Annals of Pure and Applied Mathematics

Vol. 13, No. 2, 2017, 257-272

ISSN: 2279-087X (P), 2279-0888(online)

Published on 16 May 2017 www.researchmathsci.org

DOI: http://dx.doi.org/10.22457/apam.v13n2a13

Intuitionistic Q_1 -Fuzzy k-ideals of Semi-Ring

P.Murugadas and M.R.Thirumagal

Department of Mathematics, Annamalai University, Annamalainagar-608002, India. Corresponding author. Email: bodi_muruga@yahoo.com

Received 11 April 2017; accepted 8 May 2017

Abstract. A Q-fuzzy set is a mapping from $X \times Q \to [0,1]$ where X is the universe of discourse and Q is a non-empty set. Some works has been emanated for this Q-fuzzy set. In all the above work the set 'Q' is treated as a non-empty set without any algebraic structure. This article presents an algebraic structure for Q-fuzzy set over a semiring named as Q_1 -fuzzy set and provide some properties and results.

Keywords: Semi-ring, right (left) k-subsemigroup, Q_1 -fuzzy right (left) k-ideal, intuitionistic Q_1 - fuzzy right (left) k-ideal, Q-fuzzy set, intuitionistic Q-fuzzy set.

AMS Mathematics Subject Classification (2010): 03E72, 20M12

1. Introduction

Following the introduction of fuzzy set theory by Zadeh [18], the fuzzy set theory proclaimed by Zadeh himselfand others have found many applications in various field of Science, Engineering, Medical science etc. Pu and Liu [13] deduced the notion of fuzzy points, the fuzzy points of a semi-group G_s are the key tools to describe the algebraic system of G_s . Wang et al., [17] characterized fuzzy ideals as fuzzy points of semi-group. Liu [10] exposed fuzzy subrings as well as fuzzy ideals in rings. Malik and Mordeson [11] investigated some properties of fuzzy ideals in semi-ring. Rosenfeld [14], Das [15] and Bhattacharya [2] found the connection between fuzzy groups and so called level subgroups. Henriksen [4] defined a more restricted class of ideals in semiring, which is called the class of k-ideals, with the property that if the semiring S is a ring then a complex in S is a k-ideal iff it is a ring ideal. Dutta and Biswas [3] studied fuzzy kideals of semiring. Kar and Purkait [6] characterized the regularity of some semiring by special fuzzy k-ideals and general properties of fuzzy k-ideals. Notions of fuzzy kideals, prime fuzzy k-ideals and semi regularity of semiring are described by Ahsen et al., [5]. Atanassov [1] introduced intuitionistic fuzzy sets which is a generalization of the notion of fuzzy sets. The fuzzy sets give the degree of membership of an element in a given set, while intuitionistic fuzzy sets give both a degree of membership and a degree of non-membership. Muhammad and dudek [12] put forth the concept of IFS to semirings and intuitionistic fuzzy left k-ideals of semirings and analyzed their properties. Solairaja

and Nagarajan [16] constructed Q-fuzzy group. Kim [7] studied intuitionistic Q-fuzzy semiprime ideal in semigroups. Lekkoksung [8,9] investigated some properties of a Q-fuzzy interior ideal of a semigroup and further applied the concept of intuitionitic Q-fuzzy set to semiring and intuitionistic Q-fuzzy right k-idealin semiring.

In this article, the universe of discouse is taken as a semiring and the set Q is considered as a semigroup. In section 2, basic definitions needed for the study are recalled. In section 3, right (left) k-subsemigroup of semigroup is introduced with an example. Strongness between Q-fuzzy (semiring, ideals) and Q_1 -fuzzy (semiring, ideals) are analyzed with suitable examples. Level subsets for the Q_1 -fuzzy set has been defined and the level set properties are discussed. Further Q_1 -fuzzy k-ideal has been introduced and an interesting results with k-subsemigroup is studied. The same has been extended to intuitionistic fuzzy semiring.

2. Preliminaries

In this section we recall some definitions needed for our study.

Definition 2.1. A non-empty set S together with two binary operation '+' and '.' is said to be a semiring if

- 1) (S,+) is a commutative semigroup,
- 2) (S,.) is a semigroup,
- 3) a(b+c) = ab + ac and $(a+b)c = ac + bc \ \forall a,b,c \in S$.

We say that a semiring S has a zero if there exists an element $0 \in S$ such that 0x = x0 = 0 and 0+x = x+0 = x for all $x \in S$.

Definition 2.2. A non-empty subset A of S is said to be a subsemiring of S if A is closed under the operation of addition and multiplication in S.

Definition 2.3. A subsemiring of S is called a right (*left*) ideal of S if for all $r \in S, x \in I, xr \in I(rx \in I)$. A subsemiring I of a semiring S is called an ideal of S if it is both left and right ideal.

Definition 2.4. An (A right (left)) ideal I of a semiring S is called a (right (left)) k-ideal of a semiring S if x + y, $y \in I$ implies $x \in I$.

Definition 2.5. A mapping $\mu: X \times Q \to [0,1]$, where X, Q are arbitrary non-empty sets, is called a Q-fuzzy set of X. An upper level set of a Q-fuzzy set μ denoted by $U(\mu;t)$ is defined as $U(\mu;t) = \{x \in X \mid \mu(x,q) \geq t, \forall q \in Q\}$ and a lower level set of a Q-fuzzy set μ denoted by $L(\mu;t)$ is defined as $L(\mu;t) = \{x \in X \mid \mu(x,q) \leq t, \forall q \in Q\}$, for all $t \in [0,1]$.

Definition 2.6. A fuzzy set μ of a semiring S is said to be a fuzzy semiring if for all $x, y \in S$,

- 1) $\mu(x+y) \ge \min\{\mu(x), \mu(y)\}$
- $2) \mu(xy) \ge \min\{\mu(x), \mu(y)\}.$

Definition 2.7. A fuzzy set μ is called a fuzzy left ideal(right ideal) of semiring S if for all $x, y \in S$

- $1) \mu(x+y) \ge \min\{\mu(x), \mu(y)\}$
- $2) \mu(xy) \ge \mu(y)(\mu(xy) \ge \mu(x)).$

Definition 2.8. A fuzzy left ideal μ is called a fuzzy left k-ideal of a semiring S if for all $x, y, z \in S, x + y = z$ implies $\mu(x) \ge \min\{\mu(y), \mu(z)\}$.

Definition 2.9. An intuitionistic fuzzy set defined on non-empty sets X is an object of the form $A = \{\langle x, \mu_A(x), \lambda_A(x) \rangle | x \in X \}$, where the function $\mu_A : X \to [0,1]$ and $\lambda_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the non-membership (namely $\lambda_A(x)$) for each element $x \in X$, to the set A, respectively, and $0 \le \mu_A(x) + \lambda_A(x) \le 1$ for each $x \in X$. Obviously, every intuitionistic Q-fuzzy set μ we can have $A = \{\langle x, \mu_A(x), \lambda_A(x) \rangle | x \in X \}$.

For any intuitionistic fuzzy set A,B of X, define

$$(A \cap B)(x) = (min\{\mu_A(x), \mu_B(x)\}, max\{\lambda_A(x), \lambda_B(x)\})$$
 and

$$(A \cup B)(x) = (\max\{\mu_A(x), \mu_B(x)\}, \min\{\lambda_A(x), \lambda_B(x)\})$$

Definition 2.10. An intuitionistic Q-fuzzy set defined on non-empty sets X and Q is an object of the form $A = \{\langle x,q,\mu_A(x,q),\lambda_A(x,q)\rangle \mid x\in X, q\in Q\}$, where the function $\mu_A: X\times Q\to [0,1]$ and $\lambda_A: X\times Q\to [0,1]$ denote the degree of membership (namely $\mu_A(x,q)$) and the non-membership (namely $\lambda_A(x,q)$) for each element $x\in X, q\in Q$ to the set A, respectively, and $0\le \mu_A(x,q)+\lambda_A(x,q)\le 1$ for each $x\in X, q\in Q$. Obviously, every Q-fuzzy set μ we can have $A=\{\langle x,q,\mu_A(x,q),\lambda_A(x,q)\rangle\mid x\in X, q\in Q\}$. For the sake of simplicity, we shall use the symbol $A=(\mu_A,\lambda_A)$ for the intuitionistic Q-fuzzy set $A=\{\langle x,q,\mu_A(x,q),\lambda_A(x,q)\rangle\mid x\in S, q\in Q\}$. Obviously for an IQFS $A=(\mu_A,\lambda_A)$ in X, when $\lambda(x,q)=1-\mu(x,q)$, for every $x\in X, q\in Q$, the IQFS A is a QFS.

