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Abstract.Let G  and H  be two simple subgraphs of sjK × . The smallest positive integer 

s  such that any red and blue colouring of sjK ×  has a copy of red G  or a blue H  is 

called the multipartite Ramsey number of G  and H . It is denoted by ),( HGmj . This 

paper presents exact values for ),( 2 GBmj  where G  is a isolate vertex free graph up to 

four vertices.  
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1. Introduction 
The exact determination of the classical diagonal Ramsey number of ),( ssr  (see [6] for a 

survey) has not made any headway beyond (5,5)r  (as of now known to be between 43 

and 49) for a few decades. Researches are now trying to approach this problem by using 
new techniques like fuzzy logic, genetic algorithms to improve the lower bound (see [7], 
[8] and [9]). One of the main branches of classical Ramsey numbers, introduced by 
Burger and Vuuren (see [1]) was multipartite Ramsey numbers. It is defined considering 

sjK × , which consist of j  partite sets, each of size s . }{1,2,...,|{=)( jmvKV mnsj ∈×  

and }}{1,2,...,sn∈  denotes the vertex set of sjK × . The set of vertices in the thm  partite 

set is denoted by }}{1,2,...,|{ snvmn ∈ . The smallest s  value for which any two 

colouring (say red and blue) of sjK × , consist of a red G  or a blue H  is called the 

multipartite Ramsey number of G  and H  and it is denoted by ),( HGmj . Syafrizal and 

et al (see [10]) investigated a special a case of the multipartite Ramsey number. They 

found the multipartite Ramsey number ),( GPm sj  where G  is a wheel ,nW a star nS , a 
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fan nF  and a windmill nM 2  for 2≥j , {2,3}∈s  and 6≥n . Jayawardena and et al (see 

[3,4]) also investigated special cases of the multipartite Ramsey number. They found 

),( GHmj  where },{ 43 CCH ∈ and G  is any graph on four vertices and  for 3≥j

.This paper is also on a special case of ),( 2 GBmj  where G  is any isolate vertex free 

graph up to four vertices where 3≥j . These values are shown in the following table. 

),( 2 GBmj  values 

=j  3  4  5  6  7  8  9  10 11≥j  

�� 
    1  1  1  1  1  1  1  

2�� 
2  2  1  1  1  1  1  1  1  

�� 
3  2  1  1  1  1  1  1  1  

�� 
4  2  2  1  1  1  1  1  1  

��  
 infinity 

 
 infinity 

 
 infinity 2  1  1  1  1  1  

��,� 
4  3  2  2  1  1  1  1  1  

��  
 infinity 3  2  2  1  1  1  1  1  

��,� + �	  
 infinity 

 
 infinity 

 
 infinity 2  1  1  1  1  1  


�  
 infinity 

 
 infinity 

 
 infinity 2  2  2  2  1  1  

��  
 infinity 

 
 infinity 

 
 infinity 

 
 infinity 

 
 infinity 

 
 infinity 2  2  1  

Table 1: ),( 2 GBmj  values  

2. Size Ramsey numbers ),( 22 PBmj  

 

Theorem 1.If 3≥j , then  

 













≥ 4if1

3=if2

=),( 22 j

j

PBmj  
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Proof:  Consider the 13×K  where all its edges are colored in red. Then 13×K  has neither a 

red 2B  nor a blue 2P . Therefore 2),( 223 ≥PBm .  

Next consider any red-blue colouring of 23×K . If it has a blue 2P , then we are done. 

Otherwise all the edges of 23×K  are red and hence it contains a red 2B . Therefore, 

2=),( 223 PBm . 

Clearly 1=),( 22 PBmj when 4≥j  as 4=),( 22 PBr  (see [2]).  

 

3.Size Ramsey numbers ),( 32 PBmj  

Theorem 2. If 3≥j , then 

 
















≥ 5if1

4=if2

3=if3

=),( 32

j

j

j

PBmj  

Proof:  Consider the coloring BR HHK ⊕× =23  where 23= KH B . Then 23×K  has 

neither a red 2B  nor a blue 3P . Therefore 3),( 323 ≥PBm . 

