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Abgract.Let G and H be two simple subgraphs ijs- The smallest positive integer
S such that any red and blue colouring Iégxs has a copy of redc or a blueH is
called the multipartite Ramsey number @f and H . It is denoted bym, (G,H). This

paper presents exact values fq(BZ,G) whereG is a isolate vertex free graph up to
four vertices.
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1. Introduction

The exact determination of the classical diagormahBey number of (S, S) (see [6] for a
survey) has not made any headway beyo(f,5) (as of now known to be between 43

and 49) for a few decades. Researches are novg tiyiapproach this problem by using
new techniques like fuzzy logic, genetic algorithmsmprove the lower bound (see [7],
[8] and [9]). One of the main branches of classiRaimsey numbers, introduced by
Burger and Vuuren (see [1]) was multipartite Ramsemybers. It is defined considering
Kxs. Which consist ofj partite sets, each of size V(K;,;) ={v,,,|m{1,2,...,j}

andn(1{1,2,....s}} denotes the vertex set Kfixs. The set of vertices in the" partite
set is denoted byv. . |n0{1,2,...,s}} . The smallests value for which any two

colouring (say red and blue) d{jxs, consist of a redG or a blueH s called the

multipartite Ramsey number @ and H and it is denoted byn, (G,H) . Syafrizal and

et al (see [10]) investigated a special a casd@fnultipartite Ramsey number. They
found the multipartite Ramsey numbmj (PS,G) whereG is a wheeW/ ,a starS,, a
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fan F, and a windmillM,,, for j =2, sUJ{2,3} andn = 6. Jayawardena and et al (see
[3,4]) also investigated special cases of the ipaftite Ramsey number. They found
m, (H,G) where H 0{C;,C,}and G is any graph on four vertices and f¢i=>3
.This paper is also on a special casem;(Bz,G) where G is any isolate vertex free

graph up to four vertices wherg= 3. These values are shown in the following table.

m;(B,,G) values
j= 3 4 5 6 7 8 9 10 j=11
P,
1 1 1 1 1 1 1
2K,
2 2 1 1 1 1 1 1 1
Py
3 2 1 1 1 1 1 1 1
Py
4 2 2 1 1 1 1 1 1
Gs
infinity |infinity | infinity [2 1 1 1 1 1
K13
4 3 2 2 1 1 1 1 1
Cy
infinity (3 2 2 1 1 1 1 1
Kiz+x
infinity |infinity | infinity [2 1 1 1 1 1
B,
infinity |infinity |infinity [2 2 2 2 1 1
Ky
infinity | infinity | infinity |infinity | infinity | infinity [2 2 1

Table1: m,(B,,G) values
2. Size Ramsey numbers m;(B,, P,)

Theorem 1.If j =3, then
2 if j=3

m (B,,P,) = .
(B2 P2) 1 if j=24

10



Size Multipartite Ramsey Numbers fi€5-e Versus all Graphs up to 4 Vertices
Proof: Consider theK,,, where all its edges are colored in red. Thég, has neither a
red B, nor a blueP,. Thereforem,(B,,P,) = 2.

Next consider any red-blue colouring &,,,. If it has a blueP,, then we are done.
Otherwise all the edges df,, are red and hence it contains a Bg. Therefore,
my,(B,,P,) =2.

Clearlym, (B,,F,) =1when j 2 4 as r(B,, P,) = 4 (see[2]).

3.Size Ramsey numbers m,(B,, P,)
Theorem 2. If j = 3, then

3 if j=3
2 if j=4
mj(BZ’P3)=
1 if j=5

Proof: Consider the coloringK,,, = H; O H, where H; =3K,. Then K,,, has

neither a redB, nor a blueP,. Thereforem,(B,,F;) = 3.

Now consider any red-blue colouring &,,,. Assume it has no blu€, or a redB,.

Then it contains a re@,, say v,,v,V,,V,, (since m(C,,P,) =2 by [3]). Due to the

absence of a re@, , at least two of the vertices @{ v, 11 0{123} } must be adjacent
j=2

to each other in blue(say and v). But then in order to avoid a re,, v must be

adjacent to some vertex of the ré&j in blue. This forces a blu&,. A contradiction.

Therefore,m,(B,,P,) = 3.