Example 2.11. Consider the semiring $S = (Z_6, \oplus, \odot)$ and Q be any non empty set. Let $A = \{0, 2, 4\} \subseteq S$. Define $\mu_A : S \times Q \to [0, 1]$ and $\lambda_A : S \times Q \to [0, 1]$ as

$$\mu_{\scriptscriptstyle A}(x,q) = \begin{cases} 0.7, & \text{if } x \in A, q \in Q, \\ 0.3, & \text{otherwise} \end{cases}$$
 and

$$\lambda_{A}(x,q) = \begin{cases} 0.2, & \text{if } x \in A, q \in Q, \\ 0.6, & \text{otherwise.} \end{cases}$$

Clearly $A = (\mu_A, \lambda_A)$ is an Intuitionistic Q - fuzzy set.

Definition 2.12. Consider a fuzzy set μ of a semiring S with the following condition

- 1) $\mu(x + y, q) \ge \min\{\mu(x, q), \mu(y, q)\}$
- $2) \mu(xy,q) \ge \min\{\mu(x,q), \mu(y,q)\}$
- 3) $\mu(xy,q) \ge \mu(y,q)$
- 4) $(\mu(xy,q) \ge \mu(x,q))$ for all $x, y \in S, q \in Q$.

Then μ is said to be a Q-fuzzy semiring if it satisfies (1) and (2) Q-fuzzy left ideal if it satisfies (1) and (3) and Q-fuzzy right ideal if it satisfies (1) and (4).

Throughout this paper $(Q_1,.)$ is a semigroup.

3. Q_1 - fuzzy ideals of semi-ring

Definition 3.1. Let $(G_S,.)$ be a semigroup. A subsemigroup A of G_S is said to be a right (left) k-subsemigroup of G_s if $r_1.r_2 \in A$ and $r_2 \in A(r_1 \in A)$ implies $r_1 \in A$ ($r_2 \in A$). In the following example we show that a subsemigroup of a semigroup need not be a right(left) k-subsemigroup of a semigroup.

Example 3.2. Consider the semigroup (Z_6, \odot) . $I = \{0,1,3,5\}$ is clearly a subsemigroup of (Z_6, \bigcirc) . But I is not a right (left) k-subsemigroup of (Z_6, \bigcirc) . If $r_1 = 2, r_2 = 3$ then $r_1.r_2 = 0 \in I$ and $r_2 = 3 \in I$ but $r_1 = 2 \notin I$. If $I = \{1, 3, 5\}$, then I is a right (left) ksubsemigroup of (Z_6, \odot) .

Definition 3.3. Let $(Q_1,.)$ be a semigroup. A Q_1 -fuzzy set μ of a semi-ring S is said to be a Q_1 -fuzzy semi-ring if

- 1) $\mu(x + y, q) \ge \min{\{\mu(x, q), \mu(y, q)\}}$
- 2) $\mu(xy,q) \ge \min\{\mu(x,q), \mu(y,q)\}$
- 3) $\mu(x,q_1,q_2) \ge \min\{\mu(x,q_1), \mu(x,q_2)\} \forall x, y \in S, q, q_1, q_2 \in Q_1.$

Example 3.4.Consider the semi-ring $S = (Z_6, \oplus, \odot)$ and $Q_1 = (Z_4, \odot)$.

Let
$$A = \{0, 2, 4\} \subseteq S$$
 and $M = \{0, 1\} \subseteq Q_1$. Define $\mu : S \times Q_1 \rightarrow [0, 1]$ as

$$\mu(x,q) = \begin{cases} 1, & \text{if } x \in A, \text{and } q \in M, \\ 0, & \text{otherwise} \end{cases}$$

Clearly it is a Q₁-fuzzy semi-ring of S.

Remark 3.5. The following example shows that every Q_1 -fuzzy semi-ring is Q-fuzzy semi-ring of S, but the converse need not be true.

Example 3.6. Consider the semi-ring $S = (Z_6, \oplus, \odot)$ and $Q = (Z_4, \odot)$. Let $A = \{0, 2, 4\} \subseteq S$ and $M = \{2, 3\} \subseteq Q$.

Define $\mu: S \times Q \rightarrow [0,1]$ as

$$\mu(x,q) = \begin{cases} 1, & \text{if } x \in A, \text{and } q \in M, \\ 0, & \text{otherwise} \end{cases}.$$

Since $0 = \mu(4,0) = \mu(4,2\times2) \ngeq \mu(4,2) \land \mu(4,2) = 1$. It does not satisfy condition (3) for Q_1 -fuzzy set μ of a semi-ring S. Clearly μ is a Q-fuzzy semi-ring but not Q_1 -fuzzy semi-ring. Therefore Q-fuzzy semi-ring does not imply Q_1 -fuzzy semi-ring S.

Definition 3.7. An upper level set of a Q_1 -fuzzy set μ is denoted by,

- 1) If $q \in Q_1$ is fixed then $U_q(\mu;t) = \{x \in S \mid \mu(x,q) \ge t\}$,
- 2) If $x \in S$ is fixed then $\overline{U}_x(\mu;t) = \{q \in Q_1 \mid \mu(x,q) \ge t\}$ and a lower level set of a Q_1 -fuzzy set μ is denoted by,
- 1) If $q \in Q_1$ is fixed then $L_q(\mu;t) = \{x \in S \mid \mu(x,q) \le t\}$,
- 2) If $x \in S$ is fixed then $\overline{L}_x(\mu;t) = \{q \in Q_1 \mid \mu(x,q) \le t\}$.

Lemma 3.8. Let μ be a Q_1 -fuzzy set of a semiring S. Then μ is a Q_1 -fuzzy semiring of S iff $U_q(\mu;t)$ is a semiring of S and $\overline{U}_x(\mu;t)$ is a subsemigroup of Q_1 for $q \in Q_1$, $x \in S$ and for all $t \in [0,1]$ whenever nonempty.

Proof: Suppose μ is a Q_1 -fuzzy semiring of S and $U_q(\mu;t)$ and $\overline{U}_x(\mu;t)$ are nonempty for $t \in [0,1]$. Let $x,y \in U_q(\mu;t)$. Then $\mu(x,q) \geq t$, $\mu(y,q) \geq t$. Since $\mu(x+y,q) \geq \mu(x,q) \wedge \mu(y,q) \geq t$, implies that $x+y \in U_q(\mu;t)$. Again since $\mu(x,y,q) \geq \mu(x,q) \wedge \mu(y,q) \geq t$, implies that $xy \in U_q(\mu;t)$. Therefore $U_q(\mu;t)$ is a semiring of S. Let $q_1,q_2 \in \overline{U}_x(\mu;t)$ implies that $\mu(x,q_1) \geq t$, $\mu(x,q_2) \geq t$. Now $\mu(x,q_1,q_2) \geq \mu(x,q_1) \wedge \mu(x,q_2) \geq t$. This implies that $q_1,q_2 \in \overline{U}_x(\mu;t)$. Therefore $\overline{U}_x(\mu;t)$ is a subsemigroup of Q_1 .

