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1. Introduction
The history of Diophantine Equations dates bachrtiquity. There are endless varieties
of Diophantine Equations, and there is nho genethod of solution. It is often asked
how big are the gaps between two consecutive prifflesse gaps get larger and larger
since the density of primes approaches zero inrdaose with the prime number
theorem. Many articles have been written on thisjesu, and a very small fraction of
them in [4, 5] is given here.

In this article, we wish to solve the eqoati

p+q =7 (1)

in positive integers, and in particular wh@ng are odd primes. The literature contains a
very large number of articles with various equatiimvolving primes and powers of all
kinds. Among them are for example [7, 8, 9] whielate to (1).

Let k denote the gap betwegm and g in (1), i.e.,p + k =qg. Many examples
correspond to (1) in whichk > 2 and x> 1, such as:

3+13=# F+7=4# 3IF+73=10, F+19=10, F+13 =16
Therefore, in Section 2 we shall restrict oureslto equation (1) whern=y=1. The
valuesk =2, 4, 6, 8, and some valuks> 8 are investigated. Solutions, and also cases
where (1) has no solutions are demonstratedSdntion 3, wherk > 8 andx> 1, a
certain type of solutions to (1) is introduced.

2. Thevalues k =2, 4, 6, 8, and some general casesof k
We consider the valu& =2 in Lemma 2.1, the valuds= 4, 8 in Lemma 2.2, and the
value k=6 in Lemma 2.3. Wherk > 8, some general cases are established in Lemma
2.2 and Corollary 2.1.

In (1) suppose thap < q are odd primesk =2, andx=y=1.

All odd integers are of the fornrN6& 1, 6N + 3, &N+ 5 whereN> 0. When N =0,
we have in (1):p=3, q=5, but 8 Z. ThereforeN > 0. For all values oN > 0,
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the pairs withk=2 suchas %+ 1, &N+ 3) and (Bl + 3, &N + 5) are impossible
since ® + 3 is not prime. The only possible pairs ofs with k = 2 are then of the
form (BN +5,6(N+ 1) + 1), orsimply (§+5, &N+ 7).

In Lemma 2.1, we establish the valuesNpBN + 5, &N + 7, z, which may satisfy
(1) whenp, g are primes.

Lemma 2.1. Supposethak=y=1 in (1), andN, R are positive integers. If

N6+ 5) + (6N + 7) =7, 2
then
(i) N=3R*-1,
(ii) N+5=18R-1, N+7=1F+1,
(i) z=6R

Proof: From (2) it follows that

(BN+5)+ (N +7)= 12N+ 1) =7
implying that Z is even, thusz is even, and also a multiple of 3. Henass 6R which
proves (iii). Then, 1 + 1) = 36 or N+ 1 = F, and N = 3R - 1 yields (j).
SubstitutingN = 3R%-1 into &N +5 and 6l + 7 results in

6N +5=1& -1, Bl+7=18+1
asin (ii).
This completes our proof.

Remark 2.1. ltis noted, that clearly Lemma 2.1 can not gotathat Bl +5, &N+ 7
are both primes. However, it does guarantee thag¢émh value ofR whenR = 1, 2,
..., the right-hand side of (2) is indeed alwaysguare. This is showin Table 1.

For each fixed valudl, the two integers M+ 5, 6N + 7 may assume one of four
possibilities, namely: the possibility of two primygwo composites, and composite/prime
being interchanged. This is demonstrated in tHevidhg Table 1 wherR= 2, 3, 4, 5.

Table 1.
R|18R°-1=¢N+5 18R°+1=¢EN+7 z 6R=
1117 prin 19 prime 36 6
2|71 prin 73 prin 144 12
3|161=""23 composil 163 prin 324 18
4 | 287 =741  composi 289 =17 composits 57¢€ 24
5] 449 prin 451 =141 composit 90C 30

We now conclude the case= 2 in the following Remark 2.2.

Remark 2.2. Ifin (1) x=y =1, andp, q are substituted respectively b8 5 and
6N + 7, then by Lemma 2.1 it follows that for eactiue R> 1, (1) has one and only
one solution in positive integers namely:

Paxy2=(1R-1,18+1,1,1, K.
In particular, thisis true whemp=18R*—1, q= 18+ 1, p, q are primes and|=p
+ 2 (twin primes). Clearly, if the twin primesngecture is true, i.e., there exist infinitely
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many primesp and p + 2, then for each such prime= 18 - 1, (1) has a unique
solution.

Lemma 2.2. Suppose thaik=y=1in (1), and p< q are odd primes. Ifj=p+ 2"
whenn> 2 is an integer, then for each such valpequation (1) has reolutions.
Proof: By (1) and our supposition, we have

p+q=p+(p+2)=2p+2") =7 3)(
implying that z is even, and? is a multiple of 4. But, in (3) B¢ 2™ is a multiple of
2, whereas?Z is a multiple of 4. Therefore, whek = 2' and n>2, (3) is

impossible, and hence equation (1) has no salkitio
An extension of Lemma 2.2 for valuesof 8 is provided in the following Corollary
2.1.

