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Abstract. Information visualization is a class of techniquésch is used to present data
in a graphical or pictorial format. Identificatioof new patterns as well as an
understanding of difficult concepts is possibletvitie proper use of visualization. Using
interactive visualization, various other detaillted to the information can be obtained.
In this paper, we consider trees in which each nedelated to a leaf node (object) of
taxonomy. We propose a new technique of visuatimathamely ‘Labeled Object
Treemap’ for the visualization of multiple hieraieh In our approach, a unique label is
associated with each node and this label will cgna## the necessary information
including adjacency as well as non-adjacency with other nodes of the tree. The
comparison of our proposed technique with alreatywi techniques is also made. Here
we develop and use a labeling of trees where wartiepresent distinct sets and
adjacency coincides with disjointness. The totahber of distinct elements used in the
underlying labeling is asymptotically minimized. & motivation of selecting set labeling
is to use cardinalities of labels to identify levaimbers of the underlying tree using
which it will be easier to discover adjacency adlwe non-adjacency for all vertices.
Our motivation to look at disjointness instead mtersection is that several well-known
graphs like the Petersen graph and Kneser graphsxaressed in the latter method. Our
main contribution is the development of a new Viization technique which solves the
issues of edge crossing and continuity of the Sire treemap' visualization technique
while maintaining all the good characteristics xiséng methods for visualizing multiple
hierarchies. Additional features are also discussay the modified labeling algorithm.

Keywords: Vertex labelling; graph drawing; taxonomy; visaalg multiple hierarchies;
information visualization; treemapping

AMS Mathematics Subject Classification (2010): 05C62, 00A66, 05C78

1. Introduction

Key terms which are related to multiple hierarclaes explained in this section.
Hierarchy: A hierarchy refers to an arrangement of items lictvitems are highlighted
as being "below" or "above" or "at the same lewslane another.
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Structure: Structure refers to an arrangement and organizatidnterrelated elements
of the system.

Tree structure: Hierarchical nature of the given structure carrdg@esented using tree
structure or tree diagram in a graphical form.

Tree: Simulation of tree structure is possible usingedrevhich are widely used data
structures for the implementation of abstract tate.

Taxonomy: Taxonomy refers to the practice and science ofssdiaation of
concepts/things and it also includes the principteat underlie such type of
classification.

Taxonomy Trees: They are special trees in which objects are reptes by leaf nodes
only, and classification is represented by all pthedes. An example of a taxonomy is
shown in Figure 1.

s =%,
Example of Taxonomy:

vegetable
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Figure 1: Taxonomy

Treemap: The treemap algorithm offers a practical way apthying large trees (with
millions of nodes) in limited space. The approattreemapping is recursive. One box is
allocated for the parent node and children of thdenare represented as boxes within it.
Practically using this approach it is possible éoder any tree within a standard size
display. Treemaps and its variants are studieeiaildn the literature [3,4,5,6,7].

For many applications it is necessary to consider aspects: the relationship
between different objects and identification of thigject type. One can show these
aspects using two different trees: 1) taxonomy ®ethe other tree where each node is
related to leaf nodes (object) of a taxonomy. Theblem is to design a visualization
technigue which effectively conveys both the dddedeatures i.e. relationships between
different objects (object tree) along with the miagpof each object with taxonomy.
Generally, in order to represent hierarchical dditected trees are used.

To the best of our knowledge, the best-known vigatbn technique for
representing multiple hierarchies is: Trees in aefmap technique [2]. The simplest
solutions are shown in Figure 2 in which a) both titees are drawn side by side. Here, it
is not possible to identify frequencies as welllasations of different object types
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quickly in the underlying object tree. b) Connegticbetween the two trees are shown
using additional edges. Neither of these solutimmsefficient for big data. Other
visualization techniques for the representatiothefsame object tree (which is shown in
Figure 2) are discussed briefly in the comparisectisn. The output of our proposed
method for the same object tree is also presentdthd sake of completeness in the same
section (see Figure 10).