Conversely, assume that each non-empty set $U_q(\mu;t)$ is a semiring of S and $\overline{U}_x(\mu;t)$ is a subsemigroup of Q_1 for all $t \in [0,1]$. If there exists $x,y \in S$ and $q \in Q_1$ such that $\mu(x+y,q) < \mu(x,q) \land \mu(y,q)$. Let $t \in [0,1]$ such that $\mu(x+y,q) < t \leq \mu(x,q) \land \mu(y,q)$. This shows that, for $x,y \in U_q(\mu;t)$, $x+y \notin U_q(\mu;t)$. This is a contradiction to the fact that $U_q(\mu;t)$ is a semiring of S and hence $\mu(x+y,q) \geq \mu(x,q) \land \mu(y,q) \ \forall x,y \in S$. Suppose there exists $x,y \in S$ and $q \in Q_1$ such that $\mu(xy,q) < \mu(x,q) \land \mu(y,q)$. Let $t \in [0,1]$ such that $\mu(xy,q) < t \leq \mu(x,q) \land \mu(y,q)$. This in case shows that $xy \notin U_q(\mu;t)$ for $x,y \in U_q(\mu;t)$. This is a contradiction to the fact that $U_q(\mu;t)$ is a semiring of S and hence $\mu(xy,q) \geq \mu(x,q) \land \mu(y,q)$ $\forall x,y \in S$. Similarly if there exists $x \in S$ and $q_1,q_2 \in Q_1$ such that $\mu(x,q_1,q_2) < \mu(x,q_1) \land \mu(x,q_2)$. Let $t \in [0,1]$ such that $\mu(x,q_1,q_2) < t \leq \mu(x,q_1) \land \mu(x,q_2)$. This in turn shows for $q_1,q_2 \in \overline{U}_x(\mu;t)$, $q_1,q_2 \notin \overline{U}_x(\mu;t)$ a contradiction to our assumption that $\overline{U}_x(\mu;t)$ is a subsemigroup of Q_1 . Hence $\mu(x,q_1,q_2) \geq \mu(x,q_1) \land \mu(x,q_2)$ $\forall x \in S, q_1, q_2 \in Q_1$. Therefore μ is a Q_1 - fuzzy semiring of S.

Definition 3.9. A Q_1 -fuzzy set μ of a semiring S is said to be a Q_1 -fuzzy right (left) ideal if

- 1) $\mu(x+y,q) \ge \mu(x,q) \land \mu(y,q)$
- 2) $\mu(xy,q) \ge \mu(x,q) [\mu(xy,q) \ge \mu(y,q)]$
- 3) $\mu(x, q_1, q_2) \ge \mu(x, q_1)(\mu(x, q_2)) \forall x, y \in S, q, q_1, q_2 \in Q_1$.

Example 3.10. Consider the semiring $S = (Z_6, \oplus, \odot)$ and $Q_1 = (Z_4, \odot)$. Let $A = \{0, 2, 4\} \subseteq S$ and $M = \{0, 1\} \subseteq Q_1$. Let $\mu: S \times Q_1 \to [0, 1]$ be defined as in Example [3.4]. Clearly μ is a Q_1 -fuzzy right (left) ideal of a semiring S.

Remark 3.11. Every Q_1 -fuzzy right(left) ideal of a semiring is Q-fuzzy right (left) ideal of a semiring S, but the converse need not be true.

Example 3.12. Consider the semiring $S = (Z_6, \oplus, \odot)$ and $Q = (Z_4, \odot)$. Let $A = \{0, 2, 4\} \subseteq S$ and $M = \{2, 3\} \subseteq Q$, define $\mu: S \times Q \to [0, 1]$ by $\mu(x, q) = \begin{cases} 1, & \text{if } x \in A, q \in M, \\ 0, & \text{otherwise.} \end{cases}$

Clearly $\mu(x,q)$ is a Q-fuzzy right (left) ideal of a semiring S, but not Q_1 -fuzzy right (left) ideal of a semiring S, since $\mu(0,1) = 0 \ngeq \mu(0,2) = 1$.

Theorem 3.13. Let μ is a Q_1 -fuzzy set of a semiring S. Then μ is a Q_1 -fuzzy right (left) ideal of S iff $U_q(\mu;t)$ is a right (left) ideal of S and $\overline{U}_x(\mu;t)$ is a right (left) of Q_1 for $q \in Q_1$, $x \in S$ and for all $t \in [0,1]$ whenever nonempty.

Proof: Suppose μ is a Q_1 -fuzzy right ideal of S and $U_q(\mu;t)$, $\overline{U}_x(\mu;t)$ are nonempty for $t \in [0,1]$. Let $x,y \in U_q(\mu;t)$. Then $\mu(x,q) \geq t$, $\mu(y,q) \geq t$. Since $\mu(x+y,q) \geq \mu(x,q) \wedge \mu(y,q) \geq t$, we have $x+y \in U_q(\mu;t)$. For $x \in U_q(\mu;t)$, $y \in S$, $\mu(x,y,q) \geq \mu(x,q) \geq t$, which yields $xy \in U_q(\mu;t)$ for $x \in U_q(\mu;t)$. Therefore $U_q(\mu;t)$ is a right ideal of S. Let $q_1 \in \overline{U}_x(\mu;t)$ and $q_2 \in Q_1$ then $\mu(x,q_1) \geq t$. Indeed $\mu(x,q_1,q_2) \geq \mu(x,q_1) \geq t$. This implies that $q_1,q_2 \in \overline{U}_x(\mu;t)$. Therefore $\overline{U}_x(\mu;t)$ is a right of Q_1 .

Conversely, assume that each non-empty set $U_q(\mu;t)$ is a right ideal of S and $\overline{U}_x(\mu;t)$ is a right ideal of Q_1 . If there exists $x,y\in S$ and $q\in Q_1$ such that $\mu(x+y,q)<\mu(x,q)\wedge\mu(y,q)$. Let $t\in[0,1]$ such that $\mu(x+y,q)< t\leq \mu(x,q)\wedge\mu(y,q)$. Then for $x,y\in U_q(\mu;t)$, we have $x+y\notin U_q(\mu;t)$. This is a contradiction to the hypothesis that $U_q(\mu;t)$ is a right ideal of S and hence $\mu(x+y,q)\geq\mu(x,q)\wedge\mu(y,q)$ $\forall\, x,y\in S$. Again if there exists $x,y\in S$ and $q\in Q_1$ such that $\mu(xy,q)<\mu(x,q)$. Let $t\in[0,1]$ such that $\mu(xy,q)< t\leq \mu(x,q)$. This shows that for $x\in U_q(\mu;t), xy\notin U_q(\mu;t)$ contradiction to our hypothesis that $U_q(\mu;t)$ is a right ideal of S and hence $\mu(xy,q)\geq\mu(x,q)\forall x,y\in S$ and $q\in Q_1$. Similarly, if $\mu(x,q_1.q_2)<\mu(x,q_1)$ for $x\in S$ and $q_1,q_2\in Q_1$. Let $t\in[0,1]$ such that $\mu(x,q_1.q_2)< t\leq \mu(x,q_1)$. Then for $q_1\in \overline{U}_x(\mu;t), q_1.q_2\notin \overline{U}_x(\mu;t)$, a contradiction to our assumption that $\overline{U}_x(\mu;t)$, is a right ideal of S. Hence $F(x,q_1,q_2)\geq\mu(x,q_1)$ for $F(x,q_1,q_2)$ is a right ideal of S.

Definition 3.14. A Q_1 -fuzzy right (left) ideal μ of a semiring S is called Q_1 - fuzzy right (left) k - ideal if for all $x, y \in S$ and $q, q_1, q_2 \in Q_1$

- 1) $\mu(x,q) \ge \mu(x+y,q) \wedge \mu(y,q)$
- 2) $\mu(x,q_1) \ge \mu(x,q_1.q_2) \land \mu(x,q_2) [\mu(x,q_2) \ge \mu(x,q_1.q_2) \land \mu(x,q_1)].$

Example 3.15. Consider the semiring $S = (Z_6, \oplus, \odot)$ and $Q_1 = (Z_4, \odot)$. Let $A = \{0, 2, 4\} \subseteq S$ and $M = \{0, 1\} \subseteq Q_1$. Let $\mu: S \times Q_1 \to [0, 1]$ be defined as in Example [3.4]. Clearly μ is a Q_1 -fuzzy right (left) k-ideal of a semiring S.