Now consider any red-blue colouring of 33×K . Assume it has no blue 3P  or a red 2B . 

Then it contains a red 3C , say 11312111 vvvv  (since 2=),( 333 PCm  by [3]). Due to the 

absence of a red 2B , at least two of the vertices of }}3,2,1{:{
3

2

∈
=

iv
j

ij∪  must be adjacent 

to each other in blue(say u  and v ). But then in order to avoid a red 2B , v  must be 

adjacent to some vertex of the red 3C  in blue. This forces a blue 3P . A contradiction. 

Therefore, 3=),( 323 PBm . 

Next consider the red-blue colouring of 14×K  having 2111vv  and 4131vv  as the only blue 

edges. Then 14×K  has no red 2B  and has no blue 3P . Therefore, 2),( 324 ≥PBm . 

Consider any red-blue colouring of 24×K  which is blue 3P  free. Then 24×K has a red 3C  

(as 2=),( 334 PCm  by [3]).  Let v be a vertex that does not belong to any of the partite 

sets which vertices of the red 3C belong to. Then in order to avoid a blue 3P , vmust be 
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adjacent in red to at least two vertices of the red 3C . Thus 24×K  has a red 2B . Hence 

2=),( 324 PBm . 

Clearly 1=),( 32 PBmj  when 5≥j  as 5=),( 32 PBr  (see [2]).  

 

4.Size Ramsey numbers ),2( 22 KBmj  

Theorem 3.If 3≥j , then  

 













≥

∈

5if1

{3,4}if2

=),2( 22 j

j

KBmj  

Proof:  The graph BR HHK ⊕× =14  where RH  consist only of the red 3C , 11312111 vvvv  

is red 2B  free and blue 22K  free. Therefore 2),2(),2( 224223 ≥≥ KBmKBm . 

Consider the graph BR HHK ⊕× =23  which is red 2B  free. Then it contains a blue 2P  

(say 2111vv ). If all the edges not incident to 11v  or 21v  are red then 23×K  has a red ,2B  a 

contradiction. Therefore, there is a blue edge not incident to 11v  or 21v . Hence 23×K  has 

a blue 22K . Therefore 2=),2(=),2( 224223 KBmKBm . 

Clearly, 1=),2( 22 KBmj  when 5≥j  as 5=),2( 22 KBr  (see [2]).  

5.Size Ramsey numbers ),( 42 PBmj  

Theorem 4.If 3≥j , then  

 
















≥

∈

6if1

{4,5}if2

3=  if4

=),( 42

j

j

j

PBmj  

Proof:  Consider the coloring BR HHK ⊕× =33  where BH  consist only of the three 3-

cycles in {1,2,3}}:{ 1321 ∈ivvvv iiii . Then 33×K  has neither a red 2B  nor a blue 4P . 

Therefore 4),( 423 ≥PBm . 

Now consider any red-blue colouring of 43×K . Assume it has no red 2B  and no blue 4P . 

Then each of the subgraphs 1H  and 2H  where {1,2,3}}:{=)( 3
1=1 ∈∪ ivHV ijj  and 
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{1,2,3}}:{=)( 4
2=2 ∈∪ ivHV ijj  has a blue 3P . By relabeling we can assume them to be 

312111 vvv  and 332414 vvv . As 43×K  is blue 4P  free, 14v  and 31v  are not incident to any blue 

edges other than 2414vv  and 2131vv  respectively. Then the red edges 

}{{2,3}}:{{2,3}}:{ 3114231214 vvivvivv ii ∪∈∪∈  forces a red 2B , a contradiction. 

Therefore, 4=),( 423 PBm .  

Next consider the coloring BR HHK ⊕× =15 . where BH  consist only of the edge 3121vv  

and the 3-cycle 41115141 vvvv . Then 15×K  has neither a blue 4P  nor a red 2B . Hence 

2),(),( 425424 ≥≥ PBmPBm .Now consider any red-blue coloring of 24×K  which is blue 

4P  free. Then it has a red 3C , say 11312111 vvvv  (as 2=),( 434 PCm  by [3]). Suppose each 

of 41v  and 42v  are incident to two vertices of )( 3CV  in blue. Then 24×K  has a blue 4P , 

a contradiction. Therefore at least one of 41v  or 42v  (say 41v ) is incident to two vertices 

(say 11v  and 21v ) of )( 3CV  in red. Then the red edges 21411141 , vvvv  together with the red 

3C  forms a red 2B . Therefore, ),(2 424 PBm≥ . Thus, we get 

2=),(=),( 425424 PBmPBm . 

