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Abstract. In this paper, all Neutrosophic rings( , )N R I are assumed to be finite 

commutative with identity element. An element ( , )x N R I∈ is called a Neutrosophic 

self-additive inverse if 0x x+ = . A characterization is given for Neutrosophic self-
additive inverse elements and their inverses in the classical finite commutative ring R

with identity. The arithmetic functions ( )S R  and ( )( , )S N R I exists, which counts the 

total number of self-additive and Neutrosophic self-additive inverse elements in R and

( , )N R I , respectively. The relations between ( )S R and ( )( , )S N R I are explored, and 

( ) ( )( , ) ( , )S N R I S N R I′≅  is proved, when R R′≅ . Furthermore, we obtain a 

formula for enumerating total number of self-additive and Neutrosophic self-additive 
inverse elements in finite fields np

F and Neutrosophic fields ( ( ), )np
N F I , respectively. 

Keywords: Neutrosophic rings; Neutrosophic fields; Neutrosophic self-additive inverse 
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1. Introduction 
Algebraic Neutrosophic theory is an abstract branch of modern mathematics that 
originated from classical algebra through the composition of Neutrosophic theory. Its 
development started few years ago, and now a days Neutrosophic analytic methods and 
results are important in various fields of engineering science and applied mathematics 
with its applications. The impetus came from mathematical logic and philosophical 
problems, whose theory had the greatest effect on the development and promotion of the 
modern and philosophical ideas in the real world problems. Neutrosophic mathematicians 
observed that the real world problems from different fields often enjoy related features 
and Neutrosophic properties. This fact was used for an effective unifying approach 
towards such Neutrosophic problems, the unification being obtained by the omission of 
unessential details. Hence, the advantage of such a Neutrosophic abstract approach is that 
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it concentrates on the essential facts, so that these facts become clearly visible. In this 
respect the Neutrosophic abstract method is the simplest and most economical method for 
treating Neutrosophic mathematical systems.  
   In the Neutrosophic abstract approach, one usually starts from a set of 
Neutrosophic elements satisfying certain Neutrosophic axioms. The nature of the 
Neutrosophic element is left unspecified. This is done on purpose of Neutrosophic theory. 
The theory then consists of logical consequences which result from the Neutrosophic 
axioms and are derived as theorems once and for all.   

The concept of finite Neutrosophic numbers, sets, structures and systems was 
introduced by Florentin Samarandache [9]. Kandasamy and Florentin Smarandache were 
shown in [10] how algebraic operations addition and multiplication could be performed 
in the Neutrosophic sets and Neutrosophic structures. These authors introduced in [11] 
the concepts of philosophical theory, in particular, the notion of indertminancy of the real 
world problem in algebra, and initiated the new way for the emergence of a new class of 
rings and fields, namely, Neutrosophic rings and Neutrosophic fields. In [2, 3], Agboola 
and others studied further properties of Neutrosophic rings with different illustrations and 
examples.  

The problem of classifying the self additive inverse elements of an arbitrary finite 
commutative semi ring with identity is also another open problem in Neutrosophic 
theory. However, the problem will be solved for certain classes of semi rings and ordered 
semi rings, see [13-15].  

Let R be a finite commutative ring with identity 1  and let ( , )N R I be its 

Neutrosophic ring with same identity 1and determinacy I , where 2I I= . The order of 

R and the order of ( , )N R I will be denoted by R and ( , )N R I , respectively. in this 

paper, ( )S R and ( )( , )S N R I denotes the set of self additive inverse elements of R and 

( , )N R I , respectively.  
The main purpose of this paper is to investigate the set of self and Neutrosophic 

self additive inverses elements of finite rings and fields. Further, we determine ( , )N R I

and ( )( , )S N R I . In particular, we compute ( )( , )nS N Z I , ( )( , )np
S N F I . 

Furthermore, we prove that the result, if two rings R and R′  are isomorphic, then 

( )( , )S N R I ( )( , )S N R I′≅ . 

 
2. Finite Neutrosophic rings and its basic properties 
This section reviews some basic and important notions about finite Neutrosophic rings 
and their properties. These results arise in important ways in this text to follow other 
sections.  We assume that the reader of this paper is familiar with the fundamentals of 
finite commutative rings [4]. Therefore, this section solely intended to provide a brief 
over view of the basic concepts of ring theory [1] and to consider terminology and 
notation employed in our discussion of Neutrosophic theory [12]. 