(b) Linked tree diagram

1.1 Related work

Trees in a treemap technigue belong to the agghtinerclass of visualizing multiple
trees [9]. Agglomeration: Here single representat®oused in order to display multiple
parents of a node. One possible option is to refinodes with at least 2 parent links
across the trees in order to maintain the ovetaltgire more like a tree structure. Node
link representations are also used in which madtipbe structure is shown as the graph
structure (structure with cycles). For example, GLgystem [10]. Directed placement of
various overlapping treemaps is used in CristalVig$} in which shared nodes are used
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to communicate across multiple hierarchies. Thecess of the selected visualization
technique depends upon various factors includirgetaaudience and user interface [12].
Other related visualizations are ZTree [13], Mtdiits [14] and animation [15].

Summary of key contributions:

1. Development of a labeling algorithm for treesiakhuses asymptotically minimal
number of labels.

2. Application of this labeling scheme in infornmati visualization domain and solving
existing issues of edge crossings and continuit§ysnalizing multiple hierarchies.

3. Modified labeling algorithm using which it is ggble to identify neighbors as well as
non-neighbors quickly by reducing the underlyingrsk space for all nodes.

2. Discussion on the proposed labeling scheme
A set labeling of a graph G(V, E) is a functionM > P({1, 2, . .., k}) = {® } where
k € Z" such that

» fis one one. (Two distinct vertices must not ¢et $ame set label.)

e VU,vVeV, (U VvIeE Ee fu)Nf(v) =d

Universe size number (usn) of a graph is the least positive integemughsthat a set
labeling of G exists.

The closely related concept is intersection grafilé$ for finite sets in which
non-adjacency is characterised by disjointnesshef ¢orresponding subsets of the
underlying universal set. Other types of graph liageare very well studied in the
literature [17,18].

2.1. General resultson usn
Here, we present general bounds on usn.

Theorem 2.1. usn(G)> floor(logzn) + 1where G has n vertices.

Proof: Using floor(logn) elements, at most-fi norempty subsets can be generated
which, due to the requirement of label distinctnessn be used to label at most n-1
vertices. Here total number of vertices is n. Ideprto assign a non-empty as well as
unique label to h vertex 1 additional element is required in undadyuniverse.
Therefore value of usn is at least floorgiog1 for any given graph.

3. Resultson usn for trees
In this section, we derive results on usn (eitb@ceor asymptotic) on the following
classes of graphs: Binary trees, k-ary Trees apdslr

Theorem 3.1. usn(BT,) = O(log n), where BT=Complete binary tree ancenates the
total number of vertices of the BT.

Proof: We prove this result by an iterative algorithmiisféreeLabelling. The algorithm
is explained below:
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{1,3}

(2.6} {2,5}

{1,5} (1,35 1{1.6} {1,3,6}

Figure3: Input

Input: A valid labeling of the complete binary tree ofdtdih using exactly K labels.
Base case: usn(BJl = 5. Base case is shown in Fig. 3 with underlyialgeling set:
{1,2,3,5,6}

Output: A valid labeling of complete binary tree of height+ 1 using exactly K + 4

labels. The four new labels are a, b, c and d.

/[During the phase of the algorithm when the nundféevels increases from Lto L + 1,
labels of vertices which are present at level L-2and L+1 will be changed. Labels of all
other vertices will remain as it is./

Step 1: For all newly added vertices in level Lfifid their corresponding ancestors in
level L-1.

For all v (where v is a level L+1 vertex),

Label(v) = Label(ancestor(v) in level L-1 ). (Thevéls L+1 and L-1 are highly similar
with respect to adjacency with the remaining levBlsth of these levels are adjacent to
level L and non-adjacentto 1, 2, 3, ..., L-3).

Observation after step 1:

1. All the vertex-labels which are present in levelllwill have non-empty intersection
because corresponding ancestors are either sam&viorg non-empty intersection.
This is desirable because all vertices of level L are non-adjacent.