Remark 3.16. Every Q_1 -fuzzy right (left) k-ideal of a semiring is Q-fuzzy right (left) k-ideal of a semiring S, but the converse need not be true.

Example: 3.17. Consider the semiring $S = (Z_6, \oplus, \odot)$ and $Q = (Z_4, \odot)$. Let $A = \{0, 2, 4\} \subseteq S$ and $M = \{2, 3\} \subseteq Q$, define $\mu: S \times Q \to [0, 1]$ by $\mu(x, q) = \begin{cases} 1, \text{if } x \in A, q \in M, \\ 0, \text{otherwise.} \end{cases}$

Clearly $\mu(x,q)$ is a Q-fuzzy right (left) k-ideal of a semiring S, but not Q_1 -fuzzy right(left) k-ideal of a semiring S, since $\mu(0,1) = 0 \ngeq \mu(0,2) \land \mu(0,2) = 1$.

Lemma 3.18. Let μ be a Q_1 -fuzzy set of a semiring S. Then μ is a Q_1 -fuzzy right (left) k-ideal of S iff $U_q(\mu;t)$ is a right (left) k-ideal of S and $\overline{U}_x(\mu;t)$ is a right (left) k-subsemigroup of Q_1 for $q \in Q_1$ and $x \in S$ and for all $t \in [0,1]$ whenever nonempty. **Proof:** By Lemma [3.8] $U_q(\mu;t)$ is a right ideal. Let μ be a Q_1 -fuzzy right k-ideal of a semiring S. If there exists $x,y \in S, q \in Q_1$ such that $x+y,y \in U_q(\mu;t)$ then $\mu(x+y,q) \ge t$ and $\mu(y,q) \ge t$. Since μ is a Q_1 fuzzy right k-ideal

 $\mu(x,q) \ge \mu(x+y,q) \land \mu(y,q) \ge t$. Thus for $x+y, y \in U_q(\mu;t)$ and $q \in Q_1$ we have

 $x \in U_a(\mu;t)$. Hence $U_a(\mu;t)$ is a right k-ideal of S.

Similarly if there exists $q_1.q_2,q_2\in \overline{U}_x(\mu;t)$ then $\mu(x,q_1.q_2)\geq t$ and $\mu(x,q_2)\geq t$. Since μ is a Q_1 fuzzy right k-ideal $\mu(x,q_1)\geq \mu(x,q_1.q_2)\wedge \mu(x,q_2)\geq t$ and so $\mu(x,q_1)\geq t$. Therefore $q_1\in \overline{U}_x(\mu;t)$, implying that $\overline{U}_x(\mu;t)$ is a k-subsemigroup of Q_1 .

Conversely assume that, $U_q(\mu;t)$ is a right k-ideal of S and $\overline{U}_x(\mu;t)$ is a k-subsemigroup of Q_1 for $q \in Q_1$, $x \in S$ and for all $t \in [0,1]$ whenever nonempty. If there exists $x,y \in S$, $q \in Q_1$ such that $\mu(x,q) < \mu(x+y,q) \wedge \mu(y,q)$. Let $t \in [0,1]$ such that $\mu(x,q) < t \leq \mu(x+y,q) \wedge \mu(y,q)$. This shows $x+y,y \in U_q(\mu;t)$ but $x \notin U_q(\mu;t)$. This is a contradiction to the fact that $U_q(\mu;t)$ is a right k-ideal of S. Similarly, if $q_2,q_1.q_2 \in \overline{U}_x(\mu;t)$ and $\mu(x,q_1) < \mu(x,q_1.q_2) \wedge \mu(x,q_2)$. Let $t \in [0,1]$ such that $\mu(x,q_1) < t \leq \mu(x,q_1.q_2) \wedge \mu(x,q_2)$. This means $q_2,q_1.q_2 \in \overline{U}_x(\mu;t)$ but $q_1 \notin \overline{U}_x(\mu;t)$. This is a contradiction to the fact that $\overline{U}_x(\mu;t)$ is a k-subsemigroup of Q_1 . Therefore μ is a Q_1 -fuzzy right k-ideal of the semiring S.

Definition 1.19. An intuitionistic Q_1 -fuzzy set of a semiring S is an object of the form $A = \{\langle x, q, \mu_A(x,q), \lambda_A(x,q) \rangle | x \in S, q \in Q_1 \text{ with } \mu(x,q) + \lambda(x,q) \leq 1\}$ is called an intuitionistic Q_1 - fuzzy semiring of S if

- 1) $\mu_A(x+y,q) \ge \mu_A(x,q) \wedge \mu_A(y,q)$
- 2) $\mu_A(xy,q) \ge \mu_A(x,q) \wedge \mu_A(y,q)$
- 3) $\mu_A(x, q_1.q_2) \ge \mu_A(x, q_1) \land \mu_A(x, q_2)$
- 4) $\lambda_A(x+y,q) \le \lambda_A(x,q) \lor \lambda_A(y,q)$
- 5) $\lambda_A(xy,q) \le \lambda_A(x,q) \lor \lambda_A(y,q)$
- 6) $\lambda_A(x,q_1.q_2) \le \lambda_A(x,q_1) \lor \lambda_A(x,q_2) \forall x, y \in S, q, q_1, q_2 \in Q.$

Example 3.20. Consider the semiring $S = (Z_6, \oplus, \odot)$ and $Q_1 = (Z_4, \odot)$. Let $A = \{0, 2, 4\} \subseteq S$ and $M = \{0, 1\} \subseteq Q_1$. Define $\mu_A : S \times Q_1 \to [0, 1]$ and $\lambda_A : S \times Q_1 \to [0, 1]$ as $\mu_A(x, q) = \begin{cases} 0.7, & \text{if } x \in A, q \in M, \\ 0.3, & \text{otherwise} \end{cases}$ and $\lambda_A(x, q) = \begin{cases} 0.2, & \text{if } x \in A, q \in M, \\ 0.6, & \text{otherwise}. \end{cases}$

Clearly it is an intuitionistic Q_1 -fuzzy semiring of S.

Remark 3.21. Every intuitionistic Q_1 -fuzzy semiring is an intuitionistic Q-fuzzy semiring of S but the converse need not be true.

Example 3.22. Consider the semiring $S=(Z_6,\oplus,\odot)$ and $Q=(Z_4,\odot)$. Let $A=\{0,2,4\}\subseteq S$ and $M=\{2,3\}\subseteq Q$.

Define $\mu: S \times Q \to [0,1]$ and $\lambda_A: S \times Q_1 \to [0,1]$ as

$$\mu_{\scriptscriptstyle A}(x,q) = \begin{cases} 0.8, \text{if } x \in A, q \in M, \\ 0.3, \text{otherwise} \end{cases} \quad \text{and } \lambda_{\scriptscriptstyle A}(x,q) = \begin{cases} 0.1, \text{if } x \in A, q \in M, \\ 0.6, \text{otherwise} \end{cases}.$$

Since $\mu_A(2,0) = 0.3 \ngeq \mu(2,2) \land \mu_A(2,2) = 0.8$ and $\lambda_A(2,0) = 0.6 \nleq \lambda_A(2,2) \lor \lambda_A(2,2) = 0.1$. It does not satisfies conditions (3 and 6) for intuitionistic Q_1 -fuzzy semiring A of a semiring A. Therefore intuitionistic Q-fuzzy semiring does not implies intuitionistic Q_1 -fuzzy semiring A.

