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1. Introduction 
Njastad [13] initiated the concept of nearly open sets in topological spaces.  Following 
this initiation, many research papers were introduced  in this area [1, 5, 10, 11, 12, 16, 
17]. Many researchers like Hatir [6, 7, 8, 9], Dontchev [3] and Ganster [4] proposed  
decompositions of continuity  in topological spaces.  It is an effort based on them to bring 
out a work in the name of decompositions of  M-continuity in minimal spaces using the 
new sets like m-A sets, m-B sets and m-C sets and the new mappings like M-A 
continuous,  M-B continuous and  M-C continuous.  In this paper, we obtain some 
important results in minimal spaces.   
 
2. Some basic results 
Definition 2.1.  A minimal space (X, mx) has the property I if the any finite intersection 
of   m-open sets is m-open. 
 
Remark 2.1. For subsets A and B of a minimal space (X, mx) satisfying property I, the 
following holds:  
         m-Int (A ∩ B) = m-Int(A) ∩ m-Int(B). 
 
Definition 2.2. [15] A  minimal  structure  mx  on  a  nonempty  set  X   is  said  to  have  
property  B  if  the  union  of   any  family  of  subsets  belonging  to  mx   belongs  to  mx. 
 
Lemma 2.1. [15]  The following are equivalent for the minimal space (X, mx). 
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  (i) mx have property B. 
 (ii) If mx-Int(E) = E, then E ∈ mx. 
(iii) If mx-Cl(F)  = F, then Fc ∈ mx. 

 
Example 2.1.  For subsets A and B of a minimal space (X, mx) satisfying property B, the 
following does not hold: 
             m-Int(A ∩ B) = m-Int(A) ∩ m-Int(B). 
Let X= { a, b, c, d}, mx = {φ, X, {a}, {a, b}, {a, c}, {b, c}, {a, b, c}} 
Let A ={a, b} and B = {b, c}. Then A ∩ B = {b}.  
We have m-Int(A) = {a, b}; m-Int(B) = {b, c} and m-Int(A) ∩ m-Int(B) = {b}.  
But   m-Int(A ∩ B) = φ. Hence m-Int(A ∩ B) ≠ m-Int(A) ∩ m-Int(B). 
 
3. m-C sets 
 
We introduce the following sets [2]: 
 
Definition 3.1.  A subset S of  X is said to be 

(i) regular m-open if     S  =  m-Int(m-Cl(S)),  
(ii) regular m-closed  if  S  =  m-Cl(m-Int(S)). 

The family of all regular m-closed sets of X is denoted m-RC(X).  
 

Definition 3.2.  A subset S of X is said to be  
(i) a m-A set if  S = M ∩ N where M is m-open and N ∈ m-RC(X), 
(ii) a m-t set  if m-Int(m-Cl(S)) = m-Int(S),   
(iii) a m-B set if  S = M ∩ N where M is m-open and N is a m-t set, 
(iv) a m-h set if m-Int(m-Cl(m-Int(S))) = m-Int(S),   
(v) a m-C set if  S = M ∩ N where M is m-open and N is a m-h set. 

 
Example 3.1.  Let X = {a, b, c} and  mx = {φ, X, {a}, {b}, {a, b}}.  
Then the sets in  {φ, X, {b, c}, {a, c}, {c}} are called mx-closed. 
 
Example 3.2.  Let X  = {a, b, c} and mx  =  {φ, X, {a}, {c}, {a, b}, {a, c}}.  Then the sets 
in  {φ, X, {b, c}, {a, b}, {c}, {b}} are called mx-closed. 
 
Example 3.3. Let X = {a, b, c} and mx = {φ, X, {a, b}, {b, c}}. Then the sets in                   
{φ, X, {c}, {a}} are called mx-closed. 
 
Remark 3.1. It is evident that any m-open set of X is an m-α-open and each                       
m- α -open set of  X is both m-semi-open and m-preopen.  But the separate converses are 
not true. 
 