We begin with definition of Neutrosophic ring with few properties and results. 
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Definition 2.1. Let ( ), ,R + ⋅ be a finite ring. The set ( , )N R I R I= ∪

{ }: ,a bI a b R= + ∈ is called a Neutrosophic finite ring generated by R andI , where I

is the Neutrosophic element with the properties2I I= ,0 0I = , 2I I I+ = and 1I − does 
not exist. 
The Neutrosophic ring contains the following properties 

1. ( , )R N R I⊂ . 

2. ( , )N R I R⊄ . 

3. R is a ring with unity if and only if ( , )N R I is a Neutrosophic ring with unity. 

4. ( , )N R I is commutative if and only if rs sr= for all ,r s R I∈ ∪ . 

5. Every Neutrosophic ring is a ring. 
 

Theorem [12] 2.2. The Neutrosophic ring is a classical ring under the operations  

1. ( ) ( )a bI c dI+ + + ( ) ( )a c b d I= + + +  

2. ( )( )a bI c dI+ + ( ) ( )ac bc ad bd I= + + + for all a bI+ ,c dI+ ( , )N R I∈ . 

 
Definition 2.3. Let S be a subring of a ringR . Then ( , )N S I is a Neutrosophic subring 

of ( , )N R I if ( , )N S I is itself a Neutrosophic ring . 
 
Definition 2.4. Let ( , )N R I and ( , )N R I′ be any two Neutrosophic rings. The mapping 

: ( , ) ( , )f N R I N R I′→ is called a Neutrosophic ring homomorphism if f satisfies the 
following axioms. 

1. f is a ring homomorphism 

2. ( )f I I= . 
 
3.   Equivalent Neutrosophic rings 
In this section, we obtain a formula for enumerating total number of Neutrosophic 
elements in the finite Neutrosophic ring ( , )N R I . In particular, we compute 

( [ ], )nN Z i I . Also this section covers equivalent and non-isomorphic classical rings of 

( , )N R I with R is isomorphic to nZ , n nZ Z× , [ ]nZ i and 
[ ]

( )
nZ x

xπ
. 

Definition 3.1.  Let R and R′be any two finite rings. Then R is equivalent to R′ if and 
only if there exists a one-one correspondence between R and R′ ,  and we write R R′∼ . 

If  R is isomorphic to R′ , then there exist a bijective ring homomorphism 
between R and R′ , it can be written as R R′≅ . 

The following theorem about Neutrosophic finite rings is a basic result. It play an 
important role in finding the orders of various Neutrosophic rings of finite order.  
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Theorem 3.2.  Let R be a finite commutative ring with unity of ordern . Then
2( , )N R I n= . 

Proof: We have * {0}R R= − , { }* *:R I aI a R= ∈ and * *R R I+ { }*: ,a bI a b R= + ∈ . 

Therefore, ( , )N R I ( )* * *R R I R R I= ∪ ∪ + , where *R R I ϕ∩ = ,

( )* * *R I R R I φ∩ + = and ( )* *R R I R φ+ ∩ = . Hence,  

( , )N R I = * * *R R I R R I+ + + 2 2( 1) ( 1)n n n n= + − + − = . 

 
Theorem 3.3.  Let ( [ ], )nN Z i I be the Neutrosophic ring of Gaussian integers [ ]nZ i over 

modulon . Then, ( [ ], )nN Z i I 4n= . 

Proof:  We know that, 2[ ]nZ i n= . In view of the Theorem [3.2],  

( [ ], )nN Z i I *[ ] [ ]n nZ i Z i I= + * *[ ] [ ]n nZ i Z i I+ +
 

        
2 2( 1)n n= + − 2 2( 1)n+ − 4n= . 

 
Definition [7] 3.4. Let nZ be the ring of integers modulo n. Then n nZ Z× is a 

commutative ring with unity (1, 1)under addition and multiplication defined by 

1. ( , ) ( , )a b c d+ ( , )a c b d= + + and  

2. ( , )( , )a b c d ( , )ac bd= for every ( , )a b , ( , )c d are in n nZ Z× . 

The following theorem tells us that the finite commutative ring and Neutrosophic 
commutative ring are both equivalent but not isomorphic. 

 
Theorem 3.5.  Let 1n ≥ be a positive integer. Then the following conditions are hold. 