Definition 3.23. Let $A=(\mu_A,\lambda_A)$ be an intuitionistic Q_1 -fuzzy set of a semiring S and let $s,t\in [0,1]$. Then the set $S_{A(q)}^{(s,t)}=\{x\in S\mid \mu_A(x,q)\geq s,\gamma_A(x,q)\leq t,q\in Q_1\}$ and $S_{A(x)}^{(s,t)}=\{q\in Q_1\mid \mu_A(x,q)\geq s,\gamma_A(x,q)\leq t,x\in S\}$ is called a (s,t)- level set of $A=(\mu_A,\lambda_A)$. The set $\{(s,t)\in Im(\mu_A)\times Im(\lambda_A)\mid s+t\leq 1\}$ is called image of

 $A = (\mu_A, \lambda_A). \text{ Clearly, } S_{A(q)}^{(s,t)} = U_q(\mu_A; s) \cap L_q(\lambda; t) \text{ and } S_{A(x)}^{(s,t)} = \overline{U}_x(\mu_A; s) \cap \overline{L}_x(\lambda; t),$ where $U_q(\mu_A; s)[\overline{U}_x(\mu_A; s)]$ and $L_q(\lambda; t)[\overline{L}_x(\lambda; t)]$ are upper and lower level subsets of μ_A and λ_A respectively.

Example 3.24. In Example 3.22, $S_{A(q)}^{(.8,.1)} = \{0,2,4\}$ and $S_{A(x)}^{(.8,.1)} = \{2,3\}$.

Definition 3.25. An intuitionistic Q_1 -fuzzy set of a semiring S is an object of the form $A = \{\langle x, q, \mu_A(x, q), \lambda_A(x, q) \rangle | x \in S, q \in Q_1 \}$ is called an intuitionistic Q_1 - fuzzy right(left) ideal of S if

- 1) $\mu_A(x+y,q) \ge \mu_A(x,q) \wedge \mu_A(y,q)$
- 2) $\mu_A(xy,q) \ge \mu_A(x,q) [\mu_A(xy,q) \ge \mu_A(y,q)]$
- 3) $\mu_A(x,q_1,q_2) \ge \mu_A(x,q_1)(\mu_A(x,q_2))$
- 4) $\lambda_{A}(x+y,q) \leq \lambda_{A}(x,q) \vee \lambda_{A}(y,q)$
- 5) $\lambda_A(xy,q) \le \lambda_A(x,q) [\lambda_A(xy,q) \le \lambda_A(y,q)]$
- 6) $\lambda_A(x, q_1, q_2) \le \lambda_A(x, q_1)(\lambda_A(x, q_2)) \forall x, y \in S, q, q_1, q_2 \in Q_1$

Example 3.26. Consider the set of all positive integer $S = Z_0^+$. Clearly it is a semiring under usual multiplication and consider the semigroup $Q_1 = (Z_4, \odot)$. Define

$$\mu_{(x,q)} = \begin{cases} 0.7, \text{if } x \in \langle 2 \rangle, q \in Q_1, \\ 0.2, \text{otherwise} \end{cases} \qquad \lambda(x,q) = \begin{cases} 0.3, \text{if } x \in \langle 2 \rangle, q \in Q_1, \\ 0.8, \text{otherwise} \end{cases}.$$

Then $A = (\mu, \lambda)$ is an intuitionistic Q_1 fuzzy right ideal of S.

Definition 3.27. An intuitionistic Q_1 -fuzzy right (left) ideal A in S is said to be an intuitionistic Q_1 -fuzzy right (left) k-ideal of S if

- 1) $\mu_A(x,q) \ge \mu_A(x+y,q) \wedge \mu_A(y,q)$
- 2) $\mu_A(x,q_1) \ge \mu_A(x,q_1.q_2) \land \mu_A(x,q_2) \ (\mu_A(x,q_2) \ge \mu_A(x,q_1.q_2) \land \mu_A(x,q_1))$
- 3) $\lambda_A(x,q) \le \lambda_A(x+y,q) \lor \lambda_A(y,q)$
- 4) $\lambda_A(x,q_1) \leq \lambda_A(x,q_1.q_2) \vee \lambda_A(x,q_2)$ ($\lambda_A(x,q_2) \leq \lambda_A(x,q_1.q_2) \vee \lambda_A(x,q_1)$) for all $x,y \in S$ and $q,q_1,q_2 \in Q_1$.

Example 3.28. Consider the semiring $S = (Z_6, \oplus, \odot)$ and $Q_1 = (Z_4, \odot)$. Let $A = \{0, 2, 4\} \subseteq S$ and $M = \{0, 1\} \subseteq Q_1$ defined as in Example [3.20]. Clearly it is an Q_1 -fuzzy right(left) k-ideal of a semiring S.

Remark 3.29. Every Q_1 -fuzzy right(left) k-ideal of a semiring is a Q-fuzzy right (left) k-ideal of a semiring S but the converse need not be true. We illustrate this through the following example.

 $\begin{array}{l} \textbf{Example 3.30.} \ \text{Consider the semiring} \ S = (Z_6, \oplus, \odot) \ \ \text{and} \ \ Q = (Z_4, \odot). \ \ \text{Let} \ \ A = \{0, 2, 4\} \subseteq S \ \ \text{and} \ \ M = \{2, 3\} \subseteq Q. \ \ \text{Define} \ \ \mu : S \times Q \to [0, 1], \lambda : S \times Q \to [0, 1] \ \ \text{as} \\ \mu_A(x, q) = \begin{cases} 1, \text{if} \ x \in A, q \in M, \\ 0, \text{otherwise} \end{cases} \ \ \text{and} \ \ \lambda_A(x, q) = \begin{cases} 0, \text{if} \ x \in A, q \in M, \\ 1, \text{otherwise} \end{cases}.$

Clearly A is an intuitionistic Q-fuzzy right(left) k-ideal of a semiring S, but not an intuitionistic Q_1 -fuzzy right(left) k-ideal of a semiring S. Since $\mu_A(0,1) = 0 \ngeq \mu_A(0,2) \land \mu_A(0,2) = 1$ and $\lambda_A(0,1) = 0 \nleq \lambda_A(0,2) \lor \lambda_A(0,2) = 1$.

Theorem 3.31. An intuitionistic Q_1 -fuzzy set $A = \{ \langle x, q, \mu_A(x, q), \lambda_A(x, q) \rangle | x \in S, q \in Q_1 \}$ in S is an intuitionistic Q_1 -fuzzy semiring of S iff any level set $S_{A(q)}^{(s,t)}$ is a semiring of S and $S_{A(x)}^{(s,t)}$ is a subsemigroup of Q_1 respectively for all $s, t \in [0,1]$ with $s+t \leq 1$ whenever nonempty.

Proof: Let A be an intuitionistic Q_1 -fuzzy semiring of S and $S_{A(q)}^{(s,t)}$ and $S_{A(x)}^{(s,t)}$ are nonempty for all $s,t\in[0,1]$ with $s+t\leq 1$. Let $x,y\in S_{A(q)}^{(s,t)}$. Then $\mu_A(x,q)\geq s$, $\mu_A(y,q)\geq s$, $\lambda_A(x,q)\leq t$ and $\lambda_A(y,q)\leq t$. Since $\mu_A(x+y,q)\geq \mu_A(x,q)\wedge\mu_A(y,q)\geq s$ and $\lambda_A(x+y,q)\leq \lambda_A(x,q)\vee\lambda_A(y,q)\leq t$, $x+y\in S_{A(q)}^{(s,t)}$. Again since $\mu_A(xy,q)\geq \mu_A(x,q)\wedge\mu_A(y,q)\geq s$ and $\lambda_A(xy,q)\leq \lambda_A(x,q)\vee\lambda_A(y,q)\leq t$, $xy\in S_{A(q)}^{(s,t)}$. Therefore $S_{A(q)}^{(s,t)}$ is a semiring of S. Let $q_1,q_2\in S_{A(x)}^{(s,t)}$ implies that $\mu_A(x,q_1)\geq s$, $\mu_A(x,q_2)\geq s$, $\lambda_A(x,q_1)\leq t$ and $\lambda_A(x,q_2)\leq t$. Since $\mu_A(x,q_1,q_2)\geq \mu_A(x,q_1)\wedge\mu_A(x,q_2)\geq s$ and $\lambda_A(x,q_1,q_2)\leq \lambda_A(x,q_1)\vee\lambda_A(x,q_2)\leq t$ $\forall x\in S, q_1,q_2\in S_{A(x)}^{(s,t)}$. This implies that $q_1,q_2\in S_{A(x)}^{(s,t)}$. Therefore $S_{A(x)}^{(s,t)}$ is a subsemigroup of Q_1 .