Next consider the red-blue colouring &f,,, havingv,,v,, andv,\,, as the only blue

edges. TherK,,, has no redB, and has no blu®,. Thereforem,(B,,PR,) = 2.

which is blueP, free. ThenK

ax1

Consider any red-blue colouring &f has a redC,

4%x2 4x2

(as m,(C,,P,) =2 by [3]). Letv be a vertex that does not belomgy of the partite

sets which vertices of the re@d, belong to. Then in order to avoid a blé, v must be
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adjacent in red to at least two vertices of the @&d ThusK,,, has a redB,. Hence
m,(B,,R,) =2.
Clearly m;,(B,,P,) =1 when j 25 asr(B,,P,) =5 (see [2)).

4.Size Ramsey numbersm; (B,,2K,)
Theorem 3.If j >3, then
2 if jO{3,4}

m (B,,2K.) = .
(B, 2K,) 1 if j=5

Proof: The graphK,, = H; O H, whereH ; consist only of the re€;, v,,v,V,\v;,

is red B, free and blueK, free. Thereforam,(B,,2K,) >m,(B,,2K,) > 2.

Consider the graptK,,, = H; O H, which is redB, free. Then it contains a blui,

(sayv,,v,,). If all the edges not incident tg, or v,, are red therK,, has aredB,, a
contradiction. Therefore, there is a blue edgeimzitient tov,, or v,,. HenceK,,, has
a blue 2K, . Thereforem,(B,,2K,) = m,(B,,2K,) = 2.

Clearly,m, (B,,2K,) =1 when j 25 asr(B,,2K,) =5 (see [2]).

5.Size Ramsey numbersm, (B,, P,)
Theorem 4.If | > 3, then

4 if =3

2 if jO{4,5}
mj(BZ’ P) =

1 if j=26

Proof: Consider the colorind,,, = H; O H, where H, consist only of the three 3-
cycles in{v;v,v;V, :10{1,2,3}} . Then K, has neither a red, nor a blueP,.
Thereforem,(B,,P,) 2 4.

Now consider any red-blue colouring K, ,. Assume it has no reB, and no bluep,.

Then each of the subgraphd, and H, whereV(H,) = D?zl{vij 110{1,2,3}} and
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Size Multipartite Ramsey Numbers fé-e Versus all Graphs up to 4 Vertices
V(H,)= Dj‘zz{v”. 10{1,2,3}} has a blueP;. By relabeling we can assume them to be
Vi VoV, and vV, Vo, As Ky, is blue P, free, v, andv,, are not incident to any blue
edges other thanv,v, and V,Vv, respectively. Then the red edges
{viavy 1 10{2,3}} O{v,,v, 11 0{2,3}} O{v,,v,,} forces a redB,, a contradiction.
Therefore,m,(B,,P,) =4.

Next consider the colorindK., = H; L0 H;. whereH ; consist only of the edge, v,,
and the 3-cyclev,V;,v,,v,;. Then K., has neither a blué®, nor a redB,. Hence
m,(B,, P,) = m,(B,,P,) = 2.Now consider any red-blue coloring &f,,, which is blue
P, free. Then it has a re@,, sayV, V,,V,,v,;, (asm,(C;, P,) =2 by [3]). Suppose each
of v,, andyv,, are incident to two vertices & (C,) in blue. ThenK,,, has a blueP,,
a contradiction. Therefore at least onevgf or v,, (sayv,,) is incident to two vertices
(sayv,, andv,,) of V(C,) in red. Then the red edgegv,,,V,,V,, together with the red
C, forms a red B,. Therefore, 2=m,(B,,P,). Thus, we get
m,(B,,P,) =my(B,,P,) =2.

Consider any red-blue coloring df,,, with no blue P,. Then it has a redC;, say
Vv, VeV, (s m(C;, P) =1 by [3]). Now consideringv,, and V;; and arguing as

above, it can be proved they (B,,P,) =1 when j 6.

6.Size Ramsey numbers m;(B,, K, ,)
Theorem 5. If | =3, then

4 if j=3

3 if j=4
MEKD=1 S i nme

1 it j27

Proof: Consider a colouring oK, , =H_UH, where H_, consists of a blu&€, as

indicated in the following diagram.
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Figure1l: WhenH ; consists of blue &, .
Then K,,; has neither a re@, nor a blueK ;. Therefore,m,(B,,K, ;) = 4.
Now consider any colouring oK, = H [0 Hg. Assume the graph has no bllfg ;.
Then K,, has a redC,, say v, V,\V,,v;; (@as my(C;,K ;) =3 by [3]). Let

W ={V,;,V,,,V;} . In order to avoid a re®, each vertex oV (K,,) \W is adjacent in
blue to one vertex ilV.
By pigeon hole principle this results in a blu&, ;, a contradiction. Therefore,

my(B,,K, ;) <4.