Consider any red-blue coloring of 16×K  with no blue 4P . Then it has a red 3C , say 

11312111 vvvv  (as 1=),( 436 PCm  by [3]). Now considering 41v  and 51v  and arguing as 

above, it can be proved that 1=),( 42 PBmj  when 6≥j .  

 

6.Size Ramsey numbers ),( 1,32 KBmj  

Theorem 5. If 3≥j , then  

 



















≥

∈

7if1

{5,6}if2

4=if3

3=if4

=),( 1,32

j

j

j

j

KBmj  

Proof:  Consider a colouring of BR HHK ⊕× =33  where BH  consists of a blue 9C  as 

indicated in the following diagram. 
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 Figure 1: When BH  consists of blue a 9C .  

Then 33×K  has neither a red 2B  nor a blue 1,3K . Therefore, 4),( 1,323 ≥KBm . 

Now consider any colouring of BR HHK ⊕× =43 . Assume the graph has no blue 1,3K . 

Then 43×K  has a red 3C , say 11312111 vvvv  (as 3=),( 1,333 KCm  by [3]). Let 

},,{= 312111 vvvW . In order to avoid a red 2B  each vertex of WKV \)( 43×  is adjacent in 

blue to one vertex in W . 

By pigeon hole principle this results in a blue 1,3K , a contradiction. Therefore, 

4),( 1,323 ≤KBm .  

Hence 4=),( 1,323 KBm . 

Next as 3=),( 1,334 KCm  (see [3]) and 3C  is a subgraph of 2B , we get 

.3),( 1,324 ≥KBm  

Now consider any colouring of BR HHK ⊕× =34 . Assume the graph has no blue 1,3K . 

Then 34×K  has a red 3C , say 11312111 vvvv  (as 3=),( 1,334 KCm  by [3]). In order to avoid 

a red 2B  each vertex in },,{ 434241 vvv  is adjacent in blue to two vertices in 

{1,2,3}}:{ 1 ∈ivi  and further 12v  is adjacent in blue to one vertex in {2,3}}:{ 1 ∈ivi . 

By pigeon hole principle this results in a blue 1,3K , a contradiction. Therefore, 

3),( 1,324 ≤KBm . Hence 3=),( 1,324 KBm . 
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Next consider any colouring of BR HHK ⊕× =16  where BH  consist only of the two 

blue cycles, 11312111 vvvv  and 41615141 vvvv . Then 16×K  has niether a red 2B  nor a blue 

1,3K . Therefore, 2),(),( 1,3261,325 ≥≥ KBmKBm . 

Now consider any red-blue coloring of 25×K . Assume the graph has no blue 1,3K . Then 

there is a red 3C  say 11312111 vvvv  (since 2=),( 1,335 KCm  by [3]). If every vertex in 

},,,{ 52514241 vvvv  is adjacent in blue to at least two vertices of )( 3CV  then the graph has 

a blue 1,3K , a contradiction. Therefore there is a vertex in },,,{ 52514241 vvvv  which is 

adjacent in red to two vertices of )( 3CV . This forces a red 2B . Hence 2),( 1,325 ≤KBm .  

Therefore, 2=),( 1,32 KBmj  when {5,6}∈j . 

Finally, we have 1=),( 1,32 KBmj  for 7≥j  as 7=),( 1,32 KBr (see [2]).  

 

7.Size Ramsey numbers ),( 2 GBmj for other graphs G 

Theorem 6.If 3≥j , then  

 
















≥

∈∞

+

7if1

6=if2

{3,4,5}if

=),( 1,32

j

j

j

xKBmj  

Proof: As ∞+ =),( 1,33 xKCmj  when {3,4,5}∈j  and 3C  is a subgraph of 2B , we 

have ∞+ =),( 1,32 xKBmj  when {3,4,5}∈j . As 2=),( 1,336 xKCm + (see [3]) and 

3C  is a subgraph of 2B , we have 2),( 1,326 ≥+ xKBm . 