Corollary 2.1. Suppose thak=y=1in (1), andp <q are odd primes. Leh = 2, M
> 1 be integers, angcd (p, 2M + 1) = 1.If k= (2M + 1)2", then equation (1) has no
solutions.
Proof: By (1) and our supposition, we get

p+q=p+ @+ @M+ 1)) =2p+ M+ 1)2H =7 4)
and thereforez is even, andZ is a multiple of 4ln (4), 20 + (M + 1)2*Y) is a
multiple of 2, wherea<? is a multiple of 4. It then follows that (4)ifapossible.

Thus, equation (1) has no solutions.

Remark 2.3. From Lemma 2.2 it follows that whek=4 (= 2), k=8 (= 3), and
also larger values ofk such ask > 16 ( > 4), equation (1) has no solutions.
Moreover, from Corollary 2.1 it follows that whek = (2V + 1)2" > 12, more no-
solutions cases of equation (1) exist.

It is noted that every odd integer belongscdly to one member of the set

{10A+1, 1A+3, 1A+5 1&A+7, 1R+ 9}

We shall apply this set in the following rima 2.3, in which we consider the case

k=6.

Lemma 2.3. Suppose thak =y =1 in (1), andp <q are odd primes such that p + 6.
(@ If pisoftheform18+1, 1A+ 3, 1A+ 9, then (1) has no solutions.

(b) If p isoftheform 18 +5, then (1) has exactly one solution.

() If p isoftheform 18+ 7 andp< 10, then (1) has exactly six solutions.
Proof: (a) Supposep = 10A + 1 whenA> 1.

Then p+6=1RA+7, andp+ (p+6)=p+6=20+8=4(RA+2)=7
implying that %\ + 2 must be a square in order to satisfy (1t, Bll values of A+ 2
end either in the digit 2 or in the digit 7. Hen5 + 2 is never a square. Thug,=
10A+ 1 whenA>1 does not yield solutions of (1).

Supposep = 10A + 3whenA> 0.

WhenA =0, thenp=3, butp+ 6 =9 is not prime. Therefore, 1&>1. Then
p+6=10+9, andp+ (p+6) =2+ 6 =20+ 12 = 4(RA + 3) = Zimplying that B
+ 3 must be a square in order to satisfy (1). &mltvalues of A + 3 end either in the
digit 3 or in the digit 8, it follows that%+ 3 is never a square. Hence, equation (1) has
no solutions wherp = 10A + 3 andA>0.
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Supposep=10A + 9 when A> 1.

Since p+6 = (1A +9)+6 =10+ 15, hence, for all valued>1 p+ 6 is not
prime, and (1) has no solutions.

This concludes the proof ¢&).

(b) Supposep = 1A + 5 whenA> 0.

WhenA=0, thenp=5 andp+ 6 =11. Hence, in (1p+ (p+ 6) = 16 =Z and z
=4.Thus

(p,axy,2=(5,11,1,1,4)

is a solution of (1).

For all valuesA>1, 10A + 5 is not prime, and (1) has no solutions.

Thus, the above solution is the only solutsd (1) as asserted, and completes (kmart
(c) Supposep=10A+7 whenA>0.

When A=0, thenp=7 andp+ 6 =13. Hence,in (1Ip+(P+6)=7+13=20
+ Z. Therefore,A # 0 andA>1. For all values of, it follows from (1) that

p+(P+6)=(1A+7)+(1A+13)=45A+1)=7
implying that (1) exists only ifA + 1 = 5<* whereK is a positive integer. Sinde= 5?
—1, it follows that
10A+7 = 5K°-3 and 18+ 13 = 56&° + 3.

Furthermore, since A0+ 7 and 18 + 13 are both primes, hend€ is not a
multiple of 3. ThereforeK = 3T+ 1 orK = 3T+ 2 whereT > 0 is an integer.

We shall now investigate these two sgmlities of K for all values of 18+ 7
and 1A\ + 13 upto 10

Let K= 3T+ 1. Then

W+ 7 = 5K*—3 =450%+ 3007 + 47. (5)

Formula (5) implies that there are fifteen possishlues of T, 0<T< 14 up to 18
The valuesT =0, 7, 8 vyield three solutions of (1) namely:
(p,a, %Y, 2 =(47, 53, 1, 1, 10), (24197, 24203, 1, 1, 228)247, 31253, 1, 1, 250).

Let K= 3T+ 2. Then

W+ 7 = 5K*—3 = 450°+ 6007 + 197. (6)

From (6), it follows that there are fifteen pdssivalues of T, 0< T <14 up to 18
and we obtain forT = 3, 10, 13 the following three solutions of): (1
(p, 9, X%, Y, 2 = (6047, 6053,1,1,110), (51197, 51203,1,1,3B)047, 84053,1,1,410).

Whenp=10A+7 andqg=10A + 13 are both primes, the six solutions of ()
to 10 are established, and péa}is proved.

