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1. Introduction 
In 1996, two classes of abstract algebras, BCK-algebras and BCI-algebras,were 
introduced by Imai and Iseki [1, 2]. It is known that the class of BCK-algebras is a proper 
subclass of BCI-algebras. Since then many researchers introduced and studied different 
classes of new algebras as a generalization of BCK/BCI-algebras. 

In 1983, Hu and Li introduced the notion of BCH-algebras [4] as a generalization 
of BCI-algebras and studied certain properties of these algebras. In this direction, Jun, 
Roh and Kim introduced a new class of algebra namely BH-algebras [6] as a 
generalization of BCH-algebras. Q-Algebras and QS-algebras [5] are further 
generalizations of BCH algebras. Recently, Ravi Kumar Bandaru introduced the notion 
of BRK-algebras [3] which is a generalization of BCI/BCI/BCH/Q/QS-algebras and 
studied various properties of BRK-Algebras. His study was confined to give various 
characterizations for these BCK/BCI/BCH/Q/QS-algebras with BRK-Algebras.  

Ravi kumar defined BRK-algebra as an algebra ,*,0)(= XX  of type (2,0) 
which satisfies the  axioms (i) xx =0*  and (ii) yxyx *0=*)*(  for any Xyx ∈, . It 

is known that in any BRK-algebra X  the following holds for any Xyx ∈,  (see [3]),   

    • 0=* xx   
    • )*(0*)*(0=)*(*0 yxyx   

    • 0=* yx  implies yx *0=*0   
He also introduced the notion of positive implicative BRK-algebra as a BRK-algebra 
which satisfies the condition yxyyyx *=)*(0*)*)*((  and gave a necessary and 
sufficient condition for a BRK-algebra to be positive implicative. 
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In this paper we establish an isomorphism theorem for quotient BRK-Algebra 
determined by homomorphism. Furthermore we make use of weak positive implicative 
BRK-algebras and study their properties via right maps and left maps. 

2. Quotient BRK-algebra determined by homomorphism 
Definition 2.1. Let ,*,0)(= XX  and ,*,0)(= YY  be BRK-algebras. A mapping 

YXf →:  is called a homomorphism from X  into Y  if )(*)(=)*( yfxfyxf  for 

all Xyx ∈, .  

 A homomorpism f  is called a monomorphism (resp., epimorphism) if it is 
injective (resp., surjective). A bijective homomorphism is called an isomorpism. Two 
BRK-algebras X  and Y  are said to be isomorphic, written YX ≅ , if there exists an 
isomorphism YXf →: . For any homomorphism YXf →:  the set 

0}=)(:{ xfXx ∈  is called kernel of f , denoted by Kerf  and the set }:)({ Xxxf ∈  

is called the image of f , denoted by Imf . 

Theorem 2.2. Let YXf →:  be a homomorphism of BRK-algebras. Define a relation 

  on X  by  if and only if )(=)( yfxf  for all Xyx ∈, . Then  is a congruence 

relation on X  which is called the congurence relation determined by the homomorphism 
f .  

Proof:  Clearly  is an equivalence relation on X . Next suppose  and . Then 
)(=)( yfxf  and )(=)( vfuf . Now since  

)*(=)(*)(=)(*)(=)*( vyfvfyfufxfuxf , . Thus  is a 

congruence relation on X .                                                                      
 We denote the equivalence class of x  determined by  by fx][  and the set of 

all equivalence classes by fX/  i.e  and .}:]{[=/ XxxfX f ∈  

Theorem 2.3. Let  be homomorphism on BRK-algebras. Define * on fX/  by 

fff yxyx ]*[=][*][ . Then )[0],*,/( ffX  is a BRK algebra. It is called the quotient 

BRK-algebra determined by the homomorphism f .  
Proof: Since  is a congruence relation on X, * is well defined. Now for any 

fXyx ff /][,][ ∈  we have   

      1.  ffff xxx ][=0]*[=[0]*][  and  

      2.  fffffffff yyxyxxyxxyx ][*[0]=]*[0=]*)*[(=][*]*[=][*)][*]([ .  