Next consider any red 2B  free colouring of BR HHK ⊕× =26 . Then the graph has a blue 

3C , say 11312111 vvvv (as 2=),(=),( 236326 BCmCBm  by [3]). If any vertex of )( 3CV  is 

adjacent to any vertex in },{ 21
6

4= iii vv∪  is blue, then the graph has a blue xK +1,3  and 

hence we are done with the proof. Therefore, assume that every vertex of )( 3CV  is 

adjacent to every vertex in },{ 21
6

4= iii vv∪  in red. Since the graph has no red 2B  all edges 

6252615261425242 ,,, vvvvvvvv  are blue. This result in a blue xK +1,3 . Therefore, 

2),( 1,326 ≤+ xKBm . Hence, 2=),( 1,326 xKBm + . 



Chula Jayawardene and LilanthiSamarasekara 

16 

 

1=),( 1,32 xKBmj +  as 7=),( 1,32 xKBr +  (see [2]). 

 

Theorem 7. If 3≥j , then 

 

 
















≥

∈∞

7if1

6=if2

{3,4,5}if

=),( 32

j

j

j

CBmj  

 
Proof: See [3].  
 
Theorem 8. If 3≥j , then 

 



















≥

∈

7if1

{5,6}if2

4=if3

3=if4

=),( 42

j

j

j

j

CBm j  

Proof: See [4].  

Theorem 9. If 3≥j , then  

 
















≥

∈

≤∞

10if1

{6,7,8,9}if2

5if

=),( 22

j

j

j

BBmj  

Proof:Consider the coloring of sK ×5  where }{1,2,...,5|{=)( 5 ∈× mvKV mns and 

}}{1,2,...,sn∈ , given by BRs HHK ⊕× =5  where s  represent any positive integer. 



Size Multipartite Ramsey Numbers for K4-e Versus all Graphs up to 4 Vertices 

17 

 

Here ijv  is connected in blue to jiv ′′  if 1=i , {2,5}∈′i  and {2,3,4}∈i , 1= ±′ ii  and 

5=i , {4,1}∈′i  for any }{1,2,...,, sjj ∈′ . 

 
 

 Figure 2: The graph BH .  

 

Clearly the coloring BRs HHK ⊕× =5  doesn’t contain a red 2B  nor a blue 2B . 

Therefore, we get that sBBm ≥),( 225 . Since s  is an arbitrary positive integer, we get 

that ∞=),( 225 BBm . Thus, ∞=),( 22 BBmj  for all 5≤j . 

Next we will prove that 2),( 226 ≤BBm . To prove this first we will use the following 

lemma. 
 

Lemma 10. Suppose that v  is any vertex of 26×K , and that },...,,{= 521 vvvV  is a set of 

five vertices in )(vNB , belonging  to at least 4 partite sets which v  doesn’t belong.Then, 

V  will induce a red 2B  or V  will induce a blue 3P . Thus 26×K  will contain either a red 

or a blue 2B .  

Proof: Under the given conditions there are two possible cases. The first namely when 

V  belongs to 5 partite sets. In this case the result follows directly as 5=),( 32 PBr  (see 

[2]) . If we assume that no blue 3P exists then in the other case when Vbelongs to 4 partite 

sets with 54,vv  belonging to the same partite set we get that the only paths the induced 

subgraph of V  in blue can have are 2P . Thus the only subgraphs of induced subgraphs of 
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V  in blue are 2P  or 22P . But then clearly by exhaustive search we see that the induced 

subgraph of V  in red will have a red 2B , as required.  

Lemma 11.. Consider the coloring of BR HHK ⊕× =26  such that RH  contains a red 

33K  where two 3K ’s will belong to the same partite sets. Then either RH  contains a 

red 2B  or BH  contains a blue 2B .  