Theorem 3.1.  If A and B are two m-t sets of a space X satisfying property I, then     A ∩ 
B is a m-t set in X. 
Proof:  Since A ⊆ m-Cl(A),  
                           m-Int(A∩B) ⊆  m-Int(m-Cl(A∩B))  
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                                                ⊆  m-Int(m-Cl(A) ∩ m-Cl(B))  
                                                =  m-Int(m-Cl(A)) ∩ m-Int(m-Cl(B)) 
                                                =  m-Int(A) ∩m-Int(B)(since A, B are m-t sets)    
                                                =  m-Int(A ∩ B).  
 Thus     m-Int(m-Cl(A ∩ B)) = m-Int(A ∩ B) and A ∩ B  is m-t set. 
 
Theorem 3.2.  If A is a m-t set of  X and B ⊆ X with A ⊆ B ⊆ m-Cl(A) then B is a m-t 
set. 
Proof:  We note that m-Cl(B)  ⊆  m-Cl(A).  
So we have  
             m-Int(B) ⊆  m-Int(m-Cl(B))  
                            ⊆  m-Int(m-Cl(A))  
                            =  m-Int(A) ⊆ m-Int(B).   
Thus    m-Int(B)  =  m-Int(m-Cl(B)) and therefore B is a m-t set. 
 
 Remark 3.2.  The union of two m-h sets need not be a m-h set.  Refer Example 3.1, {a} 
and {b} are m-h sets but {a, b} is not  m-h set. 
 
Remark 3.3.  Let (X, mx) have property I. Then the intersection of any two m-h sets is 
a m-h set. 

 
4. Comparison 
Theorem 4.1.  Any m-open set is an m-A set. 
Proof:  S = X ∩ S where X ∈ m-RC(X) and S is m-open.  The proof is completed. 
 
Remark 4.1. The converse of Theorem 4.1 is not true.  Refer Example 3.1, {b, c} is m-A 
set but not m-open. 
 
Theorem 4.2.  Any m-closed set is a m-t set. 
Proof:  Since A = m-Cl(A),  m-Int(A) = m-Int(m-Cl(A)). The proof is completed. 
 
Remark 4.2.  The converse of Theorem 4.2 is not true. Refer Example 3.1, {a} is m-t set 
but not m-closed. 
 
Theorem 4.3.  A regular m-open set is a m-t set. 
Proof:  Since S = m-Int(m-Cl(S)), m-Int(S) = m-Int(m-Cl(S)).  
The  proof  is completed. 
 
Remark 4.3. The converse of Theorem 4.3 is not true.  Refer Example 3.1, {c} is a m-t 
set but not regular m-open. 
 
Theorem 4.4.  Let (X, mx) have property B. Then every regular m-open set is     m-
open. 
Proof:  Suppose S = m-Int(m-Cl(S)).   
Then m-Int(S) = m-Int(m-Cl(S)) and we have S = m-Int(S).   
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Thus,  S is m-open. 
 
Remark 4.4. The converse of  Theorem 4.4 is not true.  Refer Example 3.1, {a, b} is m-
open but not regular m-open. 
 
Theorem 4.5.  Any m-t set is m-B set. 
Proof:  S = X ∩ S where X is m-open and S is m-t set.  The proof is completed. 
 
Remark 4.5.  The converse of Theorem 4.5 is not true.  Refer Example 3.2, {a} is a m-B 
set but not m-t set. 
 
Theorem 4.6.  Any m-open set is a m-B set. 
Proof:  Since S = X ∩ S where S is m-open and X is regular m-open, by Theorem 4.3, X 
is m-t set.  The proof is completed. 
 
Remark 4.6.  The converse of  Theorem 4.6 is not true. Refer Example 3.1, {c} is   m-B 
set but not m-open. 
 
Theorem 4.7.  A m-closed set is a m-B set. 
Proof:  It follows from Theorem 4.2 and Theorem 4.5. 
 
Theorem 4.8.  Let (X, mx) have property B. Then every m-A set is a m-B set. 
Proof:  S = X ∩ S where X is m-open and S is regular m-closed.  
Since S is m-closed, by Theorem 4.2, S is m-t set.  The proof is completed. 
 
Remark 4.7. The converse of Theorem 4.8 is not true. Refer Example 3.1, {c} is  m-B 
set but not m-A set. 
 