2. Layer L +1 and L-1 are non-adjacent and they lmereempty intersection after this
step.

Step 2:

The level L-2 is adjacent to L-1 but notto L + 1.
For all v (where vis a level L-2 vertex)

New-Label(y) = Old-Label(y) U {a, b, c, d}
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Step 3: Consider sequential ordering (left to figiftvertices which are present in level

L+1.
For each vertex;v
New-Label(vi) = Old-Label(y U {a}if imod 4 =1
= Old-Label(y) U {b}ifi mod 4 = 2
= Old-Label(y) U {c} ifimod 4 =3
= Old-LabeljJ {d} ifimod 4 =0

{1,3,7,8,9,10}

{25} {25} {25}

{2’6} {2:6} {256} {2:6} {2’5}
Figure 4: After Step 1 and 2

Vertices of level L- 2 and L + 1 will preserve neadjacency because the corresponding
labels have non-empty intersection after this step.

{1,3,789,10}

26T} (268} 269 {2610} 2,57} {2.58}12:5:9} {2,5,10}

Figureb5: After step 3

Step 4: Consider sequential ordering (left to Nigtitvertices which are present in level
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L: Vi, Vo, W

For each vertex;v

New-Label(y) = Old-Label(y) U {c, d}ifimod 2 =1
= Old- LabelfWJ {a, b} ifimod 2 =0

{1,3,789,10}

{1,5,9,10} {1,3,6,7.8}

{26.7} 268 {269 {2610 {257} (2581259 {2510

Figure6: Output
Observation after step 4:

Level L + 1 and L will preserve adjacency as wslnan-adjacency. The final labeling is
valid and preserves adjacency as well as non-aujsice

{1,37,89,10)

2511121314

2611,1213,14}
{136,7.8}

{15910} {13518 3101112
2591314

5,6,11,12}

1367814

{16,9,10,14} {136,782}

1357812 {169,102}

1501013 {1501044) 1357814

Figure7: After 2% iteration
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For the complete binary tree, n =1 + 2 + 4 + 2"« 2"-1 i.e. h = O(log n). For valid
labeling of each layer exactly 4 additional eleraearie required. Total number of layers
are O(log n). Therefore total number of elementired are 4*O(log n) which is O(log
n).

The next two Theorems are consequences of Thearfem 3

Theorem 3.2. USN of any k-ary tree is O(log n) where numbeverftices present in the
Tisn.

Proof: Using similar algorithm which is described for cdatp binary tree, it is possible
to do valid labeling of each layer of k-ary treéngsexactly K additional elements?ks a
constant which is not dependent upon n and totahbmu of layers are O(log n).
Therefore total number of elements required ar€¥log n) which is O(log n).

Theorem 3.3. Valid labeling of any given tree can be constrdaising O(log n) labels.
Proof: For the given tree, calculate maximum degree a.siden underlying (a-1)-ary
tree, with the same number of levels as the givea with valid labeling using O(log n)
labels. Convert the (a-1) ary tree into the giver tby taking vertex induced sub-graph.
For all the vertices which are present in the toegy the corresponding labels from the
underlying (a-1) ary tree. The resultant labelmgalid and uses at most O(log n) labels.

3.1. Discussion on additional features
It is possible to obtain the following crucial faegs with the use of modified labeling
algorithm using which identification of neighborsaell as non-neighbors will be easier.

Feature 1: Identification of non-neighbors quickly
Vertices having same label cardinalities are inddume level. So no edge between them.
(after ith iteration, this observation is true &rlevels except level i + 1,i+ 2 and i + 3.)

Feature 2: Identification of neighbors quickly by reducing the sear ch space

In trees, edges are present only between adjaagetsl After applying the modified
labeling algorithm, it is possible to assign lesember correctly to each vertex. This will
make search easier and the user can easily idehi@gt connections.