Proof:Suppose that the three disjoint red three cycles in H  are generated by the sets 

},,{= 3121111 vvvH , },,{= 6151412 vvvH  and },,{= 6252423 vvvH . Assume that RH  is 

2B -free. As there is no red 2B  containing 22v , without loss of generality we may assume 

that ),(= 2211 vve  will be a blue edge. Again as there is no red 2B , the edge e will have 

a common neighboring vertex in 2H  and 3H  in blue. Thus BH  contains a blue 2B , as 

required in the lemma.  

To prove that 2),( 226 ≤BBm , consider any red 2B  free and blue 2B  free colouring of 

BR HHK ⊕× =26 . Since 6=),( 33 CCr  by symmetry the induced red subgraph H  

generated by {1,...,6}}|{ 1 ∈pvp  will have a copy of a red 3C . Without loss of 

generality let the red 3C  in H  be 11312111 vvvv . Let },,{= 3121111 vvvH  and 

},,{= 3222122 vvvH . Let )(\= 2126 HHKY ∪× . Let B  and R denote the blue and red 

induced subgraphs by Y . Consider any vertex of 2H . As it together with 1H  do not 

induce a red 2B  we get that without loss of generality one of the possible cases. 

Case 1: If one vertex say x  (say 21v ), of 1H  is adjacent to two vertices of 2H  in blue 

and another vertex of 1H  is adjacent in blue to a the vertex of 2H . 

 

 
  Figure 3: The two possibilities for Case 1  

 

Without loss of generality assume that ),( 2211 vv , ),( 1221 vv  and ),( 3221 vv  are the blue 

edges between 1H  and 2H . Since each vertex of Y  is adjacent in blue to two vertices of 
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1H , there are at least 12 blue edges between Y  and 1H . But by lemma 10, as 11v  can be 

adjacent to at most 4 vertices of Y (note in the case its adjacent to exactly four vertices it 

must belong to exactly two partite sets of Y ) and also 21v  can be adjacent to at most 2 

vertices of Y . Therefore, we get that 31v  must be adjacent in blue to all the vertices of Y

. But then if B  has a blue 3P  we are done as it will result in a blue 2B . Therefore, B  

can have at most one blue edge or two disjoint blue edges or 3 disjoint blue edges. In the 

first two options clearly R will contain a red 2B , a contradiction. The last option will 

result in R  containing a red 32K  as in lemma 11. This will lead to a contradiction by the 

lemma. 

Case 2: If ),(),,( 32212211 vvvv  and ),( 1231 vv  are the only blue edges between 1H  and 

.2H  

 

 
 Figure 4: The Case 2.  

 

However, as each vertex of Y  has to be adjacent to at least two vertices of 1H  in blue, 

we get that each of the 3 vertices of 1H  will be adjacent to exactly 4 vertices of Y  

belonging to exactly 2 partite sets as otherwise 1H  will have a vertex satisfying Lemma 

10, resulting in a contradiction. If we investigate the internal structure of B  there are two 
possible subcases. 

Subcase 2.1: If B  has one blue edge or two disjoint blue edges or 3 disjoint blue edges. 

If 12 4KKB ∪≅  or 12 22 KKB ∪≅ , clearly we see that R  contains a 2B . If 23KB ≅ , 

then we obtain a contradiction by lemma 11. 
 

Subcase 2.2: If B  contains a 3P  

There are two possibilities corresponding to this subcase. In the first possibility if B  

contains a 3P  incident to 2 partite sets. , Without loss of generality say this path is given 

by 425141 vvv . But then, by lemma 10, each of the 3 vertices of 1H  will be adjacent to 
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exactly 4 vertices of Y  belonging to exactly 2 partite sets. Further, as there is no red 2B , 

the blue neighborhood in Y  of any two vertices belonging to },,{ 312111 vvv  will be 

distinct. Therefore, },,,{ 5142411 vvvvi  for some {1,2,3}∈i  will induce a blue 2B , a 

contradiction. 