   Thus )[0],*,/( ffX  is a BRK-algebra.  

  
Remark 2.4. Clearly Kerff =[0] .  

Theorem 2.5. Let YXf →:  be homomorphism of BRK-algebras. Then the image of 

f  is isomorphic to the quotient BRK-algebra determined by f , i.e. ImffX ≅/ .   
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Proof: Define a mapping ImffX →/:θ  by )(=)]([ xfx fθ . Then   

      1.  θ  is well defined. Indeed suppose ff yx ][=][  but then 

)(=)(][][=][ yfxfyxyx fff ⇒∈⇒ . Thus )]([=)]([ ff yx θθ .  

      2.  θ  is homomorphism. Indeed for any fXyx ff /][,][ ∈  we have 

)]([*)]([=)(*)(=)*(=)]*([=)][*]([ fffff yxyfxfyxfyxyx θθθθ   

      3.  Clearly θ  is bijective.  
     Hence  ImffX ≅/ .  

  
3. Weak implicative BRK-algebra 
Here we will define weak implicative BRK-algebra and investigate its properties.  

Definition 3.1. A BRK-algebra ,*,0)(= XX  is said to be weak positive implicative if it 

satisfies )*(*)*(=*)*( zyzxzyx  for all yx,  and Xz ∈   
  

Example 3.2. Let {0,1,2,3}=X  be a set with the following cayley table:  
  

 *   0   1   2   3  
0  0   0   0   0  
1  1   0   1   0  
2  2   2   0   0  
3  3   3   3   0  

 
    Then ,*,0)(X  is a weak positive implicative BRK-algebra.  

    The next example shows the existence of weak implicative BRK algebra which is not 
BCK/BCI/BCH-algebra. 
  
Example 3.3. Let Z  be the set of integers. Define * on Z  by  

 




≠ 0if0,

0=if,
=*

y

yx
yx  

Then ,*,0)(Z  is a weak positive implicative BRK-algebra which is not BCK/BCI/BCH-
algebra.   

Lemma 3.4. In any weak positive implicative BRK-algebra X , the following hold for all 
Xyx ∈, .   

    1.  0=*0 x   
    2.  0=*)*( xyx   

    3.  yyxyx *)*(=*   

    4.  0=*))*(*( yyxx    

Proof. Let Xyx ∈, . Then   
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    1.  0=0*0=)*(*)*(=*)*(=*0 xxxxxxxx   

    2.  0=*0=*)*( yxyx   

    3.  yyxyyyxyxyx *)*(=)*(*)*(=0*)*(=*   

            4.  0=)*(*)*(=)*)*((*)*(=*))*(*( yxyxyyxyxyyxx .   

Theorem 3.5. Every weak positive implicative BRK-algebra is positive implicative.  
Proof. Let ,*,0)(= XX  be a weak positive implicative BRK-algebra. For any 

Xyx ∈, , we have yxyyxyyxyyyx *=*)*(=0*)*)*((=)*(0*)*)*(( . 

Thus X  is positive implicative BRK-algebra.   

Remark 3.6. The converse of the above theorem is not true.   

Example 3.7. Let {0,1,2}=X  be a set with Cayley table:  
  

 *   0   1   2  
0  0   2   2  
1  1   0   0  
2  2   0   0  

 
Then ,*,0)(X  is a positive implicative BRK-algebra [see 3] which is not a weak positive 

implicative (as 1)*(1*1)*(1=02=1*1)*(1 ≠ ).   

4. R-maps and L-maps in BRK-algebra 
In this section we investigate the properties of R-maps and L-maps in weak positive 
implicative BRK-algebras.  

Definition 4.1. Let ,*,0)(= XX  be a BRK-algebra and Xa ∈  be a fixed element. Then 

the map XXRa →:  given by axxRa *=)(  is called right map of  X and the map 

XXLa →:  given by xaxLa *=)(  is called left map of  X. The set of all left maps is 

denoted by )(XL .   