{1}

(2,3} T 1245

{1,4,5} (1.a.63 {1.3.5} {1,3,6}

Figure8: Input for the modified algorithm

Explanation of modified labeling algorithm. The etfive of the modified algorithm
is to generate labels of unique cardinalities kreasing order for all levels (except the
last 3 levels) and assign same cardinality lalekslitvertices which belong to the same
level. i.e. level 1 must have the minimum cardiyalabel whereas level i must have
labels with the maximum cardinality. In order totaih the desired features, the
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following two modifications are required.
1. Input tree. The modified input tree with valid Iéibg is shown in Figure 8.

2. After applying Valid Tree Labelling algorithm, adlel} to all vertex-labels which

are present at level L + 1. So overall use of 5 almments instead of 4.

Let G denote cardinalities of all vertex labels whichobg to level i. The
algorithm adds exactly 1 level after each iteratibne input complete binary tree has 3
levels. Therefore after i iterations, total i +€¥¢ls will be generated. Before applying the
modified algorithm, the cardinalities of labels are?, 3 (i.e. &= 1, G= 2 and G=3).

After first iteration, new cardinalities: 5,2,5After second iteration: 5,6,5,6,7.
After third iteration: 5,6,9,6,9,8. In general aft&iteration first i entries will be sorted in
the increasing order and=CC»+ 4 (true for all values of j such thakJj <i), C.1= C,
Cio= G and Gs= Gii+ 2. Using these detalils, it is possible to quickdentify the
location of each vertex in the underlying tree diehy.

4. Description of our proposed method and its advantages

Labeled object treemap technique is very similah&'Trees in a treemap' technique [2].
In the 'Trees in a treemap' technique, nodes qmesented by small circles which are
placed in the boxes that represent the objectsciadsd with the nodes. Edges are
represented by lines which connect these smalksirc

According to us, the Trees in a treemap’' methadia following problems:
1) Edge crossing is present in both the varianteetechnique.

2) Continuity: For very large data sets, it is vdifficult to follow the edge in order to
identify whether those two objects are connecteaobr

Figure 9: Trees in treemap visualization technique (fron) [2]

Our proposed method solves these problems by cotisiy an equivalent labeled
representation which does not contain edges andothe number of labels which are
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used in the representation are asymptotically mahiine. O(log n). If the labels of two
objects are disjoint then they are adjacent. dgeds present between them. The size of
each label is at most O(log n). Hence, it is pdsesib represent the information about
edges using an O(r)O(log n) matrix. Each row in the matrix correspsnd the label of

a node. If element j is present in the label ofitheode then entry (i, j) = 1 else 0. In the
worst case O(log n) comparisons are required irrordl determine whether two nodes
are adjacent or not. In the best case, only consitawe is required for the same case
because it may possible that tielement is present in both the labels.

Advantages: It offers a single representation in order to ali@ae object tree as well as
taxonomy. Crossings are not present in the reptaem Continuity is not visible but
one can still obtain the required information bycareful observation of labels. It is
possible to detect clusters and outliers using poposed method. The visualization
technique is highly compact because it requires Qu®) = O(log n) space in order to
store information about edges. This is better aspawed to sorted/unsorted adjacency
matrix technique because they require P@pace for the representation. Taxonomy is
represented using treemap.

From the previous section, it is clear that it isgble to give a valid labeling of any
given tree using O(log n) labels. By using theo®&on the output of the algorithm (see
figure 6), it is possible to construct a valid Ikhg of the given input tree. The final
visualization is shown in the figure 10.

. !
{16810} D
& @ ® @
1.55810} [2.6:8) {2.5} {2,510}
L
{2,683
B[ e
{2,6,7} @ &
{1,3,6,7.8} 2,54}
&
{Eﬁ.} {1.3,5:7 8}
’ &
{1.3,78,.5910}

Figure 10: Our proposed method: labeled object treemap
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5. Comparison with existing methods
Calculation of leaf word of the taxonomy:

Iw(t) =tif tis a leaf node
= concatenation of Iwjt Iw(t,),...,Iw(t) otherwise
Here {...% are subtrees of t.
For the given taxonomy, valid leaf words are BDEEPB and DEBF.