In the second possibility if B  contains a 3P  incident to 3 partite sets and no 3P  incident 

to 2 partite sets. Without loss of generality say this path is given by 615241 vvv . Then in 

order to avoid the first possibility ),( 5141 vv , ),( 6151 vv , ),( 5242 vv  and ),( 6252 vv  will 

have to be red edges. But then, if ),( 6141 vv  is blue we get that },,,{= 1615241 ivvvvW  for 

some {1,2,3}∈i  will induce a blue 2B , a contradiction. Next suppose that ),( 6141 vv  is 

red. But then as R  contains no red 2B  both 42v  and 62v  will have to be adjacent in blue 

to at least one vertex in },,{= 615141 vvvW′ . This will give rise to a similar situation as in 

case 1, with 1H  and 2H  replaced by W′  and WY ′\  respectively, resulting in the 

required contradiction. 

Therefore by the above two cases we can conclude that, .2),( 226 ≤BBm  

Consider the coloring of BR HHK ⊕× =19  where BH  is given in the Figure 5. This 

coloring 19×K  contains no red 2B  or a blue 2B . Therefore, we obtain that 

.2),( 229 ≥BBm  

 
 

 Figure 5: The graph BH .  
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Since ),(),( 2222 BBmBBm ji ≤  for ji ≥ , using the inequalities 2),( 229 ≥BBm  and 

2),( 226 ≤BBm , we can conclude that 2=),( 22 BBmi  for {6,7,8,9}∈i . 

Clearly 1=),( 22 BBmj  when 10≥j  as 10=),( 22 BBr  (see [2]). Hence the Theorem.   

 

Theorem 12. If 3≥j , then  

 
















≥

∈

≤∞

11if1

{9,10}if2

8if

=),( 42

j

j

j

KBmj  

Proof:  Let s  be a positive integer. Consider the coloring of BRs HHK ⊕× =8  where 

RH  is as follows. 

 
  Figure 6: In the case 2=s  the partite set iV  consists of the two vertices 1iv  and 2iv  

 

Let the 8 partite sets of )( 8 sKV ×  be labelled as 1V , ..., 8V . For any {2,...,7}∈i , the edges 

between the pair of sets 1+iV , iV  and the pair of sets 1−iV , iV  are red.  For any 
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,{1,2,3,4}∈i the edges between the pair of set iV , 4+iV  are red. Also, the edges between 

1V  and 8V  are red. 

Then this coloring sK ×8  contains no red 2B  or a blue 4K . Therefore, we obtain that 

sKBm ≥),( 428 . Since s  is arbitrary, we get that ∞=),( 428 KBm . Therefore we could 

conclude that ∞=),( 42 KBmj  for all 8≤j .  

 

Lemma 13. Suppose that v  is any vertex of 29×K , adjacent in blue to },...,,{= 921 vvvV  

belonging to 6 partite sets 621 ,...,, VVV  such that 17 Vv ∈ , 28 Vv ∈ , 39 Vv ∈  and ii Vv ∈  

for all i  where 61 ≤≤ i . Then, 29×K  will induce a red 2B  or a blue 4K . Also if v  is 

adjacent in blue to seven vertices belonging to 7 partite sets then 29×K  will induce a red 

2B  or a blue 4K .  

Proof: Assume that 29×K  is red 2B  free. 

 

Remark: Assume that there is a red 3C  in V  such that the vertices of the red 3C  belong 

to the partite sets iV , jV  and kV  where 6,,3 ≤≤ kji . Then any two vertices of V  

belonging to distinct partite sets outside of kji VVV ∪∪  will be adjacent to each other in 

red. This is clear, as if there is such a blue edge ),( wu  belonging to distinct partite sets of 

V  outside of kji VVV ∪∪ , then in order to avoid a red 2B , u  and w  will have to be 

adjacent in blue to a common vertex of )( 3CV . That is, it will contain a blue 3C  in V . 

Thus, 29×K  will induce a blue 4K (containing v ), as required. 

As 6=),( 33 CCr (see [2]), under the conditions stated in the lemma, there is a red 3C  

induced by any 6 vertices of V  belonging to 6 partite sets. By the above remark in order 

to avoid a red 2B , the vertices of )( 3CV  must be contained in the first three partite sets. 

