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Abstract. Let G be a simple graph with n vertices and m edges. For a vertex vi its 
eccentricity, ei is the largest distance from vi to any other vertices of G. In this paper we 
introduce the concept of eccentricity sum matrix ES(G) and eccentricity sum energy 
EES(G) of a simple connected graph G and obtain bounds for eigenvalues of ES(G) and 
bounds for the eccentricity sum energy EES(G) of a graph G. 
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1. Introduction 
Let G be a simple graph with n vertices and m edges. Let the vertices of G be labeled as 
v1, v2, ..., vn. The degree of a vertex v in a graph G, denoted by d(v) is the number of 
edges incident to v. The distance between the vertices vi and vj is the length of the shortest 
path joining vi and vj in G. For a vertex vi its eccentricity, ei is the largest distance from vi 
to any other vertices of G. The adjacency matrix A(G) of a graph G is a square matrix of 
order n whose (i, j)-entry is equal to unity if the vertex vi is adjacent to vj, and is equal to 
zero otherwise. The eigenvalues of adjacency matrix A(G) are denoted by λ1, λ2, ..., λn 
and since they are real it can be ordered as  λ1 ≥ λ2 ≥ · · · ≥ λn. [2]  
The energy of a graph G is defined as [1], 
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This definition of energy was motivated by large number of results for the 
Huckel molecular orbital total π-electron energy [1]. 
Motivated by previous researches on Degree Sum Energy of a Graph [3, 4], in this paper 
we introduce eccentricity sum matrix and eccentricity sum energy associated with a graph 
and study its bounds. For more results on degree sum energy see [8, 9] 
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 Let G be a simple graph with n vertices v1, v2, ..., vn and let ei = ecc(vi) be the 
eccentricity of vi, i =1, 2, … n. Then ES(G) = [aij] is called the eccentricity sum matrix of 
a graph G where 
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The characteristic polynomial of the eccentricity sum matrix is defined as, 
 φ(G: ξ) = det(ξI − ES(G)). 
where I is the identity matrix of order n . 
 Since ES(G) is real symmetric matrix, the roots of  φ(G: ξ) = 0 are real. These 
roots can be ordered as ξ1 ≥ ξ2 ≥ · · · ≥ ξn, where ξ1 is largest and ξn is smallest 
eigenvalues. If G has ξ1, ξ2, … , ξn distinct eigenvalues with respective multiplicities k1, 
k2, … , kn then the spectrum can be written as, 
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The eccentricity sum energy of a graph G is defined as, 
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Example 1. 

                                                               ES(G)=
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φ(G: ξ) = (ξ + 4)2 (ξ + 6) (ξ 2 – 14ξ – 102). 
  ξ1 = 19.2882, ξ2 = – 4,  ξ3 = – 4, ξ4 = – 5.2882,  ξ5 = – 6. 
Therefore, EES(G) = 38.5764 
 
Lemma 1.1. [3] The Cauchy – Schwarz inequality states that if (a1, a2,…, ap) and (b1, 
b2,…, bp) are real p – vectors then  
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Lemma 1.2. [7] Let a1, a2, … , an be non negative numbers. Then 

   Figure 1:
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2. Bounds for the largest eigenvalue of eccentricity sum matrix 
Since trace(ES(G)) = 0, the eigenvalues of ES(G) satisfies the relations 
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If r is the radius and D is the diameter of a graph, then r  ≤  ei  ≤  D. 
Hence,  2n(n – 1)r2  ≤  M  ≤  2n(n – 1)d2. Equality holds if r = ei = D. 
 
Theorem 2.1.  If G is a connected graph with ecc(vi)= ei = e, i =1, 2, …, n, then G has 
only one positive eigenvalue equal to 2(n – 1)e. 
Proof: Let G be a simple connected graph with n vertices. Let ecc(vi)= ei = e, i =1, 2, …, 
n. 