1. n nZ Z× ~ ( , )nN Z I .   

2. n nZ Z× ≇ ( , )nN Z I . 

Proof: For each positive integer 1n > , define a map : ( , )n n nf Z Z N Z I× → by the 

relation (( , ))f a b a bI= + for every ( , ) n na b Z Z∈ × with, ((0, 0)) 0f = ((1, 0)) 1f = ,

((0, 1))f I= . Clearly, f is a well-defined and one-one function because( , ) ( , )a b c d=
,a c b d⇔ = = ,a c bI dI⇔ = = a bI c dI⇔ + = + ( ) ( )( , ) ( , )f a b f c d⇔ = . 

Also, for any ( , )na bI N Z I+ ∈ , there exist ( , ) n na b Z Z∈ × such that

(( , ))f a b a bI= + , as f is surjective. Thus the classical ringn nZ Z× is equivalent to 

Neutrosophic ring ( , )nN Z I . 

Further, f is not a ring homomorphism, since((1, 0)(0, 1))f = ((0, 0)) 0f =
and ((1, 0)) ((0, 1)) 1f f I I= = .Hence, n nZ Z× is not isomorphic to ( , )nN Z I . 

Theorem [3.5] has a number of useful consequences.   
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Corollary  3.6.  Letn be a positive integer. Then the following are true. 
1. [ ]nZ i ~ ( , )nN Z I    

2. [ ]nZ i ≇ ( , )nN Z I , where [ ]nZ i is the ring of Gaussian integers over modulo n . 

Proof: It is obvious from the bijective mapa bi a bI+ +֏ with 0 0֏ ,1 1֏ and

i I֏ , where 2 1i = − and 2I I= . 
 
Corollary 3.7.  Let n be a positive integer and ( )xπ is a quadratic irreducible 

polynomial over nZ . Then the following are true 

1. 
[ ]

( ( ))
nZ x

xπ
~ ( , )nN Z I  

2. 
[ ]

( ( ))
nZ x

xπ
≇ ( , )nN Z I . 

Proof:  Follows from the bijective mapa b a bIα+ +֏  with 0 0֏ ,1 1֏ and Iα ֏  
where 2I I= and ( ) 0π α = . 
 
4.  Self additive inverse elements of finite Neutrosophic rings 
In this section, we define Neutrosophic self-additive inverse elements of Neutrosophic 
rings and studied their basic properties. Also, we obtain formulae for enumerating total 
number of self-additive inverse elements of various finite Neutrosophic rings. 

Furthermore, we compute the relation between ( )S R and ( )( , )S N R I . 

 
Definition 4.1.  Let ( , )N R I be a finite commutative Neutrosophic ring with unity. An 

element x in ( , )N R I is called self-additive inverse element if 0x x+ = . Otherwise x is 

called mutual additive inverse element in ( , )N R I . 

The set of all self additive inverse elements in ( , )N R I denoted by ( )( , )S N R I  

that is, ( )( , )S N R I { }( , ) : 2 0x N R I x= ∈ = and the of set all mutual additive inverse 

elements in ( , )N R I denoted by ( )( , )M N R I , that is,  

( )( , )M N R I { }( , ) : 2 0x N R I x= ∈ ≠ . 

 Always, the indeterminacyI is never self-additive inverse element for any 
Neutrosophic ring ( , )N R I if and only if ( )S R R≠ , because 0I I+ ≠ . 
 
Theorem 4.2.  1. ( )S R is a subring of a finite commutative ring R . 

                          2. ( )( , )S N R I is not a  Neutrosophic subring of a finite Neutrosophic 

commutative ring ( , )N R I with unity. 

Proof: 1. We have ( )S R { }: 2 0a R a= ∈ = . For any , ( )a b S R∈ , we have 2 0a = and

2 0b = . Therefore, 2( ) 2 2 0a b a b+ = + = , 2( ) 2 2 0a b a b− = − =  and 
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2( ) (2 ) 0 0ab a b b= = = . This implies that , , ( )a b a b ab S R+ − ∈ . Thus ( )S R is a 
subring ofR . 

 2.The set ( )( , )S N R I { }( , ) : 2 0x N R I x= ∈ = is not a Neutrosophic subring 

of ( , )N R I . For instance, ( ) { }8( , ) 0, 4, 4 , 4 4S N Z I I I= + is the set of self additive 

inverse elements of the Neutrosophic ring 8( , )N Z I , but ( )8( , )S N Z I is not 

Neutrosophic subring because ( )8( , )S N Z I does not contain the indeterminacy I . 