Hencem,(B,,K, ;) = 4.

Next as m,(C;,K,;)=3 (see [3]) and C, is a subgraph ofB,, we get
m,(B,,K,;) = 3.

Now consider any colouring oK,,, = H [0 H,. Assume the graph has no bllfg ;.
Then K,,, has aredC,, sayVv,v,,v,,v;; (as m,(C;, K, ;) =3 by [3]). In order to avoid
a red B, each vertex in{v,,V,,,V,;} is adjacent in blue to two vertices in
{v,:10{1,2,3}} and furtherv,, is adjacent in blue to one vertex {w, :i 0{2,3}} .

By pigeon hole principle this results in a blu&, ;, a contradiction. Therefore,

m,(B,,K, ;) 3. Hencem,(B,, K, ;) =3.
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Size Multipartite Ramsey Numbers fi€5-e Versus all Graphs up to 4 Vertices
Next consider any colouring oK, = H; [0 H, where H, consist only of the two
blue cycles,v,,v,V;v,; and Vv, V. Vs,v,,. Then K, has niether a red, nor a blue
K, 5. Thereforem(B,,K, ;) =2m,(B,,K, ;) >2.

Now consider any red-blue coloring &.,,. Assume the graph has no bltg ;. Then
there is a redC, say V;;V,,V,,V;; (since m(C;,K, ;) =2 by [3]). If every vertex in
{V,1, V40, Vi1, Vo) is adjacent in blue to at least two verticed/¢C;) then the graph has
a blue K 5, a contradiction. Therefore there is a verte¥,,V,,,Vs,;,Vs,} which is
adjacent in red to two vertices Wf(C;) . This forces a re®, . Hencem,(B,,K, ;) < 2.
Therefore,m; (B,, K, ;) =2 when j 0{5,6} .

Finally, we havem;(B,,K, ;) =1 for j 27 asr(B,,K, ;) = 7(see [2]).

7.Size Ramsey numbersm; (B,, G) for other graphs G
Theorem 6.If | =3, then
o if j0{3,4,5}

2 if j=6
mj(BZ’Kl,3+X) =

1 if j27

Proof: As m;(C;,K, ;+X) = when j[{3,4,5} and C, is a subgraph oB,, we
have m;(B,,K, ;+X) = when j[{3,4,5}. As m,(C;,K,; ;+X) =2(see [3]) and
C, is a subgraph oB,, we havem,(B,,K, ;+X) > 2.

Next consider any re®, free colouring ofK,,, = H [0 H, . Then the graph has a blue
C,, sayV, V,,v,,v;, (@as mg(B,,C,) = m;(C,, B,) = 2 by [3]). If any vertex oV (C,) is
adjacent to any vertex il {V,;,\;,} is blue, then the graph has a blg,+ X and
hence we are done with the proof. Therefore, assinaeevery vertex oV (C,) is
adjacent to every vertex i, {v,,v,} in red. Since the graph has no Bd all edges
V2 Vepr VaVer: Ve Ve Ve Vs, @re blue. This result in a blueK, ;+X. Therefore,

my(B,, K, ;+X) < 2. Hence,m,(B,, K, ;+X) = 2.
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m, (B,,K 3+ X) =1 asr(B,,K ;+X) =7 (see [2)).

Theorem 7. If j =3, then

o if j[{3,4,5}
2 if j=6
mj(BZ'C3) =
1 if j=7
Proof: See [3].
Theorem 8. If j =3, then
4 if j=3
3 if j=4
m;(B,,C,) = L
1 (B2.Cu) 2 if jO{5,6}
1 if j=7
Proof: See [4].
Theorem 9. If j =3, then
o if j<5
2 if j0{6,7,8,9}
mj(BZ’ Bz) =

1 if j=10

Proof:Consider the coloring ofK., where V(K,,)={v,,|mO0{1,2,...,3 and
n{1,2,....8}} , given by K., =H;OH, where s represent any positive integer.
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Size Multipartite Ramsey Numbers fi€5-e Versus all Graphs up to 4 Vertices
Here V; is connected in blue tu,. if i =1, i'0{2,5} andil{2,3,4}, i'=i+1 and
i=5,1'0{4,1} forany j,j'0{1,2,...,5}.

