -3)i) - (6mn—-S,; —(65-3)i) .
dy = Zi [(6mi) — (6mn—6mi)(2m) |’ +2§ [(3mi) — (6mn —3mi)(2n) [
_ +|4n(Sn+6n—3)—(6m_n—Sn—(6n—3))|y.

Theorem 18. Let T(n) be hexagonal triangle graph with n rows. Then, for any real
number y, wederive

GAL(T() =33+ U0 2N Han 1= -2

& n°+4n+1
Co-PI/(T(n)=3) (i+1)|n* +4n+1-2i*-4i |V

I<i<n

),

7. Conclusion

In this paper, we report the second geometrictagtit index and Co-PI index of several
special chemical molecular structures, includingateral polyomino chain, unilateral

hexagonal chain, V-Phenylenic nanotube, V-Phengleanotorus and hexagonal triangle
graph. Furthermore, we introduce the general versibsecond geometric-arithmetic
index and Co-Pl index, and obtain correspondingiltesfor these special chemical
molecular structures. The results achieved in aticl@ illustrates the promising

application prospects in biology, pharmacy and dbahengineering.
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