Theorem 4.9.  Any m-t set is m-h set. 
Proof:   Since    m-Int(S)  =  m-Int(m-Cl(S)),  
                          m-Cl(m-Int(S))  =  m-Cl(m-Int(m-Cl(S)))   
 implies m-Int(m-Cl(m-Int(S)))  =  m-Int(m-Cl(S))  =  m-Int(S).   
The proof is completed. 
 
Remark 4.8. The converse of Theorem 4.9 is not true. Refer Example 3.3, {b} is  m-h set 
but not m-t set. 
 
Theorem 4.10.  Any m-h set is m-C set. 
Proof:  S = X ∩ S where X is m-open and S is m-h set.  The proof is completed. 
 
Remark 4.9.  The converse of  Theorem 4.10 is not true.  Refer Example 3.2, {a} is m-C 
set but not m-h set. 
 
Theorem 4.11.   Any m-open set is m-C set. 
Proof:  S = X ∩ S where X is m-h set and S is m-open.  The proof is completed. 
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Remark 4.10.  The converse of  Theorem 4.11 is not true.  Refer Example 3.1, {c} is m-
C set but not m-open. 
 
Theorem 4.12.  A m-B set is m-C set. 
Proof:  S = X ∩ S where  X is m-open and S is m-t set.   
By Theorem 4.9, S is m-h set. The proof is completed. 
 
Remark 4.11.  The converse of  Theorem 4.12 is not true.  Refer Example 3.3, {b} is m-
C set but not m-B set. 
 
Remark 4.12.  A m-A set need not be m-semi-open as shown in the following example. 
Let X = {a, b, c} and mx = {φ, X, {a}, {b}, {a, b}, {b, c}, {a, c}}. Then the sets in                
{φ, X, {a}, {b}, {c}, {a, c}, {b, c}} are called m-closed.  We have {c} is m-A set but not     
m-semi-open. 
 
Remark 4.13. A m-semi-open set need not be m-A set as shown in the following 
example. 
Let X = {a, b, c} and mx = {φ, X, {a}}. Then the sets in  {φ, X, {b, c}} are called  m-
closed. We have {a, b} is m-semi-open but not m-A set. 
 
Remark 4.14. By the previous Theorems, Examples and Remarks, we obtain the 
following diagram: 

  (5) (6) 

(1)             (2)             (3)            (4) 

(7)  (8)  (9) (10)  

Here  (1)   =  m-C set, (2)  =  m-B set, (3)  =  m-open set,         

 (4)   =  m-α-open set, (5)  =  m-A set, (6)  =  m-semi-open set,  

 (7)   =  m-h set,  (8)  =  m-t set,  (9)  =  regular m-open  set,  

 (10)   =  m-preopen set. 
 

5. Decompositions of m-continuity 
Definition 5.1.  Let f : X → Y be a mapping where X has property B.  Then f is said  to 
be M-continuous [14] if f-1(V) is mx-open in X for every my-open set V in Y. 
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We introduce new classes of mappings as follows: 
 
Definition 5.2.  Let f : X → Y be a mapping.  Then f is said to be 

(i)  M-A continuous  if  f-1(V) is M-A set in X for every my-open set V in Y, 
(ii)  M-B continuous  if  f-1(V) is M-B set in X for every my-open set V in Y, 
(iii)  M-C continuous  if  f-1(V)  is m-C set in X for every my-open set V in Y. 

 
Theorem 5.1.  Let (X, mx) have property B. Then a subset S of  X is regular       m-
open if and only if it is both m-preopen and m-t set. 
Proof:  Let S be a regular m-open.   
By Theorem 4.3, S is m-t set.  Also by Theorem 4.4, S is m-open.   
Thus, S is m-preopen.   
Conversely, let S be both m-preopen and m-t set.   
Since m-Int(S) ⊆ S ⊆ m-Int(m-Cl(S)) = m-Int(S), S = m-Int(m-Cl(S)).   
Hence, S is regular m-open. 
 