Figure2: The graphH .

Clearly the coloring K, =H;LH, doesn't contain a redB, nor a blue B,.

5xs
Therefore, we get thatmn,(B,,B,) =s. Since < is an arbitrary positive integer, we get
that my(B,, B,) = . Thus,m, (B,,B,) = forall j <5.

Next we will prove thatmy(B,,B,) < 2. To prove this first we will use the following
lemma.

Lemma 10. Suppose that is any vertex oK,,,, and thatV ={v,,Vv,,...,V;} is a set of
five vertices inN (V) , belonging to at least 4 partite sets whigtdoesn’t belong.Then,
V willinduce a redB, or V will induce a blueP,. ThusKg,, will contain either a red

orablueB,.
Proof: Under the given conditions there are two possiblges. The first namely when
V belongs to 5 partite sets. In this case the réslldiws directly asr(B,,P,) =5 (see

[2]) . If we assume that no blug,exists then in the other case whérelongs to 4 partite
sets withv,,V, belonging to the same partite set we get thabtthg paths the induced

subgraph ol in blue can have arB,. Thus the only subgraphs of induced subgraphs of

17
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V in blue areP, or 2P, . But then clearly by exhaustive search we seethiwainduced

subgraph ol in red will have a red,, as required.

Lemma 11.. Consider the coloring oK,,, = Hy O Hy such thatH , contains a red
3K, where twoK,’s will belong to the same partite sets. Then eithl, contains a
red B, or H contains a blueB, .

Proof:Suppose that the three disjoint red three cycle#lirare generated by the sets
H, ={Vi, Vo, Vo i} . H, ={V,;, Vo, Vp and H, ={v,,,V,,,V,,} . Assume thatH  is
B,-free. As there is no reB, containingv,,, without loss of generality we may assume
that e = (v,;,Vv,,) Will be a blue edge. Again as there is no &d the edgee will have

a common neighboring vertex i, and H, in blue. ThusH , contains a blueB,, as

required in the lemma.
To prove thatmy(B,, B,) < 2, consider any red, free and blueB, free colouring of

Keo =Hg O Hy. Since r(C,,C,) =6 by symmetry the induced red subgraph
generated by{v,, | p0{1,...,6}} will have a copy of a redC,. Without loss of
generality let the redC, in H be vV, v,v,. Let H, ={v,,v,,Vv;,} and

5 ={Vip Voy, Vao} . Let Y =K, \(H; O H,). Let B and R denote the blue and red
induced subgraphs by . Consider any vertex oH,. As it together withH, do not
induce a redB, we get that without loss of generality one of plessible cases.
Case 1. If one vertex sayx (sayv,, ), of H, is adjacent to two vertices ¢, in blue
and another vertex dfl, is adjacent in blue to a the vertexldf, .

s ~
N ./r'xﬂj \ U1 . T rhf/ ‘.'_,l_\. i3 i"-" —-——

-

Figure 3: The two possibilities for Case 1

Without loss of generality assume th@t,,Vv,,), (V,,V,,) and (Vv,;,V,,) are the blue

edges betweel, and H, . Since each vertex of is adjacent in blue to two vertices of

18
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H,, there are at least 12 blue edges betwéeand H,. But by lemma 10, ag,, can be

adjacent to at most 4 vertices ¥f{note in the case its adjacent to exactly fouricestit
must belong to exactly two partite setsY¥oj and alsov,, can be adjacent to at most 2

vertices ofY . Therefore, we get that,, must be adjacent in blue to all the vertices/of

. But then if B has a blueP, we are done as it will result in a bl . Therefore,B

can have at most one blue edge or two disjoint btiges or 3 disjoint blue edges. In the
first two options clearlyR will contain a redB,, a contradiction. The last option will

result in R containing a re®K, as in lemma 11. This will lead to a contradictimnthe
lemma.

Case 2: If (Vy,Vsy,),(V,,Vs,) and (v,,V;,) are the only blue edges betweeh) and
H,.

Figure4: The Case 2.