Conversely, assume that each non-empty set $S_{A(q)}^{(s,t)}$ is a semiring of S and $S_{A(x)}^{(s,t)}$ is a subsemigroup of Q_1 . If there exists $x,y\in S$ and $q\in Q_1$ such that $\mu_A(x+y,q)<\mu_A(x,q)\wedge\mu_A(y,q)$ and $\lambda_A(x+y,q)>\lambda_A(x,q)\wedge\lambda_A(y,q)$. Let $s,t\in [0,1]$ such that $\mu(x+y,q)< s\leq \mu(x,q)\wedge\mu(y,q)$ and $\lambda_A(x+y,q)>t\geq \lambda_A(x,q)\vee\lambda_A(y,q)$. That is for all $x,y\in S_{A(q)}^{(s,t)}$ we have $x+y\notin S_{A(q)}^{(s,t)}$. This is a contradiction to the hypothesis that $S_{A(q)}^{(s,t)}$ is a semiring of S and hence $\mu_A(x+y,q)\geq\mu_A(x,q)\wedge\mu_A(y,q)$ $\forall x,y\in S$. Suppose there exists $x,y\in S$ and $q\in Q_1$ such that $\mu_A(xy,q)<$

 $\mu_A(x,q) \wedge \mu_A(y,q) \quad \text{and} \quad \lambda_A(xy,q) > \lambda_A(x,q) \vee \lambda_A(y,q). \quad \text{Let} \quad s,t \in [0,1] \quad \text{such that} \\ \mu_A(xy,q) < s \leq \mu_A(x,q) \wedge \mu_A(y,q) \quad \text{and} \quad \lambda_A(xy,q) > t \geq \lambda_A(x,q) \vee \lambda_A(y,q). \quad \text{This in} \\ \text{case shows that} \quad xy \not \in S_{A(q)}^{(s,t)} \quad \text{for all} \quad x,y \in S_{A(q)}^{(s,t)}. \quad \text{This is a contradiction to the fact that} \\ S_{A(q)}^{(s,t)} \quad \text{is a semiring of} \quad S \quad \text{and hence} \quad \mu_A(xy,q) \geq \mu_A(x,q) \wedge \mu_A(y,q) \quad \text{and} \quad \lambda_A(xy,q) \\ \leq \lambda_A(x,q) \vee \lambda_A(y,q) \quad \forall x,y \in S. \quad \text{This is a contradiction to the fact that} \\ N_A(x,q) \wedge N_A(y,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(y,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(y,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(y,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(y,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(y,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(y,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(y,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(y,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(y,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(y,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(y,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(y,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall x,y \in S. \quad \text{This in} \\ N_A(x,q) \wedge N_A(x,q) \quad \forall$

Similarly if there exists $x \in S$ and $q_1, q_2 \in Q_1$ such that $\mu_A(x, q_1.q_2) < \mu_A(x, q_1) \land \mu_A(x, q_2)$ and $\lambda_A(x, q_1.q_2) > \lambda_A(x, q_1) \lor \lambda_A(x, q_2)$. Let $s, t \in [0,1]$ such that $\mu_A(x, q_1.q_2) < s \leq \mu_A(x, q_1) \land \mu_A(x, q_2)$ and $\lambda_A(x, q_1.q_2) > t \geq \lambda_A(x, q_1) \lor \lambda_A(x, q_2)$. This in turn shows for $q_1, q_2 \in S_{A(x)}^{(s,t)}, \ q_1.q_2 \notin S_{A(x)}^{(s,t)}$. This is a contradiction to our assumption that $S_{A(x)}^{(s,t)}$ is a subsemigroup of Q_1 . Hence $\mu_A(x, q_1.q_2) \geq \mu_A(x, q_1) \land \mu_A(x, q_2)$ and $\lambda_A(x, q_1.q_2) \leq \lambda_A(x, q_1) \lor \lambda_A(x, q_2) \ \forall x \in S, q_1, q_2 \in Q_1$. Therefore A is an intuitionistic Q_1 - fuzzy semiring of S.

Theorem 3.32. Let I be a non-empty subset of a semiring S and J be a non-empty subset of a semigroup Q_1 . Then an intuitionistic Q_1 -fuzzy set $A = (\mu, \lambda)$ defined by

$$\mu(x,q) = \begin{cases} s_2, & \text{if } x \in I, q \in J, \\ s_1, & \text{otherwise} \end{cases} \quad \text{and} \quad \lambda(x,q) = \begin{cases} t_2, & \text{if } x \in I, q \in J, \\ t_1, & \text{otherwise}, \end{cases}$$

where $0 \le s_1 < s_2 \le 1$, $0 \le t_2 < t_1 \le 1$ and $s_i + t_i \le 1$ for each i = 1, 2 is an intuitionistic Q_1 fuzzy right (left) ideal of S if and only if I is a right ideal of S and S is a right ideal of S.

Proof: Let I be a right ideal in S and J be a right ideal in Q_1 . Let $x, y \in I$ and $q \in J$, then $x + y \in I$. Therefore $\mu(x + y, q) = s_2$, $\lambda(x + y, q) = t_2$, $\mu(x + y, q) = s_2 = \mu(x, q) \wedge \mu(y, q)$ and $\lambda(x + y, q) = t_2 = \lambda(x, q) \wedge \lambda(y, q)$. If $x \text{ or } y \notin I$, $q \in J$ then $\mu(x, q) \wedge \mu(y, q) = s_1 \leq \mu(x + y, q)$ and $\lambda(x, q) \wedge \lambda(y, q) = t_1 \geq \lambda(x + y, q)$.

Let $x \in I$ and $q \in J$, $\mu(xy,q) = s_2 = \mu(x,q)$. If $x \notin I$ and $q \in J$ then $s_1 = \mu(x,q)$, q and $t_1 = \lambda(x,q) \ge \lambda(xy,q)$. Again for $q_1 \in J$ and $x \in I$, then $\mu(x,q_1) = s_2$ and $\mu(x,q_1q_2) = s_2$. Therefore $\mu(x,q_1q_2) = \mu(x,q_1)$ and $\lambda(x,q_1q_2) = \lambda(x,q_1)$ for $q_1 \notin J$ and for any $x,\mu(x,q_1) = s_1 \le \mu(x,q_1q_2)$ for any q_2 and $\lambda(x,q_1) = t_1 \ge \lambda(x,q_1q_2)$.

Corollary 3.33. Let I be a non-empty subset of a semiring S and J be a non-empty subset of a semigroup Q_1 . Then I is a right (left) ideal of S and J is a right (left) ideal of Q_1 if and only if the intuitionistic Q_1 -fuzzy set $A = (\chi_I, 1 - \chi_I)$ defined by

$$\chi_{I}(x,q) = \begin{cases} 1, & \text{if } x \in I, q \in J, \\ 0, & \text{otherwise} \end{cases}$$

is an intuitionistic Q_1 -fuzzy right(left) ideal of S.

Theorem 3.34. An intuitionistic Q_1 -fuzzy set $A = (\mu, \lambda)$ in S is an intuitionistic Q_1 -fuzzy right (left) ideal of S if and only if the Q_1 fuzzy subsets μ and λ^c are Q_1 fuzzy right(left) ideals of S.