Then,       
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Then the characteristic polynomial of the eccentricity sum matrix is,  
 φ(G: ξ) = det(ξI − ES(G)) =  det(ξI – 2e (A(Kn)) = 0. Where A(Kn) is adjacency matrix of 
a complete graph Kn. 
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= [ξ – 2(n – 1)e] (ξ + 2e )n – 1  

Therefore [ξ – 2(n – 1)e] (ξ + 2e )n – 1 = 0. 
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Hence G has only one positive eigenvalue equal to 2(n – 1)e.                              � 
 

Corollary 2.2.  If G = Kn is a complete graph, then  
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Corollary 2.3.  If G = Kp,q is a complete bipartite graph, then for p, q ≠ 1 
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Corollary 2.4.  If G = Cn is a cycle, then  
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Corollary 2.5. If G is a star graph Sn = K1,n , then for n ≥ 2 

.
111

442244224
))((

22















−
++−−+++−−=

n

nnnnnn
SESspect n

 

 
Theorem 2.6.  If G is any graph with n vertices, then 
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Equality holds if ecc(vi)= ei = e, i =1, 2, …, n. 
Proof: Let ai = 1 and bi = ξi for i = 2, 3, …, n in Eqn. (3).  
Therefore 
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From Eqn. (4) and (5) 
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For equality, let ecc(vi)= ei = e, i =1, 2, …, n. 
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From Theorem 2.1, ξ1 = 2(n – 1)e  is the only one positive eigenvalue. Hence it is largest. 
Therefore equality holds.                                                                                                    � 
 
3. Bounds for the eccentricity sum energy of a graph 
Theorem 3.1. If G is any graph with n vertices, then 
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Proof: Put ai = 1 and bi = iξ  in Eq. (3), we get 
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[EES(G)]2  ≤ n (2M)   ⇒   EES(G)  ≤ nM2 .                                (9) 

Now,           [EES(G)]2 = 
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Combining Eqs. (9) and (10) we get the result (8).                                                        � 
 
Theorem 3.2. Let G be any graph with n vertices and let ∆ be the absolute value of the 
determinant of the eccentricity sum matrix ES(G). Then 
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Proof: Lower bound.  
By the definition of the eccentricity sum energy  and by Eq. (5)                   
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Since for nonnegative numbers the arithmetic mean is not smaller than the geometric 
mean, 
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Combining Eqns. (12) and (13) we get, 

[EES(G)]2 ≥  nnnM 2)1(2 ∆−+    

i.e.      EES(G) ≥  nnnM 2)1(2 ∆−+                                                 (14) 

 
Upper bound.  

Put iia ξ=  , i = 1, 2, … ,n. Then from Lemma (1.2) we obtain, 
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Combining Equations (14) and (15) we obtain the result (11)                                      □ 

Theorem 3.3. If G is a connected graph with ecc(vi)= ei = e , i =1, 2, …, n, then EES(G)= 
4(n – 1)e. 
Proof: If G is a connected graph with ecc(vi)= ei = e, i =1, 2, …, n, then from Theorem 
2.1, G has only one positive eigenvalue equal to ξ1 = 2(n – 1)e. Since trace(ES(G)) = 0, 
sum of the remaining eigenvalues is equal to -2(n – 1)e.  
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Eccentricity sum energy of some graphs 

Graph G ξ1 Eccentricity Sum Energy = EES(G) 

Kn 2(n – 1) 4(n – 1) 

Km,n 4(n – 1) 8(n – 1) 

Cn 
n(n – 1), if n is even 2n(n – 1), if n is even 

(n – 1)2, if n is odd 2(n – 1)2, if n is odd 

 
4. Conclusión 
For a connected graph G, we have defined eccentricity sum matrix ES(G) and eccentricity 
sum energy EES(G). Shown spectrum of some standard graphs. Also obtained bounds for 
eigenvalues of ES(G) and bounds for the eccentricity sum energy EES(G) of a graph G. 
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