However, as each vertex af has to be adjacent to at least two vertice$ofin blue,
we get that each of the 3 vertices i will be adjacent to exactly 4 vertices f
belonging to exactly 2 partite sets as otherwisegwill have a vertex satisfying Lemma
10, resulting in a contradiction. If we investigétte internal structure oB there are two
possible subcases.

Subcase 2.1: If B has one blue edge or two disjoint blue edges disjBint blue edges.
If BOK,O4K, or BO2K, O 2K,, clearly we see thaR contains aB, . If B 03K,,
then we obtain a contradiction by lemma 11.

Subcase 2.2: If B contains aP,

There are two possibilities corresponding to thibcase. In the first possibility iB
contains aP, incident to 2 partite sets. , Without loss of gatity say this path is given

by v,,V;,V,,. But then, by lemma 10, each of the 3 verticedHof will be adjacent to
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exactly 4 vertices ol belonging to exactly 2 partite sets. Furtherhasd is no red, ,
the blue neighborhood ifY of any two vertices belonging tfv;,,V,,,Vs,} will be

distinct. Therefore{V,;,V,;,V,,,Vs;} for someil]{1,2,3} will induce a blueB,, a
contradiction.

In the second possibility iB contains aP, incident to 3 partite sets and i incident
to 2 partite sets. Without loss of generality daig path is given bw,,v.V,,. Then in
order to avoid the first possibilitfV,,,Vs,), (Vs1,Ver), (Vs Vs,) and (V,,Vg,) Will
have to be red edges. But then(\f,,V,,) is blue we get thalVv ={v,,,Vv;,,V,,,V,;} for
somei[J{1,2,3} will induce a blueB,, a contradiction. Next suppose that,,,Vs,) is
red. But then adfk contains no red3, bothv,, andv,, will have to be adjacent in blue
to at least one vertex W' ={v,,,Vs,,V,,} . This will give rise to a similar situation as in

case 1, withH, and H, replaced byW' and Y \W' respectively, resulting in the
required contradiction.

Therefore by the above two cases we can concladerty (B,, B,) < 2.
Consider the coloring oK,,, = H, O H, where H; is given in the Figure 5. This

coloring K, contains no redB, or a blue B,. Therefore, we obtain that
my(B,,B,) = 2.

/.I\E"'H‘_H_ _,-"""’q\
£ - - N
- -

! \’_‘/_r Al "".l N
F ]__"f ‘Hx’r‘hj A
o= \ T~ N
L Sttt sl e ---"=3
b ) ”
~ | h / I s
~ y / -
\q \ / ,r//

I v/ 4

-
l\\ @{ - J
~ s < !
] * NS [
I ~ LN
/ < /
] / o A%
- o
| ~
I !
& - - - - ™

Figure5: The graphH .
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Since m(B,,B,)<m,(B,,B,) for i > j, using the inequalitiesr,(B,,B,) 22 and
my(B,,B,) < 2, we can conclude that (B,,B,) = 2 for i []{6,7,8,9}.

Clearly m;(B,,B,) =1 when j 210 asr(B,, B,) =10 (see [2]). Hence the Theorem.

Theorem 12. If j =3, then

o if j<8

2 if j0{9,10}
mj(BZ’K4)=

1 if j=211

Proof: Let s be a positive integer. Consider the coloringkf, = H; [0 H, where
H . is as follows.

Figure6: In the cases = 2 the partite seV, consists of the two verticeg, andV,,

Let the 8 partite sets &f (K,,,) be labelled a¥,, ...,.V;. For anyi J{2,...,7}, the edges

between the pair of set¥, ,V, and the pair of setd/_,V, are red. For any

21
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i 0{1,2,3,4} the edges between the pair of $et V,,, are red. Also, the edges between
V, andV; are red.
Then this coloringKg,, contains no redB, or a blueK,. Therefore, we obtain that
my(B,,K,) = s. Sinces is arbitrary, we get thatny(B,,K,) = o . Therefore we could
conclude tham, (B,,K,) = for all j <8.

Lemma 13. Suppose that is any vertex oK, , adjacent in blue t&/ ={v,,V,,...,\V,}
belonging to 6 partite set¥,,V,,...,.V, such thatv, V,, v, UV,, v, 1V, and v, IV,
for all i wherel<i<®6. Then,K,,, will induce a redB, or a blueK,. Also if v is
adjacent in blue to seven vertices belonging tafite sets therK,,, will induce a red
B, orablueK,.