Proof: If $A = (\mu, \lambda)$ is an intuitionistic Q_1 fuzzy right ideal of S, then clearly μ is a Q_1 fuzzy right ideal of S. For all $x, y \in S, q \in Q_1$,

$$\lambda^{c}(x+y,q) = 1 - \lambda(x+y,q) \ge 1 - \max\{\lambda(x,q),\lambda(y,q)\}$$

$$= \min\{1 - \lambda(x,q),1 - \lambda(y,q)\} = \min\{\lambda^{c}(x,q),\lambda^{c}(y,q)\}$$
and

$$\lambda^{c}(xy,q) = 1 - \lambda(xy,q) \ge 1 - \lambda(x,q) = \lambda^{c}(x,q).$$

Also for $q_1, q_2 \in Q_1$

$$\lambda^{c}(x, q_{1}q_{2}) = 1 - \lambda(x, q_{1}q_{2}) \ge 1 - \lambda(x, q_{1}) = \lambda^{c}(x, q_{1}).$$

Thus λ^c is a Q_1 -fuzzy right ideal of S.

Conversely assume that μ and λ^c are Q_1 -fuzzy right ideals of S, then conditions 1,2 and 3 of Definition [3.25], are satisfied. Now for $x, y \in S$ and $q \in Q_1$

$$\begin{aligned} &1-\lambda(x+y,q)=\lambda^c(x+y,q)\geq \min\{\lambda^c(x,q),\lambda^c(y,q)\}\\ &=\min\{1-\lambda(x,q),1-\lambda(y,q)\}=1-\max\{\lambda(x,q),\lambda(y,q)\}\\ &\text{which implies } -\lambda(x+y,q)\geq -\max\{\lambda(x,q),\lambda(y,q)\}\\ &\text{implies } \lambda(x+y,q)\leq \max\{\lambda(x,q),\lambda(y,q)\}\\ &\text{and } 1-\lambda(xy,q)=\lambda^c(xy,q)\geq \lambda^c(x,q)=1-\lambda(x,q)\\ &\text{This implies } -\lambda(xy,q)\geq -\lambda(x,q) &\text{implies } \lambda(xy,q)\leq \lambda(x,q).\\ &\text{Also for } q_1,q_2\in Q_1,1-\lambda(x,q_1q_2)=\lambda^c(x,q_1q_2)\geq \lambda^c(x,q_1)=1-\lambda(x,q_1)\\ &\text{This implies } -\lambda(x,q_1q_2)\geq -\lambda(x,q_1) &\text{implies } \lambda(x,q_1q_2)\leq \lambda(x,q_1). \end{aligned}$$

Therefore $A = (\mu, \lambda)$ is an intuitionistic Q_1 fuzzy right ideal of S.

Corollary 3.35. Let $A = (\mu, \lambda)$ be an intuitionistic Q_1 fuzzy set in S. Then A is an intuitionistic Q_1 fuzzy right (left) ideal of S if and only if intuitionistic Q_1 -fuzzy set $A_1 = (\mu, \mu^c)$ and intuitionistic Q_1 fuzzy set $A_2 = (\lambda^c, \lambda)$ are intuitionistic Q_1 -fuzzy right (left) ideals of S.

Theorem 3.36. An intuitionistic Q_1 -fuzzy set $A = \{ \langle x, q, \mu_A(x, q), \lambda_A(x, q) \rangle | x \in S, q \in Q_1 \}$ in S is an intuitionistic Q_1 -fuzzy right (left) ideal in S iff level sets $S_{A(q)}^{(s,t)}$ is a

right (left) ideal of S and $S_{A(x)}^{(s,t)}$ is a right (left) ideal of Q_1 respectively for all $s,t \in [0,1]$ with $s+t \le 1$ whenever nonempty.

Proof: Suppose A is an intuitionistic Q_1 -fuzzy right ideal of S and $S_{A(q)}^{(s,t)}, S_{A(x)}^{(s,t)}$ are non-empty for $s,t\in[0,1]$, with $s+t\leq 1$. Let $x,y\in S_{A(q)}^{(s,t)}$. Then $\mu_A(x,q)\geq s$, $\mu_A(y,q)\geq s$, $\lambda_A(x,q)\leq t$, $\lambda_A(y,q)\leq t$. Since $\mu_A(x+y,q)\geq \mu_A(x,q)\wedge \mu_A(y,q)\geq s$ and $\lambda_A(x+y,q)\leq \lambda_A(x,q)\vee \lambda_A(y,q)\leq t$. We have $x+y\in S_{A(q)}^{(s,t)}$. Further $\mu_A(xy,q)\geq \mu_A(x,q)\geq s$ and $\lambda_A(xy,q)\leq \lambda_A(x,q)\leq t$. This yields $xy\in S_{A(q)}^{(s,t)}$ for $x,y\in S_{A(q)}^{(s,t)}$. Therefore $S_{A(q)}^{(s,t)}$ is a right ideal of S.

Conversely, assume that each non-empty set $S_{A(q)}^{(s,t)}$ is a right ideal of S and $S_{A(x)}^{(s,t)}$ is a right ideal of Q_1 . If there exists $x, y \in S$ and $q \in Q_1$ such that $\mu_A(x+y,q) < \mu_A(x,q) \land \mu_A(y,q)$ and $\lambda_A(x+y,q) > \lambda_A(x,q) \land \lambda_A(y,q)$. Let $s,t \in$ [0,1] such that $\mu(x+y,q) < s \le \mu(x,q) \land \mu(y,q)$ and $\lambda_A(x+y,q) > t \ge \lambda_A(x,q) \lor t \ge \lambda_A(x,q)$ $\lambda_A(y,q)$. That is for $x,y \in S_{A(q)}^{(s,t)}$ we have $x+y \notin S_{A(q)}^{(s,t)}$. This is a contradiction to the hypothesis that $S_{A(q)}^{(s,t)}$ is a right ideal of S and hence $\mu_A(x+y,q) \ge \mu_A(x,q)$ $\wedge \mu_A(y,q)$ and $\lambda_A(x+y,q) \leq \lambda_A(x,q) \vee \lambda_A(y,q) \ \forall x,y \in S$. Again if there exists $x \in S$ and $q \in Q_1$ such that $\mu_A(xy,q) < \mu_A(x,q)$ and $\lambda_A(xy,q) > \lambda_A(x,q)$. Let $s,t \in [0,1]$ such that $\mu_A(xy,q) < s \le \mu_A(x,q)$ and $\lambda_A(xy,q) > t \ge \lambda_A(x,q)$. This shows that for $x \in S_{A(x)}^{(s,t)}, xy \notin S_{A(q)}^{(s,t)}$ contradiction to our hypothesis that $S_{A(q)}^{(s,t)}$ is a right ideal of S and hence $\mu(xy,q) \ge \mu(x,q) \ \forall x,y \in S$ and $q \in Q_1$. Similarly, if $\mu_{\scriptscriptstyle A}(x,q_{\scriptscriptstyle 1}.q_{\scriptscriptstyle 2}) < \mu_{\scriptscriptstyle A}(x,q_{\scriptscriptstyle 1}) \quad \text{for} \quad x \in S \quad \text{ and } \quad q_{\scriptscriptstyle 1},q_{\scriptscriptstyle 2} \in Q_{\scriptscriptstyle 1}. \quad \text{Let} \quad s,t \in [0,1] \quad \text{such that}$ $\mu_A(x, q_1.q_2) < s \le \mu_A(x, q_1)$ and $\lambda_A(x, q_1.q_2) > t \ge \lambda_A(x, q_1)$. Then for $q_1 \in S_{A(x)}^{(s,t)}$, $q_1.q_2 \notin S_{A(x)}^{(s,t)}$ a contradiction to our assumption that $S_{A(x)}^{(s,t)}$ is a right ideal of Q_1 . Hence $\mu(x,q_1,q_2) \ge \mu(x,q_1)$ and $\lambda_A(x,q_1) \le \lambda_A(x,q_1,q_2) \ \forall x \in S, q_1,q_2 \in Q_1$. Therefore A is an intuitionistic Q_1 -fuzzy right ideal of S.