The proof of the lemma is complete.

Remark 2.4. In Lemma 2.3, the solutions of (1) have besstricted to all values of
p where p <S=10. Evidently, formulae (5) and (6) are valid fdinalues of T, and
enable us to find all the solutions of (1) umty value of S where S is as large as we
wish.

3. On p‘+q = Z and Sophie Germain primes

The problem concerning the infinitude of pairs dimes having the formR, 2P + 1) has
been of great interest to the author [1, 2] ana ¥ast number of other authors.
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In this section, we establish the connectietween equation (1) and the Sophie
Germain primes.

Sophie Germain (1776 — 1831) was a Frendlg taathematician, physicist and
philosopher. Among other fields, she was also kmowNumber Theory for her work on
Fermat's Last Theorem, and for the Sophie Germaimegmumbers.

A Sophie Germain prime is a prime numliersuch that2P+1 is also prime. The
prime P is also called a "Sophie Germain number", whe@fasl is called a "safe
prime". The first few Sophie Germain primes &e 2, 3, 5, 11, 23, 29,...

Numerous articles have been written on theghi& Germain primes, as well as on the
Twin primes. It is conjectured that there arerdmite number of: Twin prime pairp(p
+ 2), and also of Sophie Germain pdifs 2P + 1). These two conjectures are related,
and it is extremely difficult to prove them.

From [3] we cite the conjecture on Soghérmain primes.

Conjecture. The number of Sophie Germain primeswith P <N is approximately
N
CZJ' dx N 2C2N2
>logxlog2x  (logN)
where C, = 0.66016 ... is the twin prime constant.
From [6] we also cite: As of 29.2.2016, thegest known proven Sophie Germain
prime P denoted here by, is
PL = 26181634024172'°%_ 1
having 388342 decimal digits.
If indeed, the Sophi&ermain conjecture is true, i.e., there existnitély many

pairs (P, 2P + 1), then there exist infinitely many solutions ofuatjion (1). Under this
assumption, the infinite solutions of (1) areab#ished in Lemma 3.1.

Lemma 3.1. Let (p, g be any Sophie Germain pdP, 2P + 1). If there exist
infinitely many Sophie Germain pairs, then equatjth has infinitely many solutions
each of which is unique.
Proof: In p*+q' = 7, set
p=P, x=2, q=2P+1, y=1
We then obtain
Z=p+q'=P*+(2P+1)'=(P+1y
wherez = P+ 1.
The infinite solutions of (1) of the form
P axy,22=FP2P+1,2,1,P+1)
correspond to each Sophie Germain priRe(evenP = 2), and each such solution is
clearly unique.
This completes our proof.

Remark 3.1. If P_ is still the largest Sophie Germain prime, thenoadingly the
solution of (1)

(P axy,2 = P, 2PL+1,2,1,P +1)
contains the largest values qf, g, and z
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Remark 3.2. Throughout this paper, our main objective has Wawting solutions of
(1) in the case of odd primgs<q. The proof of Lemma 3.1 nevertheless sugdbsts
following generalized solution of (1) when thetréction p, q are primes is omitted. In
Lemma 3.1, replacep,(q) by @B, 2B + 1) where B is an integer. Then, clearly
equation (1) has a solution of the forB) 2B+1, 2, 1B + 1) for each value oB where
B>1.

The following question may now be raisecowHnany solutions of the form

Paxy,22=0FP,2P+1,1,1,2

satisfy (1) ? The answer is given in Lemma 3.2.

Lemma 3.2. Supposdp, q) is a Sophie Germain paiP, 2P + 1). If x=y=1, then (1)
has exactly one solution.
Proof: Any solution of (1) of the form
(o l1,12=FP2P+1,1,1,2
22-1_(z-1)(z+))
3
henceP = 1 which is impossible. But 2| 1) yieldsz=4 which impliesP=z+1=5
and2P + 1 =11. Thus, the only solution of (1) is
(p,a,1,1,2=(511,1, 1, 4).
This concludes our proof.
We note that the above solution has alrdeey obtained in Lemma 2.3 foe= 6 in
the casep = 10A + 5 whenA = 0.

impliesthat #+1=2, and P= . If 3|+ 1), thenz=2 and

4. Conclusion

Equation (1) folds in itself some interesting gigss, two of which are brought here.
In Section 1, we have presented five solutionglgfwith y=1 andx=1, 2, 3, 4, 5.
The following Question 1 is now raised:

Question 1. Does (1) have a solution of the form
P, axy,2=0a0qx 1,2 for every valuex=6, 7, 8, ...?
We believe that the answer is affirmative.
Since 3+ 7+ =2 5+59 =2 F+13 =2 5+1019 = 2°,
3°+3853 = 22 we may ask:

Question 2. If a solution of (1) is of the form

(P, A %Y, 2= 0q X 1,\/5) t an even positive integer,
what conditions mustp, g, X satisfy ?
how many solutions exist for any given valti@
We presume that some more interesting qurestioncerning (1) may be raised.
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