Theorem 5.2.  Let (X, mx) have property B and property I. Then a subset S of  X is 
m-open if and only if it is both m-α-open and m-A set. 
Proof:  Let S be an m-open.  Then S is m-α-open and by Theorem 4.1, S is m-A set.   
Conversely, let S be both m-α-open and m-A set. 
Since S is m-A set, S = M ∩N where M is m-open and N ∈ m-RC(X).   
Since S is m-α-open, 
                M ∩ N  ⊆  m-Int(m-Cl(m-Int(M ∩ N)))  
                              ⊆  m-Int(m-Cl(m-Int(M) ∩m-Int(N))) 

                 =  m-Int(m-Cl(M ∩ m-Int(N)))   
 as  M is    m-open ⊆ m-Int(m-Cl(M)∩m-Cl(m-Int(N)))  
                               = m-Int(m-Cl(M) ∩ N) 
 As    N ∈ m-RC(X)  ⊆  m-Int(m-Cl(M)) ∩ m-Int(N)                          (1) 
    
 Since M ⊂ m-Int(m-Cl(M)), by (1)  
                   S  =  M ∩ N = (M ∩ N)I M  
                       ⊆ (m-Int(m-Cl(M)) ∩ m-Int(N)) ∩ M  
           =  M ∩ m-Int(N) 
                        =  m-Int(M ∩ N) by property I = m-Int(S). 
Therefore, S ⊆ m-Int(S).  But m-Int(S) ⊆ S.   
Hence, S is m-open. 
 
Theorem 5.3.  Let (X, mx) have property B and property I. Then a subset S of  X is    
m-open if and only if it is both m-α-open and m-B set. 
Proof:  Let S be an m-open.  Then S is m-α-open.  Also, by Theorem 4.6, S is m-B set.   
Conversely, let S be both m-α-open and m-B set.   
Since S is m-B set, S = X ∩ S where X is m-open and S is m-t set.   
Then S = X ∩ S ⊆ X ∩ m-Int(m-Cl(S)) (as S is m-preopen) = X ∩ m-Int(S) (as S is m-t 
set).  
We have S ⊆ X ∩ m-Int(S).   
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Hence  S ⊆ m-Int(X ∩ S) by property I and S ⊆ m-Int(S).  
But always  m-Int(S) ⊆ S.  Thus S = m-Int(S) and by property B, S is m-open. 
 
Theorem 5.4.  Let (X, mx) have property B  and property I. Then a subset S of  X is   
m-open  if and only if it  is both m-α-open  and m-C set. 
Proof:  Let S be an m-open in X.  Then S is m-α-open and by Theorem 4.11, S is   m-C 
set.   
Conversely, let S be  both m-α-open  and  m-C set.   
Since S is m-C set, S = M ∩ N where M is m-open and N is m-h set.   
Since S is m-α-open set,  
                       S ⊆ m-Int(m-Cl(m-Int(S)))  
                          = m-Int(m-Cl(m-Int(M))) ∩ m-Int(m-Cl(m-Int(N))) 
                          = m-Int(m-Cl(M)) ∩ m-Int(N) (as M is m-open and N is m-h set).  
             Now  S = M ∩ N  
                           = M ∩ (M ∩ N) 
                           = M ∩ S  
                          ⊂ M ∩ (m-Int(m-Cl(M)) ∩ m-Int(N))  
                           =  M ∩ m-Int(N) (as M ⊆ m-Int(m-Cl(M))) 
                           = m-Int(M ∩ N) (by property I)  =  m-Int(S).   
Thus, S ⊆ m-Int(S) and m-Int(S) ⊆ S.   
Hence, by property B, S is m-open. 
 
Theorem 5.5. Let (X, mx) have property B and property I and f : X → Y be a 
mapping.  Then f  is  M-continuous if and only if  

(i)    it  is M-α-continuous and  M-A continuous. 
(ii)it  is M-α-continuous and  M-B continuous. 
(iii) it is M-α-continuous and  M-C continuous. 

Proof:  It is  the decompositions of  M-continuity from Theorems 5.2,  5.3  and 5.4. 
 
Remark 5.1. In the above four theorems, both properties are used and so the above four 
theorems are nothing but topological results. 
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