In the space filling visualization technique, adjacy matrices can be used. In Figure 11,

adjacency matrix representations are shown foedass well as unsorted dimensions.
For sorting, a leaf word is used.

In the colored tree diagrams, colors are assigndhe leaf nodes. This assignment is
based upon the order of occurrence of a leaf noded leaf word. Similar colors are
assigned to objects which are close to one andthéne underlying taxonomy (See
Figure 12). Leaf word is also used for sorting otgein Parallel coordinate views
technigue (See Figure 12).

We are going to consider following criteria forfdifent visualization techniques (for
multiple hierarchies) in order to compare them witin proposed technique.

Single representation: We are supposed to digglagionships between two distinct
structures: object tree and taxonomy. Thereforesitdesirable to have a single
representation for the provided multiple hierarshie

Crossing: There is no restriction on the size of the dabgt tree) So edge crossing
in the drawing must be reduced in order to seectimections between objects more
clearly.

Continuity: This parameter reflects the difficulty level inettiollowing the lines
which are representing edges in the underlyingalization technique.

Compactness: Visualization technique should be as compact asipke.

HEEEEEEEEEH S NG
2/B | 1E
6/8 | L] =B

i 3/D
R D
aD| | | | 5[E
100 | | 1] 6B 1
12/D TE
e ] [ee
5/E ] |eD
?fEI | .. j 10/D
B/E z L] [F
11/F 1 ] |12p

Figure 11: Adjacency matrices
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Figure 12: Colored tree diagrams and sorted parallel cootelina

In order to compare different techniques, repredimts of the same given trees (shown
in Figure 2) are displayed using various methodisth& figures presented in this section
are taken from [2].

Visualization Single Crossings Continuity Clusters Compact Taxonomy
Technique Representation Outliers

Separate Tree No No Straight No No Tree
diagrams diagram
Linked Tree No Yes Straight Difficult No Tree
diagrams diagram
Colored tree No No Straight Yes Medium Color
diagrams

Unsorted Yes No Mot visible No High Not visible
Matrix

Sorted Matrix Yes No Mot visible Yes High Order
Sorted Parallel | Yes Yes Straight Yes Medium Order

Coordinates

Treesin Yes Yes Straight Yes High Treemap
TM(straight
lines)

Treesin Yes Reduced Orthogonal | Yes High Treemap
TM(orthogonal
lines)

Labeled object | Yes No Notvisible Yes High Treemap
Treemap(Our
proposed
method)

Figure 13: Comparison with existing techniques

6. Conclusion and futurework

Our proposed data visualization technique showsttedl data (multiple hierarchies)

without any information loss. Using our techniqités possible to display large data sets
coherently. The method encourages the human egentipare different objects because
each object is represented by a unique label.dossible to identify objects which obey
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certain rules with the use of the underlying treprmsi@ucture. As shown in Figure 13, our
proposed method offers all the good characteristiexisting methods including single

representation, identification of clusters, compast as well as visible taxonomy using
treemap.

In future, we plan to design a more efficient iatdive version of the proposed
technique in which we would incorporate more feagurn the interactive version, we
want to highlight edges which are present withirtaie rectangle regions of the treemap
whenever the user clicks on it. Using this featwrsers can understand whether those
nodes which belong to the same object are relaieglath other or not. To improve
efficiency in computation, we plan to assign arraiibel to each node which represents
the level number. Edges are present only betwegcert layers so this idea may reduce
the search space. Within one rectangle regioneeemap, we will put disjoint labels i.e.
adjacent vertices within the alpha-neighborhoothem. This will help users to identify
connections rapidly. Whenever the user clicks garmicular node, we will highlight all
the neighbors of the node by doing real time cowrtjrt on labels and we will also
highlight the corresponding edges so that usersfiodnout the neighbors. To provide
more information related to adjacency among theeapave will align adjacent nodes
across different rectangles of treemaps in the damnizontal/vertical line. In order to
provide more information about the underlying hiehécal structure, we may plan to use
other variants of treemap: ordered/cushion treemap.
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