But even in this case this will force a red 3C  contained in 654 VVV ∪∪ . However, in 

such a situation, by the repeated use of the remark on this red 3C  will result in blue 4K , 

as required. 

The later part of the lemma follows directly as 7=),( 32 CBr (see [2]). 

 

Lemma 14. Suppose that v  is any vertex of 29×K  adjacent in red to },...,,{= 721 vvvV  

belonging to 4 partite sets 421 ,...,, VVV  such that 44 Vv ∈  and iii Vvv ∈+4,  for all i  such 

that 31 ≤≤ i . Then, 29×K  will induce a red 2B  or a blue 4K .  
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Proof.Assume 29×K  has no red 2B . Clearly, V  cannot have any red 3P  as it would force 

a red 2B  in 29×K . Thus the red edges of V  must consist of a 2P , 22P  or a 23P . 

However, exhaustive search shows that in each of these possibilities a vertex not incident 
to a red edge in V  will be contained in a blue induced subgraph of V  isomorphic to a 

4K . Hence the lemma.  

 

Lemma 15. Suppose that v  is any vertex of 29×K  adjacent in blue to },...,,{= 1121 vvvV  

belonging to 6 partite sets 621 ,...,, VVV  such that 66 Vv ∈  and iii Vvv ∈+6,  for all i  such 

that 51 ≤≤ i . Then, 29×K  will induce a red 2B  or a blue 3C .  

Proof.  Suppose that V  doesn’t induce a red 2B  nor a blue 3C . As 6=),( 33 CCr (see 

[2]), there is a red 3C  induced by any 6 vertices of V  belonging to 3 partite sets. Let the 

vertices of this red 3C  be },,{ zyx . In order to avoid a red 2B  each vertex in 

},,{\ zyxV , not belonging to the partite sets which yx,  and z  belong to, must be 

adjacent to at least 2 vertices of },,{ zyx  in blue. Also in order to avoid a red 2B  each 

vertex in },,{\ zyxV , belonging to the partite sets which yx,  and z  belong to, must be 

adjacent to at least 1 vertex of },,{ zyx  in blue. By pigeon hole principle, without loss of 

generality we may assume that x  is adjacent in blue to 5 vertices of V . Since these 5 

vertices belong to at least 3 partite sets and V  doesn’t contain a red 2B , these 5 vertices 

must induce a blue edge say ),( qp . But then we get the required contradiction as 

qpx ,,  will induce a blue 3C . Hence the lemma.  

To prove that 2),( 429 ≤KBm , consider any red 2B  free and blue 4K  free colouring of 

BR HHK ⊕× =29 . Since 9=),( 43 KCr (see [2]) the induced subgraph H  of RH  

generated by {1,...,9}}|{ 2 ∈pvp  will have a copy of a red 3C , say 42625242 ,,, vvvv . Let 

},,{= 625242 vvvW . Since 2=),( 326 CBm , we may assume the induced subgraph of 

BH  generated by 1{ pv | 2{},9}{1,2,3,7,8 pvp ∪∈ | }9},{1,2,3,7,8∈p  will have 

a copy of a blue 3C  with },,{=)( 3121113 vvvCV . Let },,{= 312111 vvvV . Then as there is 

no red 2B , each vertex in V  will be adjacent in blue to two vertices of W . Also as there 

is no blue 4K  each vertex in W  will have to be adjacent in red to at least one vertex of 

V . Thus we may assume that ),( 4211 vv , ),( 5221 vv  and ),( 6231 vv  are the only red edges 

between V  and W . Let },,{= 6151411 vvvW . Then as there is no red 2B , each vertex in 
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1W  will be adjacent in blue to a vertex of W . Thus we get that without loss of generality 

there are two possible cases.  

Remark: Note that we will be using the fact that any vertex outside of 1WW ∪  will be 

adjacent to at least two vertices of W  in blue. Also given any six vertices belonging to 3 

partite sets outside 1WW ∪  will contain at least 4 vertices belonging to exactly 3 partite 

sets adjacent to some vertex of W  in blue or else all three vertices of W  will be adjacent 
in blue to exactly 4 vertices belonging to exactly two partite sets. 