Definition 4.2. A right map aR  is called idempotent if aaa RRR =o  where o  is the 

usual composition of maps.   

Remark 4.3. Clearly for any a , aR  is idempotent if and only if axaax *=*)*(  for all 

Xx ∈ .   

Theorem 4.4. If a BRK-algebra ,*,0)(= XX  is weak positive implicative, then every 

right map on X  is idempotent.  
Proof. For any Xa ∈ , ))((=))((=*)*(=*=)( xRRxRRaaxaxxR aaaaa o  for all 
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Xx ∈ . Hence aaa RRR =o .     

Theorem 4.5. A BRK-algebra ,*,0)(= XX  is a weak positive implicative if and only if 
every right map is a homomorphism.  
Proof. Suppose X  is a weak positive implicative BRK-algebra. Then for each Xa ∈ , 

)(*)(=)*(*)*(=*)*(=)*( yRxRayaxayxyxR aaa .Thus aR  is a homomorphism. 

For the converse suppose every right map is a homomorphism. Now for any Xzyx ∈,,  

we have )*(*)*(=)(*)(=)*(=*)*( zyzxyRxRyxRzyx zzz . Hence X  is weak 
positive implicative.                                               

Theorem 4.6. In any BRK-algebra ,*,0)(= XX , if aL  is a homomorphism, then 0=a . 

Proof. Suppose aL  is a homomorphism. But then 

 0=*=0)*(*0)*(=(0)*(0)=0)*(0=(0)=0*= aaaaLLLLaa aaaa .        

 For a BRK-algebra ,*,0)(= XX  we define a binary operation ⊗  on )(XL  by 

)(*)(:=))(( xLxLxLL baba ⊗  for any )(, XLL ba L∈ . We have the following Lemma.  

Lemma 4.7. Let ,*,0)(= XX  be weak positive implicatice BRK-algebra. For any 

)(,, XLLL cba L∈ , we have   

    i. baba LLL *=⊗  i.e. )(XLL ba L∈⊗ .  

    ii. )()(=)( cacacba LLLLLLL ⊗⊗⊗⊗⊗ .  

Proof. For any Xx ∈  we have   

       i. )(=*)*(=)*(*)*(=)()(=))(( * xLxbaxbxaxLxLxLL bababa *⊗  and so      

          baba LLL *=⊗ .  

      ii. cbacbacba LLLLLL *)*(* ==)( ⊗⊗⊗
 

                         cbcacbca LLL **)*(*)*( = ⊗=
 

                         
)()( caca LLLL ⊗⊗⊗=    

Theorem 4.8 If ,*,0)(= XX  is a weak positive implicative BRK-algebra, then 

),),((=)( 0LXX ⊗LL  is a weak positive implicative BRK-algebra.  

Proof. It is enough to show that ),),((=)( 0LXX ⊗LL  is a BRK-algebra. Now for any 

)(, XLL ba L∈  we have   

    1.  aaa LLLL == 0*0⊗ , and  

    2.  bbabaaba LLLLLLL ⊗⊗⊗ 0*0*)*( ===)( .  

 Therefore )(XL  is a BRK-algebra and hence by the above lemma it is weak positive 
implicative.                                                                        
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Corollary 4.9. Let ,*,0)(= XX  be a weak positive implicative BRK-algebra. Then the 

map )(: XXf L→  given by xLxf =)(  is an epimorphism and )(/ XfX L≅  where 

fX/  is the quotient BRK-algebra determined by the homomorphism f .  
  

5. Conclusion 
In this paper, we have introduced the notion of weak positive implicative BRK-algebra 
and showed that the set of all left maps on weak positive implicative BRK-algebra is also 
weak positive implicative BRK-algebra. We have also investigated the conditions under 
which right maps and left maps becomes a homomorphsm. 
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