Proof: Assume that,,, is red B, free.

Remark: Assume that there is a régl, in V such that the vertices of the r& belong

to the partite setd;, V; andV, where 3<i, j,k<6. Then any two vertices o

belonging to distinct partite sets outside\Wof 1V, LIV, will be adjacent to each other in
red. This is clear, as if there is such a blue €dg®/) belonging to distinct partite sets of
V outside ofV, LV, JV,, then in order to avoid a reB,, u and w will have to be
adjacent in blue to a common vertex\6(C,) . That is, it will contain a blué€C, in V .
Thus, K,,, will induce a blueK, (containingv), as required.

As r(C,,C;) = 6(see [2]), under the conditions stated in the lemthere is a redC,

induced by any 6 vertices & belonging to 6 partite sets. By the above remarsrder
to avoid a redB, , the vertices ol (C;) must be contained in the first three partite sets.

But even in this case this will force a ré&l} contained inV, 0V, 0V,. However, in

such a situation, by the repeated use of the reoratkis redC, will result in blueK,,

as required.
The later part of the lemma follows directly &B,,C,) = 7 (see [2]).

Lemma 14. Suppose thav is any vertex oK, adjacent in red toV ={v,,V,,...,V,}
belonging to 4 partite set¢,,V,,...,V, such thatv, OV, andv;,v,,, 0V, forall i such

that1<i<3. Then,K,,, will induce a redB, or a blueK, .
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Size Multipartite Ramsey Numbers fi€5-e Versus all Graphs up to 4 Vertices
Proof AssumeK,,, has no redB,. Clearly,V cannot have any reB, as it would force

a red B, in Kg,,. Thus the red edges & must consist of aP,, 2P, or a 3P,.

However, exhaustive search shows that in eachesktpossibilities a vertex not incident
to a red edge iV will be contained in a blue induced subgraphvofisomorphic to a
K, . Hence the lemma.

Lemma 15. Suppose that is any vertex oKy, adjacent in blue t&/ ={v,,v,,...,v;;}
belonging to 6 partite sefg,,V,,...,V, such thatv, OV, and v;,v,,, 0V, for all i such
that1<i<5. Then,K,,, will induce a redB, or a blueC,.

Proof. Suppose tha¥ doesn’t induce a re@®, nor a blueC,. As r(C,,C,) =6(see
[2]), there is a redC; induced by any 6 vertices & belonging to 3 partite sets. Let the
vertices of this redC, be {X,y,Z}. In order to avoid a redB, each vertex in
V\{X,y,2}, not belonging to the partite sets whiehy and z belong to, must be
adjacent to at least 2 vertices{of, y, Z} in blue. Also in order to avoid a re8, each
vertex inV\ {X, Y,z , belonging to the partite sets whishy and z belong to, must be
adjacent to at least 1 vertex{af, y, Z in blue. By pigeon hole principle, without loss of

generality we may assume that is adjacent in blue to 5 vertices \@f. Since these 5
vertices belong to at least 3 partite sets ¥ndoesn’t contain a re®, , these 5 vertices

must induce a blue edge sdy,q). But then we get the required contradiction as
X, p,q will induce a blueC,. Hence the lemma.

To prove thatm,(B,,K,) < 2, consider any red, free and blueK, free colouring of
Ko, =Hg OHg. Since r(C;,K,) =9(see [2]) the induced subgrapH of H,
generated byVv,, | p0{1,...,9}} will have a copy of a re€;, sayV,,, Vs,, Ve, Vi, Let

W ={Vv,,,Vs,,Vs,} . Since my(B,,C;) =2, we may assume the induced subgraph of
H, generated by Vv, | p(0{1,2,3,7,80} }O{v,,|p0{1,2,3,7,89} } wil have

a copy of a blueC; with V(C;) ={V,;,V,;,V,,} . LetV ={v,;,V,,,V;;} . Then as there is
no redB,, each vertex iV will be adjacent in blue to two vertices \f. Also as there

is no blueK, each vertex ilW will have to be adjacent in red to at least ongexeof

V . Thus we may assume th@t,,Vv,,), (V,,Vs,) and (v;;,Vs,) are the only red edges

betweenV andW. Let W, ={v,,,V,,,V,,} . Then as there is no red,, each vertex in
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W, will be adjacent in blue to a vertex @f . Thus we get that without loss of generality
there are two possible cases.