 
Remark 4.3. The Theorem [4.2] shows that ( )( , )S N R I  is not a Neutrosophic subring 

of ( , )N R I , but it is a semi Neutrosophic commutative subring of ( , )N R I with unity. 
 
Theorem 4.4. Let R  be a finite ring with unity. Then, ( )S R R= if and only if

( )( , )S N R I ( , )N R I= . 

Proof: Let ,a b be any two elements in a finite ring R with unity. Then, ( )S R R=
2 0, 2 0a b⇔ = =      
2 0, 2 0a bI⇔ = =  

( )2 0a bI⇔ + = , ( , )a bI N R I∀ + ∈  

( )( , ) ( , )S N R I N R I⇔ = . 

 

Lagrange’s Theorem [1] 4.5. Let A be a subring of a finite ring R . Then A R . 

 
Theorem  4.6.  Let nZ be a ring of integers modulo n . Then  

( ) 1 if isodd
( , )

4 if isevenn

n
S N Z I

n

= 


. 

Proof: First, by way of contradiction, suppose that ( )( , ) 1nS N Z I > if n is odd. So 

without loss of generality we may assume that( )( , ) 2nS N Z I = . Then there exist a 

subringA = { }0, : 2 0,a a a R= ∈ in nZ such that, by the Lagrange’s Theorem [4.5] for 

finite rings, nA Z  that is,2 nZ  which is not true because 2 is even and nZ is odd. 

So our assumption is not true, and hence ( )( , ) 1nS N Z I = when n is odd. 

Next, suppose n is even, then, by the Theorem [3.2], ( , )nN Z I is also even. 

Now let ( , )nx a bI N Z I= + ∈ for any , na b Z∈ . Therefore,  

2 0x = 2( ) 0a bI⇔ + =  

                  2 2 0 0a bI I⇔ + = +  

                                                                      2 0, 2 0a b⇔ = =  
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, 0,

2

n
a b  ⇔ ∈ 

 
, since 0 (mod ) 

2 2

n n
n+ ≡  

                       
0, , ,

2 2 2 2

n n n n
x I I

 ⇔ ∈ + 
 

. 

Hence ( )( , ) 4nS N Z I = whenn is even.  

 
Theorem 4.7. Let R and R′be two finite commutative rings with unity. If R R′≅ , then

( ) ( )( , ) ( , )S N R I S N R I′≅ . But converse is not true. 

Proof: SupposeR R′≅ . Then there exist an isomorphism f from a ring R onto  a ring

R′ such that ( )f x x′= , where (0 ) 0R Rf ′= and (1 ) 1R Rf ′= . We now show that

( ) ( )( , ) ( , )S N R I S N R I′≅ . For this we define a map

( ) ( ): ( , ) ( , )S N R I S N R Iϕ ′→ by the relation 

*

* *

if

( ) if

if

x x R

x x I x R I

x x I x R R I

ϕ
′ ∈

 ′= ∈
 ′ ′+ ∈ +

 

For every ( , )x N R I∈ * * *( )R R I R R I= ∪ ∪ + and * {0}R R= − .It is straight forward 
to see that ϕ is a bijective Neutrosophic semi ring homomorphism because

* *,R R R I R I′ ′֏ ֏ and * * * *R R I R R I′ ′+ +֏ are bijective maps. Next, let x be any 

self-additive inverse in the Neutrosophic ring( , )N R I , then ( )( , )x S N R I∈
2 0Rx⇔ =  

2 ( ) ( ) ( )x x xϕ ϕ ϕ⇔ = + ( )x xϕ= + (0 )Rϕ= 0R′=  

( )( ) ( , )x S N R Iϕ ′⇔ ∈ . 

This shows that ϕ preserves self-additive inverse elements between Neutrosophic semi 

rings ( ( , ))S N R I and ( ( , ))S N R I′ . Hence, ( ) ( )( , ) ( , )S N R I S N R I′≅ .  

 The converse of the Theorem [4.7] is not true, in general. Let 4R Z= and 

6R Z′ = we see that R and R′ are both commutative rings with unity. By the Definition 

[4.1], we have ( )4( , )S N Z I { }0, 2, 2 , 2 2I I= + and ( )6( , )S N Z I

{ }0, 3, 3 , 3 3I I= + . Clearly, ( )4( , )S N Z I ( )6( , )S N Z I≅
 
but 4Z ≇ 6Z . 