Theorem 3.37. An intuitionistic Q_1 -fuzzy set $A = \{ \langle x, q, \mu_A(x, q), \lambda_A(x, q) \rangle | x \in S, q \in Q_1 \}$ in S is an intuitionistic Q_1 -fuzzy right (left) k - ideal in S iff $S_{A(q)}^{(s,t)}$ is a

right(left) k - ideal of S and $S_{A(x)}^{(s,t)}$ is a k-subsemigroup of Q_1 respectively for all $s,t \in [0,1]$ with $s+t \le 1$ whenever nonempty.

Proof: Let A be an intuitionistic Q_1 -fuzzy right k-ideal of a semiring S. By Theorem 3.2 $S_{A(q)}^{(s,t)}$ is a right ideal of S. If there exists $x,y\in S,q\in Q_1$ such that $x+y,y\in S_{A(q)}^{(s,t)}$ then $\mu_A(x+y,q)\geq s$ and $\mu_A(y,q)\geq s$, $\lambda_A(x+y,q)\leq t$ and $\lambda_A(y,q)\leq t$. Since A is an intuitionistic Q_1 fuzzy right k-ideal in S, $\mu_A(x,q)\geq \mu_A(x+y,q) \land \mu_A(y,q)\geq s$ and $\lambda_A(x,q)\leq \lambda_A(x+y,q)\lor \lambda_A(y,q)\leq t$. Thus for $x+y,y\in S_{A(q)}^{(s,t)}$ and $q\in Q_1$ we have $x\in S_{A(q)}^{(s,t)}$. Hence $S_{A(q)}^{(s,t)}$ is a right k-ideal of S.

For $x \in S$ and $q_1,q_2 \in Q_1$ if $q_1.q_2,q_2 \in S_{A(x)}^{(s,t)}$ then $\mu_A(x,q_1.q_2) \geq s$, $\mu_A(x,q_2) \geq s$, $\lambda_A(x,q_1.q_2) \leq t$ and $\lambda_A(x,q_2) \leq t$. Thus $\mu_A(x,q_1) \geq \mu_A(x,q_1.q_2) \wedge \mu_A(x,q_2) \geq s$ and so $\mu_A(x,q_1) \geq s$. Also $\lambda_A(x,q_1) \leq \lambda_A(x,q_1.q_2) \vee \lambda_A(x,q_2) \leq t$. Therefore $q_1 \in S_{A(x)}^{(s,t)}$ which implies that $S_{A(x)}^{(s,t)}$ is a k-subsemigroup of Q_1 .

Conversely assume that $S_{A(q)}^{(s,t)}$ is a right k-ideal of S and $S_{A(x)}^{(s,t)}$ is a k-subsemigroup of Q_1 for $q \in Q_1$, $x \in S$ and for all $s,t \in [0,1]$ such that $s+t \leq 1$ whenever nonempty. If there exists $x,y \in S$, $q \in Q_1$ such that $\mu_A(x,q) < \mu_A(x+y,q) \wedge \mu_A(y,q)$ and $\lambda_A(x,q) > \lambda_A(x+y,q) \vee \lambda_A(y,q)$. Let $s,t \in [0,1]$ such that $\mu_A(x,q) < s \leq \mu_A(x+y,q) \wedge \mu_A(y,q)$ and $\lambda_A(x,q) > t \geq \lambda_A(x+y,q) \vee \lambda_A(y,q)$. This shows $x+y,y \in S_{A(q)}^{(s,t)}$ but $x \notin S_{A(q)}^{(s,t)}$. This is a contradiction to the fact that $S_{A(q)}^{(s,t)}$ is a right k-ideal of \$S.\$ Similarly, for $q_2,q_1.q_2 \in S_{A(x)}^{(s,t)}$, if $\mu_A(x,q_1) < \mu_A(x,q_1.q_2) \wedge \mu_A(x,q_2)$ and $\lambda_A(x,q_1) > \lambda_A(x,q_1.q_2) \vee \lambda_A(x,q_2)$. Let $s,t \in [0,1]$ such that $\mu_A(x,q_1) < s \leq \mu_A(x,q_1.q_2) \wedge \mu_A(x,q_2)$ and $\lambda_A(x,q_1) > t \leq \lambda_A(x,q_1.q_2) \vee \lambda_A(x,q_2)$. This means $q_2,q_1.q_2 \in S_{A(x)}^{(s,t)}$ but $q_1 \notin S_{A(x)}^{(s,t)}$. This is a contradiction to the fact that $S_{A(x)}^{(s,t)}$ is a k-subsemigroup of Q_1 . Therefore $\mu_A(x,q_1) \geq \mu_A(x,q_1.q_2) \wedge \mu_A(x,q_2)$ and $\lambda_A(x,q_1) \leq \lambda_A(x,q_1.q_2) \wedge \mu_A(x,q_2)$. Hence A is an intuitionistic Q_1 -fuzzy right k-ideal of the semiring S.

4. Conclusion

In this paper k-subsemigroup of a semigroup G_s has been introduced in real case and we provide a structure for Q-fuzzy set and Q-intuitionistic fuzzy set. This article is a threshold for a new algebraic structure and a lot of can be done using this new structure.

Acknowledgement. The second author is thankful to the University Grants Commission, New Delhi-110021, India, for providing OBC National fellowship under grant no: F.4-1/2016-17/NFO-2015-17-OBC-TAM-29759/(SA-III/Website) 01.04.2016

REFERENCES

- 1. K.T.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
- 2. P.Bhattacharya and N.P. Mukherjee, Fuzzy groups, *Inform. Sci.*, 36 (1985) 267-282.
- 3. TK Dutta and BK Biswas, Fuzzy k-ideals of semirings, *Bull Calcutta Math. Soc.*, 87 (1995) 91-96.
- 2. M.Henriksen, Ideals in semirings with commutative addition, *Am. Math. Soc.*, (6) (1958) 321.
- 3. J.Ahsen, J.N.Mordeson and Mohammad Shabi, Fuzzy k-ideals of semiring, *Fuzzy Semirings with Applications*, 278 (1988) 53-82.
- 4. S.Kar and S.Purkait, Characterization of some k-regularity of semirings in terms of fuzzy ideals of semiring, *Journal of Intelligent and Fuzzy System*, 27(6) (2014) 3089-3101
- 5. Kim, On intuitionistic Q-fuzzy semiprime ideals in semigroups, *Adv. in Fuzzy Mathematics*, 1(1) (2006) 15-21.
- 6. S.Lekkoksung, Q-fuzzy interior ideals in semigroups, *Int. J. contemp. Math. Sci.*, 7 (2012) 357-361.
- 7. S.Lekkoksung, On Intuitionistic Q-fuzzy k-ideals of semiring, *Int. J. Contemp. Math. Science*, 7(8) (2012) 389-393.
- 8. W.J.Liu, Fuzzy invarient subgroups and fuzzy ideals, *Fuzzy Sets and Systems*, 8 (1982) 133-139.
- 9. D.S.Malik and J.N.Mordeson, Extensions of fuzzy subring and fuzzy ideals, *Fuzzy Sets and Systems*, 45 (1992) 245-251.
- 10. A. Muhammad and W.A. Dudek, Intuitionistic fuzzy left k-ideals of semirings, *Soft Computing*, 12 (2008) 881-890.
- 11. P.M. Pu and Y.M.Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, *Mathematical Analysis and Applications*, 76(2) (1980) 571-599.
- 12. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971) 512-517.
- 13. P.Sivaramakrishna Das, Fuzzy groups and level subgroups, *Journal of Mathematical Analysis and Applications*, 84 (1989) 264-269.
- 14. A.Solairaju and R.Nagarajan, A new structure and constructions of Q-fuzzygroup, *Advance in Fuzzy Mathematics*, 4 (2009) 23-29.
- 15. X.P.Wang, Z.W.Mo and W.J.Liu, Fuzzy ideals generated by fuzzy point in semigroups, *Sichuan Shifan Daxue Xuebao*, 15(4) (1992) 17-24.
- 16. L.A. Zadeh, Fuzzy sets, Information and Control, 8 (1995) 338-353.