Remark: Note that we will be using the fact that any vertexside ofw OW, will be

adjacent to at least two verticesWf in blue. Also given any six vertices belonging3to
partite sets outside/ JW, will contain at least 4 vertices belonging to éka8 partite

sets adjacent to some vertex\Wf in blue or else all three vertices\&f will be adjacent
in blue to exactly 4 vertices belonging to exattp partite sets.

Case 1. If (V,;,Vg,), (Vs Ve,) @and(Vg,,Vs,) are blue edges betwebd andW .
Let U =V(K,,,). In order to avoid a red, each vertex inJ \(W OW,), must be
adjacent to at least 2 vertices{of,,,V;,,Vg,} in blue. Also in order to avoid a ref,

each vertex i\, , must be must be adjacent to at least 1 verté’ oh blue. By pigeon
hole principleand lemma 13, without loss of gerigrale may assume that at least one
vertex sayz of {V,,,V.,,V,} is adjacent in blue to 9or more verticestoh (W O'W,)

(by lemma 13, all three vertices cannot be adjacentexactly 8 vertices of
U \ (W OW,)).Futher, by lemma 137 can not be incident in blue to 6 or more than 6

partite sets. Therefore must be incident to 9 vertices belonging to 5Sifmdets. Since
Vg, is incident tov,;, and v;,we getzZ# V;,. If Z=v,,then there are two possibilities,

namely (v,,,Vs,) is blue or(v,,,V,) is red. If (v,;,Vs,) is blue, lemma 13 will give us
the required contradiction. fv,,,V,,) is red, applying lemma 14 with=v,, or lemma
13 with v = v;, will give us a contradiction. Therefore,= v,,.Further, as shown above
sinceV,, andV,, can be adjacent to at most 8 verticesJofin blue, v,, will have to be
adjacent to 11 vertices & in blue. Now applying lemma 15 to the 11 verticgs is
adjacent in blue, we get a blé&, induced by these 11 vertices unless these 1iceerti
belong to at least 7 partite sets. But in this ¢asgsincer (B,,C,) = 7 (see [2]), we will
get a blueC, induced by these vertices. Thus, together with these 3 vertices will

induce a blueK,,, a contradiction.

Case 2: If (V,,Vg,), (Ve Vy,) and (Vg,,Vs,) are the only blue edges betwedh and

W.
By remark without loss of generality we may assutva v, is adjacent in blue to 4

vertices of {v,, |mC{7,8,9} andn0{1,2}} . In this case there are two possible

scenarios: In the first if/,, is incident tovy, in blue. Then applying lemma 13 with
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V =V, will give us the required contradiction, unlegg is adjacent to bothk,, andv,,
in red andv, is adjacent in blue to at most 2 partite setsad¥,, V; andV,. But in

order to avoid a red,, this will force all edges betwediv,,,v,,} and{v,,,Vv,} to be

blue. But then by pigeon hole principle withoutdasf generality we may assume that
V,, is adjacent to at least 4 vertices {of . | m{7,8,9} andn(1{1,2}} in blue.

21

Irrespective of whether these 4 vertices belongvtoor three partite sets &,, V; and
V,, applying lemma 13 witlv = v, will give us the required contradiction.

In the second scenario by symmetry we may assumie (th,,Vy,), (V,,,V,,) and

221
(vip,V,,) are red. According to whether,, is adjacent to two or three partite sets in
blue of{v.,,|mU{7,8,9} and n({1,2}} we will obtain a required contradiction by

applying lemma 14 and lemma 13 respectivelyte v, .Therefore we can conclude

that, my(B,,K,) <2

Consider the coloring oK ., = H, 0 H, where H is given in the Figure 7. This

coloring of K,,, contains no redB, or a blue K,. Therefore, we obtain that
My(B,,K,)=2.

Figure7: The graphH ;.
Sincem(B,,K,) <m;(B,,K,) fori> j, usingm,(B,,K,) 22 andm,(B,,K,) < 2,
we can conclude than, (B,,K,) = 2 for j[1{9,10}.
Clearly m;(B,,K,) =1 when j 211 asr(B,,K,) =11 (see [2]). Hence the Theorem.
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