Case 1: If ),( 6241 vv , ),( 6251 vv  and ),( 5261 vv  are blue edges between 1W  and W . 

Let )(= 29×KVU . In order to avoid a red 2B  each vertex in )(\ 1WWU ∪ , must be 

adjacent to at least 2 vertices of },,{ 625242 vvv  in blue. Also in order to avoid a red 2B  

each vertex in 1W , must be must be adjacent to at least 1 vertex of W  in blue. By pigeon 

hole principleand lemma 13, without loss of generality we may assume that at least one 

vertex say z  of },,{ 625242 vvv  is adjacent in blue to 9or more vertices of )(\ 1WWU ∪
(by lemma 13, all three vertices cannot be adjacent to exactly 8 vertices of 

)(\ 1WWU ∪ ).Futher, by lemma 13, z  can not be incident in blue to 6 or more than 6 

partite sets. Therefore, z  must be incident to 9 vertices belonging to 5 partite sets. Since 

62v  is incident to 41v  and 51v we get 62vz ≠ . If 52= vz then there are two possibilities, 

namely ),( 5241 vv  is blue or ),( 5241 vv  is red. If ),( 5241 vv  is blue, lemma 13 will give us 

the required contradiction. If ),( 5241 vv  is red, applying lemma 14 with 52= vv  or lemma 

13 with 52= vv  will give us a contradiction. Therefore, .= 42vz Further, as shown above 

since 52v  and 62v  can be adjacent to at most 8 vertices of U  in blue, 42v  will have to be 

adjacent to 11 vertices of U  in blue. Now applying lemma 15 to the 11 vertices 42v  is 

adjacent in blue, we get a blue 3C  induced by these 11 vertices unless these 11 vertices 

belong to at least 7 partite sets. But in this case too, since 7=),( 32 CBr (see [2]), we will 

get a blue 3C  induced by these vertices. Thus, 42v  together with these 3 vertices will 

induce a blue 4K , a contradiction. 

Case 2: If ),( 6241 vv , ),( 4251 vv  and ),( 5261 vv  are the only blue edges between 1W  and 

.W  

By remark without loss of generality we may assume that 62v  is adjacent in blue to 4 

vertices of {1,2}}and{7,8,9}|{ ∈∈ nmvmn . In this case there are two possible 

scenarios: In the first if 32v  is incident to 62v  in blue. Then applying lemma 13 with 
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62= vv  will give us the required contradiction, unless 62v  is adjacent to both 12v  and 22v  

in red and 62v  is adjacent in blue to at most 2 partite sets out of 7V , 8V  and 9V . But in 

order to avoid a red 2B , this will force all edges between },{ 2212 vv  and },{ 5242 vv  to be 

blue. But then by pigeon hole principle without loss of generality we may assume that 

52v  is adjacent to at least 4 vertices of {1,2}}and{7,8,9}|{ ∈∈ nmvmn  in blue. 

Irrespective of whether these 4 vertices belong to two or three partite sets of 7V , 8V  and 

9V , applying lemma 13 with 52= vv  will give us the required contradiction. 

In the second scenario by symmetry we may assume that ),( 6232 vv , ),( 4222 vv  and 

),( 4212 vv  are red. According to whether 62v  is adjacent to two or three partite sets in 

blue of {1,2}}and{7,8,9}|{ ∈∈ nmvmn  we will obtain a required contradiction by 

applying lemma 14 and lemma 13 respectively to 62= vv .Therefore we can conclude 

that, 2),( 429 ≤KBm  

Consider the coloring of BR HHK ⊕× =110  where RH  is given in the Figure 7. This 

coloring of 110×K  contains no red 2B  or a blue 4K . Therefore, we obtain that 

2),( 4210 ≥KBm . 

 
Figure 7: The graph RH . 

Since ),(),( 4242 KBmKBm ji ≤  for ji ≥ , using 2),( 4210 ≥KBm  and 2),( 429 ≤KBm , 

we can conclude that 2=),( 42 KBmj  for {9,10}∈j . 

Clearly 1=),( 42 KBmj  when 11≥j  as 11=),( 42 KBr  (see [2]). Hence the Theorem.  
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