 
5. Self additive inverse elements of Neutrosophic finite fields 
The concepts of finite fields and their relations play a central role in number theory, 
algebraic number theory, and in applications of abstract algebra to communication 
theory, design theory, algebraic coding theory, algebraic cryptography, control theory and 
several other computer related areas, see  [5,6, 8].  
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 Basically, the finite cyclic groups n
Z

Z
nZ

= { }:a nZ a Z= + ∈ may be given the 

structure of a finite commutative ring with unity. But, just as the addition on Z induced 
addition on nZ , and similarly the multiplication on  Z induced a multiplication on nZ . 

So, the algebraic structure ( ), ,nZ ⊕ ⊙ is a finite commutative ring with unity 1of 

integers 0, 1, 2,..., 1n − with respect to addition ⊕ and multiplication ⊙ modulon . 

Further, we know that nZ  is a finite field of order n if and only if n is a prime. 

Notationally, ifp is a positive prime integer, then pF for the field with p elements. In 

particular, pF pZ= . Also, we shall notate np
F as a field with np elements over modulo 

p .  
 We next prove that the result for finding a formula for enumerating the total 
number of self additive inverse elements in  np

F . 

 
Theorem 5.1.  Let 2p ≠ be a prime and 1n ≥ a positive integer. Then 

( )np
S F

1 if ( )

if ( )

n n

n n

p p

n

p p

S F F

p S F F

≠= 
=

. 

Proof: Case 1. Suppose that( )n np p
S F F≠ . Then there exist at least one element 0a ≠ in

np
F such that a a≠ − . Assume that 0a a+ = for some 0a ≠ in np

F , then 1a− exist in 

np
F such that 1(2 )a a− = 10 0a− = 12( ) 0aa−⇒ = 2 0⇒ = , which is not true because

2p ≠ . So our assumption is wrong, so that 0a = is the only one self additive inverse 

element in np
F . So, in this case ( ) 1np

S F = . 

Case 2. If ( )n np p
S F F= , then obviously, each and every element in np

F is self additive 

inverse element. Hence, 2 0a = , for every np
a F∈ . 

 

Corollary  5.2.  For each positive integer 1n ≥ , we have 
2

( ) 2n

nS F = . 

Proof: It is obvious since 2 0a = for every 
2na F∈ . 

 Now starts Neutrosophic fields in the Neutrosophic theory. The study of 
Neutrosophic fields was introduced for the first time by Vasantha Kandaswamy and 
Florentin Samarandache in [12]. In this section we recall the definition of Neutrosophic 
finite field, and we are going to computing a formula for enumerating total number of self 
additive inverse elements in that field. 
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Definition 5.3. Let np
F be a finite field of order np . Then the Neutrosophic field 

generated by np
F and I under the operations on np

F denoted by ( , )np
N F I np

F I= ∪ , 

where 2 , 1, 0I I I I= ≠ ≠ and 1I − does not exist. 

 It is important to note that ( , )np
N F I is a Neutrosophic finite field but not a 

classical field, and it is only finite commutative ring with unity under the operations 
defined on the Theorem [2.2]. 
 
Theorem 5.4.  Let 1n ≥ be a positive integer. Then,  

( )( )( , )np
S N F I

2

1 if is odd

if is evenn

p

p p


= 


. 

Proof: Case 1. If p is odd, then ( )n np p
S F F≠ . Then, by the Theorem [ ], 

( )( )( , ) 1np
S N F I = . 

           Case 2. If p is even, then, in view of Theorem [3.2], we have

( ) 2 2( , ) ( )n

n n

p
N F I p p= = . This shows that ( )n np p

S F F= . Hence, by the Theorem 

[5.1], ( )( ) 2( , )n

n

p
S N F I p= . 

 
6. Conclusions  
An enumerating procedure of the self additive inverses elements of a finite Neutrosophic 
commutative ring with identity was presented. The self additive inverse elements of finite 
fields were examined through the Neutrosophic finite fields. Complete characterizations 
of the finite rings and fields of determining all self additive inverse elements of R and 

R′ such that ( ) ( )( , ) ( , )S N R I S N R I′≅  when R R′≅ . 
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